
 

A Cost-effective BCI Assisted Technology Framework for Neurorehabilitation 

Abstract -– Brain Computer Interface (BCI) controlled 

assistive robotic systems have been developed with increasing 

success with the aim to rehabilitate brain injured patients to 

increase their independence and quality of life. While such 

systems may use surgically implanted sensors, non-invasive 

alternatives can be better suited due to ease of use, reduced 

cost, improvements in accuracy and reliability with the 

advancement of the technology and practicality of use. The 

consumer grade BCI devices are often capable of integrating 

multiple types of signals, including Electroencephalogram 

(EEG) and Electromyogram (EMG), as well as basic motion-

based signals, such as gyroscopic data. This paper reports the 

development of a framework for rolling out cost-effective BCI 

driven assistive technology systems and details the 

implementation and evaluation of a prototype robotic system 

to determine the efficacy of the proposed framework. The 

results indicate that the first stage of the framework was 

effective in accuracy, safety, usability, portability, 

adaptability and personalisation. 

Keywords - BCI; Assistive Technology; EEG; EMG; 

Disability; Neurorehabilitation. 

I.  INTRODUCTION 

There are over 12.5 million people in the UK living with 
a neurological condition, out of which over a million are 
substantially disabled by their condition and a further 
350,000 require help for most of their daily activities [1]. 
These neurological conditions cost the National Health 
Service in the UK (NHS) £4.4 billion in 2014 [1] (4.2% of 
the NHS expenditure), with the cost set to treble over the 
next 20 years [2]. An estimated £2.4 billion is spent on 
social care services alone for people with a neurological 
condition [1]. Given the wide range of issues that 
neurorehabilitation covers, as well as the success in the 
implementation of Brain Computer Interface (BCI) based 
systems using both Electroencephalogram (EEG) and 
Electromyogram (EMG) signals [3]-[11], it is apparent that 
BCI based assistive systems could become  viable 
alternatives to traditional neurorehabilitation methods.  

There is limited evidence of BCI assisted 
neurorehabilitation available in the literature for post-stroke 
disorders [3], paraplegia [4], spinal cord injury [5] and 
tetraplegia [6]. Cesqui et al. [10] reported an EMG based 
robotic system to assist in the rehabilitation of patients and 
Soekadar et al. [11] investigated the use of EMG as a 
method of post-stroke rehabilitation. However, success of 
such technology assisted rehabilitation largely relies on the 
effectiveness of integration through a process defined in a 
neurorehabilitation framework that is more personalized 
and convenient [12][13]. Development and implementation 
of an assistive technology has to be carefully phased out 
using rigorous procedures described in a framework for a 
system [14][15] to be better suited for patients. Availability 
of a framework specific to patients with more personalised 

needs and requirements of bespoke technologies were 
discussed; especially the need for a framework for the 
integration of BCI within neurorehabilitation context was 
mentioned in [5]. As a solution, non-invasive off-the-shelf 
portable BCI assisted systems have been popular choices 
due to improvement in accuracy and reliability of such 
systems with the advancement of technology and 
practicality of use [16]. This paper proposes a cost-effective 
BCI based assistive technology framework for the 
rehabilitation of patients suffering from neurological 
disabilities, which is an adaptation and merge of two 
frameworks: one [12] details the entire rehabilitation 
process and the other [14] details the technology lifecycle 
(development, selection, learning and integration). In 
addition to developing a framework for neurorehabilitation, 
this paper also investigates the efficacy of the proposed 
framework by developing a prototype robotic system with 
the help of two portable devices: an Interaxon Muse BCI (to 
gather brain signals) and a UFactory uArm (for robotic 
control), as shown in Figure 1. 

 

Figure 1. Interaxon Muse (left) and UFactory uArm (right). 

The remainder of this paper is organised as follows: 
Section 2 gives an overview of a proposed framework, 
Section 3 details the evaluation of the framework using a 
prototype system and its implementation. Section 4 
describes the experimental scenarios to evaluate the 
framework. Results will be discussed in Section 5. Finally, 
Section 6 concludes the paper. 

II. PROPOSED FRAMEWORK 

 We propose a new framework for BCI assisted 
neurorehabilitation. We consider three distinct stages of the 
framework lifecycle: system development, clinical trials 
and operational. It is critical that the end product of this 
system is reviewed by one or more specialists to determine 
whether the system has sufficient accuracy, safety, 
usability, portability, adaptability and personalisation. 

A. System Development 

The system development stage consists of four actors, 
adapted from Kintsch [14]; a trial group, one or more trial 
caregivers, a specialist and one or more developers (as listed 
in Table 1). While Kintsch [14] specified the required traits 
for each actor, this paper specifically states the role of each 
actor within the system. 

M A Hannan Bin Azhar1, Anthony Casey1 and Mohamed Sakel2 

1 Computing, Digital Forensics and Cybersecurity, Canterbury Christ Church University, UK 
2 East Kent Hospitals University, NHS Foundation Trust, Canterbury, UK  

Email: hannan.azhar@canterbury.ac.uk; antcasey07@outlook.com; msakel@nhs.net 

 

 

32Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-682-8

GLOBAL HEALTH 2018 : The Seventh International Conference on Global Health Challenges



 

TABLE I.  ROLES OF ACTORS IN SYSTEM DEVELOPMENT STAGE 

Trial Group Trial 

Caregiver 

Specialist Developer 

Volunteers 

who trial the 

system. 

 

Require no 

prior 

training on 

the system. 

 

Gives 

feedback to 

specialist on 

usability of 

the system. 

Instructs the 

trial user on 

how to 

operate the 

system. 

 

Initialises 

any initial 

parameters 

of the system 

and fits the 

BCI. 

 

Requires 

minimal 

training in 

the system. 

Reviews 

data given 

by the 

system. 

 

Gives 

feedback to 

the 

developer 

based on 

feedback 

from system 

and user. 

Makes 

changes to 

the system 

based on 

feedback. 

 

Ensures 

system safety 

and good 

coding 

conventions 

for 

adaptability. 

 

This stage focusses primarily on the planning and 
development of the system to test the feasibility. The main 
criteria for suitability are the relevance to the 
neurorehabilitation task at hand, the cost-effectiveness for 
easy prototyping and overall safety of the system. If the 
system is not suitable, it is the specialist’s decision whether 
further development should proceed or not. Figure 2 shows 
a sequence diagram of the system development stage. Once 
the initial proposal is being approved, the developer should 
strive to make the code as modular as possible to ensure that 
the code is easy to adapt and maintain in the future. 
Members of the trial group will run through the calibration 
and experimentation to gather data on system efficacy. 
Feedback from both the specialists and users is also critical 
to evaluate the suitability of the system in order to take it 
forward to the next clinical trial stage. 

 

 

 

Figure 2. Sequence diagram of the system development stage. 

Since the trial caregiver will be responsible for both 
fitting the BCI to the user’s head as well as setting the 
experimental parameters, it is vital that the caregiver (if they 
are not also the developer) receives some form of training 
from the developer prior to carrying out any experiments. 
Users should carry out calibration at least once before 
running any experiment to filter out any unwanted artefacts. 
Calibration can either be run every time the experiments are 
to be carried out, or the data can be stored in a user profile 
and loaded each time the experiment is run. 

B. Clinical Trials 

Before the clinical trials stage commences, the ethical 
approval must be completed to try out the systems on real 
patients. A select group of neurologically disabled patients 
will volunteer to trial the system and give feedback on the 
system. The developer will act on this feedback and the 
advice of the specialist. Caregivers are likely to be nurses or 
family members of the patients. Table 2 shows the roles of 
all actors in this stage. The specialist will now be in a 
position to handle the training of the system to the 
caregivers. This is likely to be done through group training 
sessions where specialists train nurses. Figure 3 shows the 
sequence diagram of the clinical trials stage. 

TABLE II.  ROLES OF ACTORS IN CLINICAL TRIALS STAGE 

C. Operational Stage 

 The operational stage is the final stage of the framework, 
which involves regular maintenance of the system to ensure 
that the technology is being kept up-to-date and patched 
against bugs. Table 3 shows the roles of all actors in the final 
stage of the framework. The system at this stage is ideally 
to be phased out to wider group of patients who wish to 
make use of it. The specialist can use the data gathered from 

Patients Caregiver Specialist Developer 

Neurologically 

disabled 

volunteers that 

trial the 

system. 

 

Require no 

prior training 

on the system. 

 

Gives 

feedback to 

specialist on 

usability of the 

system. 

Either 

nurses or 

family / 

friends of 

the 

patients. 

 

Instructs 

the patient 

on how to 

operate 

the 

system. 

 

Initialises 

any initial 

parameters 

of the 

system 

and fits 

the BCI. 

 

Requires 

minimal 

training in 

the 

system. 

Reviews data 

given by the 

system. 

 

Peer review 

through 

conferences 

in hospitals 

and Patient 

Association 

Forums. 

 

Gives 

feedback to 

the developer 

based on 

feedback 

from system 

and user. 

Makes 

changes to 

the system 

based on 

feedback. 

 

Ensures 

system 

safety and 

good coding 

conventions 

for 

adaptability. 
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patients by the system to evaluate how well the 
rehabilitation process is going on. This evaluation can then 
be shared with the developer and any pertinent 
improvements can be justified through this process, as 
illustrated in the sequence diagram in Figure 4.  

 

Figure 3. Sequence diagram of the clinical trials stage. 

TABLE III.  ROLES OF ACTORS IN OPERATIONAL STAGE 

 

 

Figure 4. Sequence diagram of the operational stage. 

III. FRAMEWORK EVALUATION 

This section details a proof of concept of the framework 
proposed in Section 2, consisting of the operation of a 
robotic arm (as the assistive technology component) using a 
Muse BCI device (as the BCI component). Given the time 
constraints on this project, the evaluation was carried out 
only for the stage 1 of the framework (Figure 2). Actors 
involved in this stage were a developer (also acting as a trial 
caregiver), a specialist and a small trial group of 5 subjects. 
Accuracy and usability (as required by the framework) 
measures will be observable from the experimental results 
of the system, whereas the other performance measures will 
be discussed within the evaluation. 

A. System Overview 

The system hardware consists of a PC, a small portable 
BCI device, Muse and a portable desktop robotic arm, 
uArm. Viability of such low-cost portable devices as a 
solution to neuro-rehabilitation was discussed with a 
specialist at the Kent and Canterbury NHS hospital’s 
neurorehabilitation department. Using rigorous use case 
scenarios both developer and specialist agreed on 
achievable requirement specifications for the prototype 
system. The overall architecture of the system is illustrated 
in Figure 5 and consists of two main branches: the EMG 
data branch and the gyroscopic data branch. More details of 
these steps are shown in the figure.  

 

 

Figure 5. Overview of the system data flow. 

 

 

Figure 6. Muse Electrode Placement modified from [17]. 

B. Data Acquisition 

The first step is to obtain data from the Muse BCI 
device, which is achieved via hosting of a Python server 

Patients Caregiver Specialist Developer 

Neurologically 

disabled 

patients that 

use the 

system. 

 

Require no 

prior training 

on the system. 

 

Either nurses 

or family / 

friends of the 

patients. 

 

Instructs the 

patient on 

how to 

operate the 

system. 

 

Initialises 

any initial 

parameters 

of the system 

and fits the 

BCI. 

 

Requires 

minimal 

training in 

the system. 

Reviews 

data given 

by the 

system. 

Makes 

changes to 

the system as 

needed. 

 

Ensures 

system safety 

and good 

coding 

conventions 

for 

adaptability. 
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leveraging the benefits of a Bluetooth Low-Energy Dongle 
(BLED) connection direct to the Muse device. Several sets 
of data are supported by this server, but the most notable are 
the four electrodes; AF7, AF8, TP9 and TP10 (using the 10-
20 international system seen in Figure 6) at a sample rate of 
256Hz as well as the gyroscopic data (at a sample rate of 
~50Hz). These electrodes are able to detect electrical signals 
across the front of the skull, namely EMG artefacts such as 
blinks, winks and jaw clenches. 

C. Calibration 

 Calibration covers the personalisation of the system, by 
creating separate user profiles containing information 
specific to each user. The user is presented with a series of 
prompts over the calibration process and is given a set of ten 
(temporally equidistant) prompts telling them to rest, which 
gets the baseline brain activity level. After the tenth prompt 
(to get a reliable amount of data), the user is given another 
ten prompts instructing them to blink, which gets the 
voltage associated with the blinking. Likewise, there is 
another ten prompts for left wink and then another ten for 
the right wink. 

As an example, Figure 7 shows EMG readings over all 
electrodes for two different EMG artefacts (left and right 
winks). The figure shows that during left winks, the spike in 
voltage for the left electrodes are greater than the spike in 
voltage for the right electrodes. When there is a right wink, 
the spike in voltage for the right electrodes are larger than 
the voltage spike for the left electrodes. 

 

Figure 7. Differentiating between left and right wink using voltages.  

Once all 40 prompts are finished, an EMG profile is built 
for the user. This profile consists a single threshold value, 
as shown in (1), calculated from the average of the 
maximum and average of the mean EMG values over the 
samples, n=10 in (1), for every user for each of the different 
sets of BCI electrodes during blinks, left winks and right 
winks.  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  (
1

𝑛
∑ 𝑉𝑚𝑎𝑥𝑖 −

𝑛

𝑖=1

(
1

𝑛
∑(𝑉𝑚𝑎𝑥𝑖−𝑉𝑎𝑣𝑔𝑖)

𝑛

𝑖=1

) × 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) 

A tolerance value was set empirically to configure a 
better responsive system in relation to variation of voltage 
levels corresponding to EMG spikes. This algorithm 

ensures that a more responsive and personalised profile is 
set for each individual user.   

D. Classification 

Classification deals with the accuracy of the system. A 
successful and responsive classifier will yield high levels of 
accuracy. The classification step involves the comparison of 
EMG voltage data in real-time with the EMG voltage data 
stored in a given user’s profile and applying semantics to 
that signal, i.e., to map a specific voltage combination to a 
particular EMG signal for that user.  

The calibration file contains a value (which acts as a 
threshold) for each electrode during blinks, left winks and 
right winks. If both the left and right electrodes pass their 
respective electrode values in the calibration file, then the 
signal is classified as a blink. If the real-time left electrode 
values are greater than the left electrode’s data in the 
calibration file and the right electrode value is less than its 
respective calibration value, then the signal is classified as 
a left wink. Likewise, if the right electrode values are greater 
than the calibration value and the left electrode value is less 
than its respective calibration value, the signal is classified 
as a right wink. 

If none of the above criteria are fulfilled, the system 
returns that there was no significant EMG signal detected 
and therefore, no action is given to the uArm to avoid 
carrying out any unexpected actions by the arm. For clarity, 
the output of each classification is also reported back to the 
user. 

E. Robotic Control 

After calibration, the gyroscopic data can be streamed 
from the Muse and used to control the robotic arm, where 
the user moves their head in Euclidean space which 
corresponds to the three degrees of freedom in the robotic 
arm (X, Y and Z axes). The robotic arm can only move 
within a pre-defined “bounding box”; while this is set as an 
experimental parameter, is a major step to ensure system 
safety. Simultaneously, voltage data is being streamed from 
the Muse, which is used to perform a variety of actions on 
the uArm. Each time the program is run, it will allow users 
to dynamically load a control protocol, meaning that custom 
systems can be reused over several different experiments, or 
control protocols that are optimised for a specific use can be 
loaded. 

IV. EXPERIMENTAL SCENARIO 

Once the system has been sufficiently developed as 
described in Section 3, the next step in the framework is to 
teach trial caregivers how to fit the BCI and initialise the 
experiment parameters, system calibration and the 
acquisition of experimental data. After receiving feedback 
on the system, changes are made (if necessary). The 
feedback will determine the accuracy and usability of the 
system. 

An experiment was designed to determine how usable 
the system is in a real-world scenario; in this case, an 
experiment with feeding task was set upon discussion with 
a specialist as a feasible task for neuro-rehabilitation. The 
task involves users to attempt to use EMG signals and head 

(1) 
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movements (gyroscopic data) to move the uArm (using a 
spoon as an “end effector”) to a plate of dummy food (using 
paper balls), scoop up some of the “food” and to move it to 
a predefined mouth level. The process involves a user 
moving the uArm first using gyroscope movements and 
then scooping up some food. The user should then blink, 
which brings the food up to a predefined mouth level 
automatically. Once the food is being “eaten” or removed, 
another blink brings the uArm back down to the plate level 
automatically. After the trial of this task, the user should 
then repeat the steps for a total of three times to ensure the 
sufficient use of the system to be able to comment on the 
efficacy of the system. 

Figure 8 demonstrates the control protocol of the uArm 
during the feeding experiment. In free mode (the initial state 
of the system), the subject can use gyroscopic events to 
move the robotic arm in the Euclidean space. If the user 
blinks while the uArm is not at the mouth level, the uArm 
moves to the mouth level and locks itself, preventing further 
movement. Blinking while the uArm is at the mouth moves 
the uArm back to the plate level and unlocks it, meaning that 
the user can use gyroscopic data to move the uArm again. 
A right wink will result in resetting the position of the uArm 
to its default starting position. 

 

Figure 8. EMG control protocol for the robotic arm during the feeding 
experiment. 

The objective metrics for success of this experiment are 
the time taken to bring the food to the user’s mouth, whether 
the uArm successfully traversed from the plate to the mouth, 
the number of items dropped in this process and finally, 
whether the uArm successfully traversed from the user’s 
mouth back to the plate. In addition to the objective metrics, 
subjective measures shall also be taken in the form of a short 
survey of user experience, following the system usability 
scale (SUS) [18] comprising of the ten questions answered 
on a scale of one (strongly disagree) to five (strongly agree). 

V. RESULTS OF EVALUATION 

This section reports the work in progress results of the 
evaluation of the framework’s development phase using the 
feeding experiment as detailed in Section 4. At the time of 
writing this paper, in total 15 trials (Table 4) were 
completed to evaluate the success of the feeding task in a 
non-clinical setting using a trail group of five able-bodied 

volunteers contributed to three trials each. Performance 
measures of the system and the usability results were 
discussed in detail with a specialist at the neuro-
rehabilitation centre to gain specialist’s critiques on 
feasibility of the system if it was to be tried on real patients 
during the clinical trial phase of the framework.   

The results of Table 4 shows that users were able to 
adapt to the system at varying speed. Trial times to complete 
the route from plate to the mouth level varied amongst users 
from around 7 seconds to more than 3 minutes. Even though 
3 minutes seems to be longer time to complete the task, 
according to specialist’s comments it was still a good 
outcome as hiring nurses or carer to carry out the same task 
would cost more for rehabilitation. The mean time for 
completion of the same task was ~45.86 seconds, with a 
standard deviation of ~46.55, however for one trial it took 
unexpectedly long (194.62 seconds) to complete the task. 
Discarding the outlier of 194.62 seconds, the mean 
completion time reduces to 35.24 seconds with a standard 
deviation of ~25.06. 

TABLE IV.  RESULTS OF THE FEEDING EXPERIMENT 

 Plate to Mouth Mouth to 

Plate 

ID Trial Time 

(sec) 

Route 

Complete 

(Y/N) 

Items 

Dropped 

Route 

Complete 

(Y/N) 

1 1 11.51 Y 0 Y 

1 2 45.49 Y 0 Y 

1 3 7.20 Y 0 Y 

2 1 8.32 Y 0 Y 

2 2 13.09 Y 0 Y 

2 3 8.80 Y 0 Y 

3 1 34.30 Y 0 Y 

3 2 25.36 Y 2 Y 

3 3 194.62 Y 2 Y 

4 1 72.58 Y 0 Y 

4 2 14.82 Y 0 Y 

4 3 68.29 Y 0 Y 

5 1 77.00 Y 0 Y 

5 2 56.97 Y 0 Y 

5 3 49.47 Y 0 Y 

 

The system managed to successfully navigate from the 
plate level to mouth level and vice versa in every single trial 
and the specialist found this to be a reliable outcome. 
Number of items dropped while completing the moving task 
from plate to the mouth level also varied amongst users 
depending on their efficacy of using the system after the 
training session. Except one user, no one dropped any item 
in any of the trails while moving the arm to the mouth level, 
showing an acceptable level of efficacy. For one user, blink 
event did not produce enough electrical potential to be 
registered as an EMG event. During the calibration stage, 
after checking all possible EMG events which can be 
detected by the system, it was found that “frowning” 
generates higher electrical potential for this user instead of 
the blink act. So, during the training session, instead of the 
blink act frown act was registered as an EMG control input 
for this user. This shows adaptation of the system control 
input based on specific user physiological requirements, 
supporting the adaptability requirement  of the framework. 
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TABLE V.  SUS SURVEY RESULTS 

Question Average 

Score 

I think that I would like to use this system 

frequently. 

2.6 

I found the system unnecessarily complex. 2.2 

I thought the system was easy to use. 4 

I think that I would need the support of a 

technical person to be able to use this system. 

1.8 

I found the various functions in this system well 

integrated. 

3.4 

I thought there was too much inconsistency in 

this system. 

2.6 

I would imagine that most people would learn to 

use this system very quickly. 

4 

I found the system very cumbersome to use. 2.6 

I felt very confident using the system. 4 

I needed to learn a lot of things before I could 

get going with this system. 

2 

 

Table 5 summaries the results of the SUS survey which 
was completed by users at the end of their trials. The results 
indicate that users found the system easy to use and they 
also felt confident using the system. There was strong 
agreement amongst users about easily learning to use the 
system and they also believed that most people would learn 
to use the system very quickly. Some users found the system 
cumbersome to use and inconsistent in completing the task, 
which was also the case in objective measures reported in 
Table 4, as the users completed the task in largely varying 
times. 



This paper proposed a new BCI driven assistive 
technology neurorehabilitation   framework and reported the 
work in progress evaluation of the development stage of the 
framework.  Specialist involvement in design and 
evaluation of the framework gave valuable insight into 
successful adaptation of the technology to fit better for 
patients’ care for neurorehabilitation. The prototype system 
suited well within the framework with some success as 
observable from the results of the evaluation. While the 
system was deemed acceptable by the specialist, some 
changes to the system need to be addressed; such as more 
rigorous trials are required to be carried out on a larger 
sample population consisting of a wider variety of subjects 
accounting for differences in age, gender and abilities. 
Latency in the system should also be improved. Further 
experiments over a greater length of time could determine 
whether users can improve their performances over a 
number of trials. Discussion  has been made already to use 
the framework to develop more complicated BCI assisted 
system, such as the BCI controlled exoskeleton, for the 
purpose of neurorehabilitation
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