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Abstract—A variety of next-generation sequencing
technologies reduced costs and improved quality for
whole genome sequencing within the last decade.
However, interpretation and analysis of generated
raw genome data is still a time- and resource-intensive
task taking up to weeks. We applied in-memory
database technology to form a completely new system
architecture that enables processing and real-time
analysis of genome data in a single system and reduces
time and costs to obtain relevant results, e.g., in the
course of personalized medicine.

Keywords-Genome Data Analysis; Process Integra-
tion; In-Memory Database Technology; Personalized
Medicine; Next-Generation Sequencing.

I. Introduction

The Human Genome (HG) project officially launched
in 1990 involved thousands of worldwide research in-
stitutes and required more than a decade to sequence
and decode the full HG [1]. Next-Generation Sequencing
(NGS) devices enable processing of whole genome data
within hours while reducing costs [2]. NGS is used to
support personalized medicine, which aims at treating
patients specifically based on individual dispositions,
e.g., genetic or environmental factors [3].

The In-Memory Database (IMDB) technology has
proven to have major capabilities for analyzing big
enterprise and medical data, e.g., to identify relevant
patient data and to protect markets from injecting phar-
maceutical counterfeits [4], [5].

In this work, we present our findings of applying
IMDB technology to enable real-time analysis of genome
data in course of our High-performance In-memory
Genome (HIG) project. We developed a specific IT
platform that combines processing and analyzing of
genomic data as a holistic process based on the feedback
of researchers and clinicians. Our HIG architecture is
designed to run on commodity hardware instead of
highly specialized hardware a) to be cost-efficient and b)
to make use of existing hardware infrastructures. Fig. 1
depicts the system architecture of our HIG system mod-
eled as block diagram using the Fundamental Modeling
Concepts (FMC) [6].
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Figure 1. The HIG system architecture consist of application, plat-
form, and data layer. Analysis and processing of data is performed
in the platform layer eliminating time-consuming data transfer.

The rest of the paper is structured as follows: In
Sect. II, our work is set in context of related work. We
introduce selected in-memory technology building blocks
in Sect. III and present selected components of our HIG
system in Sect. IV. In Sect. V, we share our benchmark
results and discuss them in Sect. VI. Our work concludes
with an outlook in Sect. VII.

II. Related Work

Fig. 2 provides a comparison of costs for sequenc-
ing and main memory modules. Both costs follow a
steadily declining trend, which facilitates the increasing
use of NGS for whole genome sequencing and IMDB
technology for its data analysis. Related work in the
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Figure 2. Costs for next-generation sequencing and main memory
2001-2013 adapted from [9], [10].

field of genome data processing has increased in the last
years. However, work focusing on implementing end-to-
end processes is still rare. Thus, our contribution focuses
on supporting integrated processes.

Pabinger et al. evaluated workflow systems and anal-
ysis pipeline tools [7]. They realized that existing tools
either miss flexibility or the end-user needs additional
know-how to install them. We address this by intro-
ducing a combined system for modeling and execution
of individual pipeline configurations without the need
for command line scripts as presented in Sect. IV. Fur-
thermore, Pabinger et al. analyzed a variety of variant
analysis tools and evaluated their functionality. For web-
based tools they see a drawback in the required data
preparation before analysis because "[. . . ] files need to be
packed, sorted and indexed before they can be used [7]".
We address time-consuming data transformation and
preparation steps and replace them by native opera-
tions directly performed in our incorporated in-memory
database as discussed in Sect. VI.

Wandelt et al. have observed a trend towards more
and more cloud-based NGS data management solu-
tions [8, Sect. 4.3]. They identified the efficient mapping
of workflow tasks in distributed computing environments
and the adjustment of a given workflow to a dynamic
environment as open issues. Our work contributes by
providing a system architecture that combines process-
ing and analyzing of genome data within a single sys-
tem. Firstly, the worker framework developed in Python
enables integration of computing resources across plat-
form and Operating System (OS) borders. Secondly, the
scheduler adjusts the execution of a given workflow, e.g.,
concrete pipeline process steps. It enables processing of
multiple tasks in parallel, e.g., simultaneous users or
multiple departments as described in Sect. IV.

III. In-memory Technology Building Blocks

We refer to IMDB technology as a toolbox of IT
artifacts to enable processing of enterprise data in real-
time in the main memory of server systems [11]. The
combination of IMDB database technology and analysis
of genome data is driven by the declining cost trends
as described in Sect. II. In the following, we outline
selected building blocks of the IMDB technology and
their relevance for real-time analysis of genomic data.

A. Insert-only

Insert-only is a data management approach that stores
data changes as new entries. In contrast to traditional
databases destructive update or delete operations do not
destroy the original data in an Insert-only table [12,
Sect. 7.1]. Instead the data are invalidated, thus keeping
complete history of value changes and the latest value
for a certain attribute accessible [11]. This approach
complies with legal regulations to permanently store
clinical data and enables the tracing of decisions within
the treatment process, e.g., to retrospectively perform
analysis when certain treatments were initiated.

B. Lightweight Compression

Lightweight compression refers to a data storage rep-
resentation, which consumes less space than its original
pendant [11]. A columnar storage layout, as used in
IMDBs, supports lightweight compression techniques,
such as run-length encoding, dictionary encoding, and
difference encoding [13]. Typically, values of a database
attribute are within a very small subset of the attribute’s
domain, e.g., male and female for the gender type.
Lightweight compression maps all unique values to a
uniform format, e.g., male=1 and female=2.

C. Partitioning

We distinguish between vertical and horizontal par-
titioning [14]. The former refers to the arrangement of
database columns. It is achieved by splitting columns of
one database table in multiple column sets wile each set
can be distributed on individual servers [15]. The latter
addresses long database tables and their division into
smaller chunks of data. Splitting data into equally long
horizontal partitions supports parallel search operations
and improves scalability [11].

The identification of CpG Islands (CGIs) is a concrete
application example. CGIs are known to represent un-
stable chemical compounds. Its identification requires
a full scan of the genome table to find cytosine and
guanine bases stored as direct neighbors [16]. Applying
a horizontal partition per chromosome for the genome
table enables scanning of all chromosomes by individual
threads in parallel.
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Figure 3. Selected HIG cloud applications: The up-
per Fig. shows the ranked results of our clinical trials
search. It includes the patient’s history and extracts
relevant criteria from trial free-text descriptions with
the help of specific rules to identify relevant studies,
e.g., clinical trial for advanced rectal cancer started
in Aug. 2011. The left Fig. shows the results of an
interactive analysis of a cohort of colon carcinoma
patients using k-means clustering. It proposes rel-
evant combinations of genomic loci, such as gene
KRAS and on chromosome 12 at position 25,289,551,
which are present in the majority of cohort members.

IV. Architecture

Our HIG system architecture modeled in Fig. 1 com-
bines data from various data sources, such as patient-
specific data, genome data, and annotation data within
a single system to enable flexibly real-time analysis and
combination. In the following, its layers are described in
further detail.

A. Application Layer

The application layer consists of special purpose ap-
plications to answer medical and research questions. We
provide an Application Programming Interface (API)
that can be consumed by various kinds of applications,
such as web browser applications or mobile applications.
Fig. 1 depicts the data exchange via asynchronous Ajax
calls and JavaScript Object Notation (JSON) [17], [18].
As a result, performing specific analyses is no longer
limited to a specific location, e.g., the desktop computer
of a clinician. Instead, all applications can be accessed
via device connected to the Internet, e.g., laptop, mobile
phone, or tablet computer. Thus, having access to rele-
vant data at any time enhances the userÕs productivity.
Selected HIG cloud applications are depicted in Fig. 3,
which are described in the following. The end user can
access these cloud applications via any Internet browser
after registration.

1) Cohort Analysis: The HIG cohort analysis ap-
plication enables researchers and clinicians to perform

interactive clustering on the data stored in the IMDB,
e.g., k-means and hierarchical clustering [19, Chap. 13].
Thus, they are able to verify hypotheses by combining
patient and genome data in real-time. Therefore, they
use patient-specific and genome data loaded into the in-
memory database system and perform the interactive
cohort analysis as part of the platform layer as depicted
in Fig. 1.

2) Clinical Trial Search:: Our HIG clinical trial search
assists physicians in finding adequate clinical trials for
their patients. It analyses patient data, such as age, gen-
der, preconditions and existing mutations, and matches
them with open clinical trials. The analysis is performed
on top of more than 30k descriptions of searching clinical
trials, which are ranked in real-time while the physi-
cian investigates the list of variants in the patient’s
genome [20].

B. Platform Layer

The platform layer holds the complete process logic
and consists of the IMDB system for enabling real-
time analysis of genomic data. We developed specific
extensions for the IMDB system to support genome data
processing and its analysis. In the following, selected
extensions and their integration in the IMDB system are
described in more detail.

1) Scheduling of Data Processing: We extended the
IMDB by a worker framework, which executes tasks
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asynchronously, e.g., alignment of chunks of genome
data. It consists of a task scheduler instance and a
number of workers controlling dedicated computing re-
sources, e.g., individual computing nodes. Workers re-
trieve tasks and parameters by the scheduler instance
and perform specific tasks, such as workbench prepara-
tion, task execution, and maintenance of status infor-
mation. Thus, all workers are connected to the IMDB to
store status information about currently executed tasks.

Furthermore, the scheduler supervises the responsive-
ness of individual compute resources. If a predefined
response behavior is no longer guaranteed, e.g., due
to an overloaded compute node or a crashed worker
process, workers are marked as unresponsive. As a result,
work-in-progress tasks of the unresponsive worker are
reassigned to a new worker and this worker is scheduled
for a restart.

2) Updater Framework: We consider the use of latest
international research results as enabler for evidence-
based therapy decision [21]. The updater framework is
the basis for combining international research results.
It periodically checks all registered Internet sources,
such as public FTP servers or web sites, for updated
and newly added versions of annotations, e.g., database
exports as dumps or characteristic file formats, such as
CSV, TSV, and VCF. If the online version is newer than
the local available version, the new data are automati-
cally downloaded and imported in the IMDB to extend
the knowledge base.

The import of new versions of research databases is
performed as a background job without affecting the sys-
tem’s operation. We import new data without any data
transformations in advance. Thus, they are available
for real-time analysis without any delay [22], [23]. For
example, the following selected research databases are
checked regularly by our updater framework: National
Center for Biotechnology Information (NCBI), Sanger’s
catalogue of somatic mutations in cancer, University of
California, Santa Cruz (UCSC) [24], [25], [26].

C. Data Layer

The data layer holds all required data for performing
processing and analyzing of genomic data. The data can
be distinguished in the two categories: master data, and
transactional data [27]. For example, human reference
genomes and annotation data are referred to as master
data, whereas patient-specific NGS data and Electronic
Medical Records (EMR) are referred to as transactional
data [28], [29]. Its analysis is the basis for gathering
specific insights, e.g., individual genetic dispositions, and
for leveraging personalized treatment decision in course
of personalized medicine [3].

The actual step of analyzing the genetic data requires
answering very specific questions. Thus, the application

TABLE I. CONFIGURATION OF BWA BENCHMARKS.

Experiment Split Size Primary Storage
1 1 File System
2 1 In-Memory Database
3 25 File System
4 25 In-Memory Database

layer consists of specific applications to answer these
questions. They make use of the platform layer to ini-
tialize the data processing.

V. Benchmarks

All benchmarks were performed on a computing clus-
ter consisting of 25 identical computing nodes. Each of
the nodes was equipped with four Intel Xeon E7-4870
CPUs running at 2.40 GHz clock speed, 30 MB Intel
Smart cache[30], interconnected by 6.4 GT/s Quick Path
Interconnect (QPI), and 1 TB of main memory capacity.
Each CPU consisted of 10 physical cores and 20 threads
running a 64-bit instruction set. All computing nodes
were equipped with Intel 520 series Solid State Drives
(SSDs) of 480 GB capacity combined using a hardware
raid for local file operations [31]. The average throughput
rate of the local SSDs was measured with 7.6 GB/s
cached reads and 1.4 GB/s buffered disk reads. All nodes
were interconnected via a Network File System (NFS)
using dedicated 10 Gb/s Ethernet links and switches to
share data between nodes.

Instead of using generated test data, we only used
real NGS data, i.e. FASTQ files, from the 1,000 genome
project for individual measurements [32]. We used the
FASTQ file of patient HG00251 for our benchmarks.
It consumed 160 GB of disk space, consists of approx.
63 Gbp, approx. 695 M reads with 91 bp individual read
length forming approx. 20x coverage.

The aim of all conducted benchmarks was to minimize
the overall execution time for a single GDPP run, i.e. to
use the maximum available computing power to achieve
best parallelization. In the following, we share insights
about our benchmarks performed on our HIG system.

A. Performance Key Indicators

We investigated the following impact factors to con-
trolling the overall pipeline execution time:

1) Integration: We implemented GDPPs based on
existing alignment and variant calling tools in our
system architecture without any modification of
the established tools,

2) Adaption: We adapted existing GDPPs to use the
in-memory database as primary storage for data
processing, and

3) Optimization: We optimized the number of in-
volved distributed computing nodes (split size).
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Figure 4. Comparison of benchmark results. Exp. 2 shows relative
improvements of 24-27 % on single computing node compared to
Exp. 1. Exp. 3 and 4 show relative improvements up 76 % and
89 % resp. on 25 computing nodes compared to Exp. 1 (Exp. =
Experiment).

TABLE II. COMPARISON OF OVERALL PIPELINE EXECU-
TION TIMES IN HIG. TX =EXECUTION TIME FOR EXP. X,
AX =RELATIVE ADVANCE OF EXECUTION TIME FOR
EXP. X COMPARED TO EXP. 1 AS AX “ T1´TX

T1

.

Size rGbps 0.5 1.0 2.0 4.0 7.9 15.8
t1rss 1,100 2,159 3,900 7,029 13,626 25,147
t2rss 808 1,622 2,860 5,259 10,364 18,707
t3rss 283 520 943 1,761 3,377 6,609
t4rss 130 245 470 893 1,733 3,387

A2r%s 27 25 27 25 24 26
A3r%s 74 76 76 75 75 74
A4r%s 88 89 88 87 87 87

B. Results

Our benchmarks were performed on a GDPP inte-
grating Burrows Wheeler Aligner (BWA) version 0.6.2
as selected alignment algorithm [33]. We designed our
benchmarks to compare the impact of the incorporated
storage and the level of parallelization on the overall
execution time as outlined in Tab. I.

Exp. 1 and 2 used a file system as primary storage
while an IMDB was used for Exp. 2 and 4. Exp. 1 and 2
were executed on a single computing node, while Exp. 3
and 4 were executed on 25 computing nodes to evaluate
the impact of a fully parallelized execution environment.

The overall pipeline execution for varying FASTQ
file sizes was measured. BWA was configured to use
80 threads, which relates to the maximum available
hardware resources of our benchmark systems.

Exp. 1 and 2 describe the overall pipeline execution
time on a single computing node as shown in Tab. II.
It depicts that the use of the in-memory database as
primary storage for intermediate results is beneficial for
all selected file sizes. This pipeline optimization results in
a reduction of runtime by at least 25 percent in average.

Exp. 3 and 4 as shown in Tab. II document the

impact of the parameter split size, i.e. the number of
distributed computing nodes used for parallel execution.
Parallel execution of selected pipeline steps reduces the
overall execution time by at least 74 percent in average
for BWA. Additional improvement can be achieved by
using the in-memory database as primary storage. Thus,
the overall execution time can by reduced by at least 87
percent in average.

VI. Evaluation and Discussion

Our conducted benchmarks verify two hypotheses.
Firstly, the usage of the IMDB as primary storage system
improves the overall execution time of established align-
ment algorithms, such as BWA, integrated in our HIG
system as depicted in Fig. 4. Secondly, our HIG system
supports the parallel execution of intermediate process
steps across multiple computing nodes, which results in
an additional performance improvement compared to the
execution on a single computing node.

We observed the best relative improvement with the
adapted pipeline using the IMDB as primary data stor-
age with at least 74 percent on single computing node
and up to 89 percent on 25 computing nodes. It shows
that the overall pipeline execution time correlates to the
number of base pairs contained in the FASTQ file in a
very constant and linear way. However, the improvement
of using 25 nodes is still below our expectation of a factor
25 since we also use traditional tools in the GDPP, which
partially operate in a single threaded way.

The scaling factors for the overall execution time
varies between 1.80 and 1.96 across all experiments and
file sizes. This indicates a very constant and predictable
system behavior of our HIG system for varying input file
size. It helps us to predict execution times and helps to
supervise the correct system functionality, e.g., to detect
broken computing resource as outlined in Sect. IV.

Furthermore, our results stress the benefits of using
an IMDB for operating on intermediate results of the
pipeline execution. The pipeline optimized for the IMDB
no longer uses individual tools operating on files for spe-
cific process steps, such as sorting, merging, and index-
ing. In contrast, these operations are directly performed
as an integral operation of the IMDB without the need to
create intermediate files in the file system any longer. We
integrated existing alignment and variant calling tools
into our HIG architecture without modifying their code.
Thus, the speed-up documented in our benchmarks is
moderate and mainly achieved by replacing selected file-
based by optimized in-memory database operations.

VII. Conclusion and Outlook

In our contribution, we shared details about our HIG
system enabling genome data processing on an IMDB.
We outlined the applicability of this technology for
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processing of genome data to enable real-time analysis
of genome data. Furthermore, we shared insights in
specific design decision for our IT architecture, such
as scheduler and updater framework. The presented
benchmark results proved that our HIG system improves
overall pipeline execution time by at least one fourth on
a single computing node and up to 89 percent involving
our computing cluster with 25 nodes. The performance
improvements are achieved by substituting selected disk-
based operations, such as sorting, merging, and indexing,
by native in-memory database operations.

Our future research work focuses on optimizing align-
ment and variant calling algorithms executing them
directly within the IMDB. As a result, the amount of
media breaks and incorporated data transfers would be
reduced further.
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