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Abstract—In spite of many benefits, e.g., energy and
communication cost efficient data aggregation, in-network data
aggregation network in the smart meter network involves some
smart meters acting as relays. Unlike wireless sensor networks
(WSNs), the aggregator in the smart meter network cannot
assign smart meters as a relay at its will, unless it properly
rewards them. Therefore, to encourage users to contribute their
smart meters to be used as relays, we introduce an incentive
mechanism for the smart meter data aggregation. Unlike the
existing incentive mechanisms where the value of completing a
requested task is assumed to be fixed regardless of who takes the
requested task, we formulate the winner selection problem by
incorporating an additional value that depends on who takes the
task. Based on the additional value, called “derivative value”,
we propose a Social Welfare maximizing Incentive Mechanism
(SWIM) for the smart meter data aggregation. SWIM not only
encourages users to contribute their smart meters to be used
as relays by rewarding them with incentives, but also enhances
overall satisfaction of participating smart meters by maximizing
the social welfare of the system. Simulation results show that
SWIM achieves better social welfare of the system and utility of
the aggregator compared with the existing incentive mechanisms.

Index Terms—Smart Meter; Incentive; Data Aggregation; So-
cial Welfare.

I. INTRODUCTION

Among many important components of the smart grid, the
smart meter is one of the most fundamental and essential
component in the smart grid system. It digitally records the
amount of resource consumption, e.g., electric energy, gas,
and water and delivers the recorded data to the main grid,
which enables many critical functions of the smart grid, such
as load monitoring and billing. Through load monitoring
and billing, Demand-Response (DR), or Demand-Side (DS)
management can be realized, which enables a demand-supply
balance between users and the grid to ultimately reduce the
excessive power generation and green gas emission [1].

As the smart meters emerge as the key component of the
smart grid, the number of the smart meters installed all over
the world has been drastically increasing. For example, there
are more than 50 million smart meters installed in the US as
of July, 2014 and the number is expected to grow continuously
[2]. However, along with the quantitative growth of the smart
meters, the ever-increasing volume of the smart meter data and
the energy consumption of the smart meter networks emerge
as new challenges. Therefore, how to efficiently aggregate
the smart meter data has attracted much research attention
from the academia and industries. To address the challenges,

many researchers have taken into consideration the in-network
data aggregation in the smart meter network [3] [4]. However,
existing works assume that the aggregator can assign any smart
meter as a relay at will, which is not so practical in the real
smart meter networks. Unlike the sensors in wireless sensor
networks (WSNs), the smart meters reflect users’ rationality
and selfishness. In the smart meter network, users may not
contribute their smart meters to be used as relays to avoid
potential loss, unless they are given some form of incentives.
In other words, unlike in WSNs, the aggregator in the smart
meter network has to incentivize users to contribute their smart
meters to be used as relays, rather than just assigning them
at will. Therefore, to encourage the users to contribute their
smart meters to be used as relays, we introduce an incentive
mechanism for the smart meter data aggregation. For the
incentive mechanism design, we refer to various incentive
mechanisms, especially those from the crowdsourcing. How-
ever, the existing incentive mechanisms for crowdsourcing
assume that the value of completing a requested task is fixed,
no matter which worker takes the requested task. In the
smart meter network, though immanent but unperceived, there
exists some additional value, e.g., reduced energy consumption
depending on which smart meter takes the task (acting as a
relay), on top of the fixed value of submitting the data itself.

To the best of our knowledge, this is the first work that
considers the additional value that depends on who takes the
task. In this work, to incorporate the notion of the additional
value into the incentive mechanism for the smart meter data
aggregation, we present a novel concept of “derivative value”
and further develop it into “competition value”. Additionally,
we formulate the overall value in the smart meter network
as “social welfare”. Rather than maximizing the utility of
the aggregator, our incentive mechanism maximizes the so-
cial welfare, in order to enhance the overall satisfaction of
participating smart meters. The rest of this paper is organized
as follows. In Section II, we present the related works. In
Section III, we provide our system model. In Section IV, we
introduce the derivative value and competition value for the
winner selection process. In Section V, we design SWIM, a
social welfare maximizing incentive mechanism. In Section
VI, we evaluate our incentive mechanism for the smart meter
data aggregation. Finally, we conclude this paper in Section
VII.
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II. RELATED WORK

A. In-network Data Aggregation

In-network data aggregation was first proposed to combine
and deliver the data distributed over and collected from many
sensors (sources) to a destination node efficiently in terms of
the energy and communication cost. In-network aggregation
handles not only how data is aggregated at each sensor node
but also how data is delivered through the network, which
significantly affects the energy consumption and the overall
network efficiency. The in-network aggregation can be cate-
gorized into three main approaches: (1) tree-based approach,
(2) cluster-based approach, and (3) multipath approach.

1) Tree-based approaches build a spanning tree where an
aggregator is residing on the root of the tree. Using the
hierarchical organization of sensor nodes, a tree-based
approach can simplify the data aggregation flowing from
the sources to the destination. In the spanning tree, each
node delivers the sensing data, combined with the data
from its children, to its parent node, which will eventually
lead to the delivery of every data in the network to the
root node (the aggregator) [5] [6]. However, the tree-
based approaches have the robustness problem where the
data delivery will fail if the node’s parent-node does not
operate normally.

2) Cluster-based approaches are quite similar to the tree-
based approaches. However, cluster-based schemes par-
tition nodes into clusters. In addition, each cluster has a
special node, named “cluster head”, responsible for the
intra-cluster data aggregation and the transmission of the
aggregated data to the aggregator. That is, a cluster head
acts as a relay node for the other nodes in the same cluster
[7] [8]. As in the tree-based approaches, the cluster-based
approaches enable the simple data aggregation and also
have the robustness problem.

3) Multipath approaches were proposed as a solution to the
robustness problem of both the tree-based approaches and
the cluster-based approaches. In a multipath approach, as
the name suggests, a node broadcasts data to a number of
neighboring nodes, rather than sending its own data or the
aggregated data to a single parent. By doing so, a source
node can have multiple data flows to the destination,
which enables to achieve higher robustness since the
data can be delivered even when some of the multiple
flows fail. However, multipath approaches achieve the
robustness at the cost of some extra overhead resulting
from the excessive data transmission [9] [10].

In the smart meter network, since every smart meter estimates
the amount of resource consumption and transmits the data
to the aggregator(s), the smart meter network shares some
similar characteristics with the wireless sensor network. The
similarity has led to various research works that apply in-
network aggregation to the smart meter network.

B. Incentive Mechanisms for Crowdsourcing

In recent years, many incentive mechanisms for crowdsourc-
ing have been proposed. Yang et al. [11] present two generic
but concrete system model of incentive mechanisms for crowd-
sourcing: the platform-centric model, and the user-centric
model to motivate mobile users to participate in the crowd-
sensing system. D. Peng et al. [12] propose a quality based
incentive mechanism for crowdsensing, where the platform
rewards the participants proportionally to their contribution,
to motivate the rational participants to perform sensing tasks
efficiently. C. Liu et al. [13] propose a Quality of Information
(QoI)-aware incentive mechanism for participatory sensing to
maximize the quality of information by maximizing the user
participation in the system. S. Ji et al. [14] present an incentive
mechanism for mobile phones with uncertain sensing time.
Lee and Hoh [15] propose a Reverse Auction based Dynamic
Pricing incentive mechanism with Virtual Participation Credit
(RADP-VPC) to maintain participants and promote dropped
users to participate again in order to retain sufficient number
of participants for the required service quality. However, the
existing works assume that the value derived from completing
a requested task is fixed, no matter which provider takes
the requested task. In other words, the influence range of
completing the requested task is confined to the interaction
only between the platform (requester) and the winner providers
who receive the payment for completing the task. Therefore,
technically speaking, which provider is selected as a winner
does not affect the other loser providers’ utilities. However,
in reality, some additional values can be derived from which
provider takes the task, besides the value of completing the
requested task itself.

III. SYSTEM MODEL

In this section, we present the system model of our incentive
mechanism for the smart meter data aggregation. The system
structure is in a form of reverse auction where the roles of buy-
ers and providers are reversed. That is, in our system, providers
(smart meters) compete to obtain the data aggregation task
(acting as a relay) from the buyer (aggregator) and rewards
will decrease as the providers compete with each other. In
our system model, there are an aggregator, a platform, and
a set of N smart meters, W = {1, 2, 3, · · · , i, · · · , N} that
act as providers in the smart meter data aggregation. Figure 1
illustrates the relay appointment in the smart meter network.
We make following assumptions to reflect the real smart meter
network.

1) The platform can obtain the location information of every
smart meter.

2) Each smart meter has a limited capacity to aggregate data.
That is, each smart meter has the maximum number of
smart meters Smax that it can support as a relay.

For the smart meter data aggregation, the aggregator posts a
set of M data aggregation tasks, T = {1, 2, 3, · · · , j, · · · ,M}
on the platform where each task j has the corresponding value,
vj ∈ R+ to the aggregator. With the second assumption taken
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Relay Smart Meter

Aggregator

Figure 1. Relay Appointment in Smart Meter Network

into consideration, the aggregator determines the size of the
set of tasks, M ∈ Z+, which is calculated as

M ≥ N

(Smax + 1)
. (1)

Given T , the platform announces the data aggregation task
information to all the participating smart meters. In response
to the announcement, each smart meter i submits its type
information θi to the platform. Each type information θi
consists of smart meter i’s id idi and bid information bi. In
the process of completing its assigned data aggregation task,
smart meter i has an associated cost, ci ∈ R+. Since each
smart meter is rationally selfish, each participating smart meter
i submits its bid price bi ≥ ci and decides to work on the
requested task only if it is paid with pi ≥ bi. Therefore, when
Ws denotes the set of selected smart meters, the utility of
smart meter i is defined as

ui =

{
pi − ci if i ∈ Ws

0 otherwise
. (2)

Given the set of data aggregation tasks T and the set of
smart meters W , the platform determines a subset of smart
meters which will act as relays for the data aggregation tasks
T and calculates the payment pj to each relay smart meter of
task j. For the aggregator, the payment to the winner smart
meters is the cost of completing the data aggregation tasks.
Thus, the utility of the aggregator is calculated as

u0 =
∑
j∈T

vj −
∑
i∈Ws

pi. (3)

In our incentive mechanism, we aim to achieve the following
four desirable economic properties: (1) individual rationality,
(2) budget-balance, (3) computational efficiency, and (4) truth-

fulness. The descriptions of each property are provided below.
• Individual Rationality: each participating worker has a

non-negative utility as ui ≥ 0, where ui is the utility of
entity i.

• Budget-balance: the budget assigned to the platform
can cover all the payment to the winning providers as∑

i∈Ws
pi ≤ B.

• Computational Efficiency: the winner selection mecha-
nism can be computed in polynomial time.

• Truthfulness: no provider can improve its utility by
submitting a false cost information. In other words, sub-
mitting the true cost information is the dominant strategy
for all smart meters.

According to Myerson [16], in order to guarantee truth-
fulness in a reverse auction system, an auction mechanism
should satisfy the following two conditions. First, the winner
selection process in the auction is monotone, which means
that if provider i wins the auction by bidding bi, he or she
will surely win the auction by bidding b′i ≤ bi. Second, the
winner in the auction is rewarded with the critical value, which
is defined as the maximum payment a seller can ask, while
winning the auction.

IV. DERIVATIVE VALUE AND COMPETITION VALUE

As in the existing incentive mechanisms, the value of
submitting the aggregated data itself is fixed. However, on top
of the fixed value, we take into consideration some additional
value that depends on which smart meter takes the task, called
“derivative value”. The derivative value matrix of the requested
data aggregation task j is defined as

∆vj =


∆vj11 ∆vj12 ∆vj13 · · · ∆vj1N
∆vj21 ∆vj22 ∆vj23 · · · ∆vj2N
∆vj31 ∆vj32 ∆vj33 · · · ∆vj3N
· · · · · · · · · · · · · · ·

∆vjN1 ∆vjN2 ∆vjN3 · · · ∆vjNN

 , (4)

where each matrix element ∆vjiq denotes smart meter q’s
derivative value when smart meter i is the winner for task
j, and ∆vjii = 0, ∀i ∈ W . When smart meter i is selected as
the winner, the derivative value of requested task j is defined
as

∆vji =
∑
q∈W

∆vjiq. (5)

In other words, assuming smart meter i is the winner for task
j, the derivative value of task j is the sum of all the matrix
elements in the i-th row. To incorporate the derivative value
in the winner selection process, we introduce a “competition
value” of smart meter i for task j, which is defined as

vji = vj + ∆vji , (6)

where vj is the value of submitting the aggregated data of
task j itself. In the winner selection process, the smart meter
with a higher competition value and a lower bid has a higher
probability to win the competition. Additionally, we define
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“social welfare” of the system as

W (1 ∼ N) =
∑
j∈T

∆vj∗ −
∑
i∈Ws

pi, (7)

where ∆vj∗ denotes the derivative value of the winner smart
meter for task j. That is, the social welfare of the system is
the sum of all selected smart meters’ derivative values minus
the sum of the payments for them. In this work, rather than
maximizing the utility of the platform, we set the objective
of the platform as maximizing the social welfare, in order to
enhance the overall participating smart meters’ satisfaction.

V. THE DESIGN OF SWIM

In this section, we present SWIM, a Social Welfare maxi-
mizing Incentive Mechanism for the smart meter data aggrega-
tion to enhance the overall satisfaction of participating smart
meters, and prove that the incentive mechanism satisfies all
the desirable economic properties. The incentive mechanism
consists of two algorithms: (1) k-means clustering algorithm,
and (2) winner selection algorithm.

A. k-means Clustering Algorithm

Given the set of data aggregation tasks (T ) and the set
of type information from participating smart meters (θ), the
platform runs k-means clustering algorithm [17]. As we as-
sumed in the system model, the platform retains the loca-
tion information of every smart meter. For simplicity, we
also assume that data transmission blockage by buildings is
negligible. By mapping the identification number of each
smart meter to the corresponding location information, the
platform can locate each participating smart meter. In this
work, we assume that the location information of smart meter
i contains a pair of its x-coordinate and y-coordinate. Using
this location information, the platform runs k-means clustering
algorithm. Since the aggregator has M data aggregation tasks,
the platform sets k to M to divide participating smart meters
into a set of M clusters, G = {G1, G2, G3, · · · , Gj , · · · , GM}
to minimize the intra-cluster distance variance, defined as the
sum of square of distance between each smart meter in a
cluster and the centroid of the cluster, which is equal to all
the energy consumption for the data transmission within the
cluster.

B. Winner Selection Algorithm

In the winner selection algorithm, the objective of the
platform is to maximize the social welfare of the system. The
algorithm is divided into two steps: winner selection step, and
payment step.

Step 1 - Winner Selection: To achieve the objective,
for each cluster Gj , the platform selects the smart meter
with the minimum bid to competition value ratio (bi/v

j
i ) as

the candidate for the relay smart meter for data aggregation
task j. The winner selection step is the same as the greedy
mechanism which selects the smart meter with the minimum
bid to competition value ratio as a winner. The mechanism is
known to be computationally efficient. Note that in the winner

selection rule, the platform does not determine the winner
smart meter, but just the candidate smart meter.

Step 2 - Payment: After selecting a candidate smart meter,
the platform decides the payment to the candidate, which
is defined as pj = max{pj , bc

vj
c
vji∗}. Here, the payment pj

in our payment step is the critical value for smart meter i∗

when smart meter i∗ is the candidate of Gj . According to
the winner selection step, when smart meter c satisfies the
following chains of inequations

bc

vjc
≤ b1

vj1
≤ b2

vj2
· · · ≤

b|Gj |−1

vj|Gj |−1
, (8)

the platform selects smart meter c as the winner smart meter
for Gj . If smart meter i newly joins the cluster Gj and wants
to win the auction, it must assign its bid as

bi ≤
bc

vjc
× vji . (9)

Otherwise, the platform selects smart meter c as the winner
smart meter instead of smart meter i according to the winner
selection step. After calculating the payment to the candidate
smart meter, the platform checks the budget-balance. If the
payment is affordable, the platform determines the winner
and updates the budget. Otherwise, the platform discards the
candidate smart meter and repeats the winner selection rule
until it finds the winner in the rest of smart meters or none
of the smart meters in the cluster budget-feasible. The detail
of the winning requester selection algorithm is presented in
Algorithm 1.

Algorithm 1: Winner Selection Algorithm
Input : θ, Γ, B
Output: Ws

1 Ws ← ∅, p1∼M ← 0;
2 G=k-means Clustering(θ, |Γ|);
3 for Gj ∈ G do
4 while pj = 0 do
5 i∗ ← arg min

i∈Gj

bi
vj
i

;

6 Gj ← Gj \ {i∗} ;
7 c← arg min

i∈Gj

bi
vj
i

;

8 pj ← max{pj , bc
vj
c
vji∗};

9 if B − pj ≥ 0 then
10 B ← B − pj ;
11 Ws ←Ws ∪ {i∗};
12 else
13 pj ← 0;
14 end
15 end
16 end
17 return Ws

C. Economic Properties

In this subsection, we provide the proofs for the desirable
economic properties of SWIM.
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Lemma 1. SWIM is individually rational.

Proof. As we assumed in the system model, each participating
smart meter i submits its bid price bi ≥ ci to compensate the
associated cost, and decides to work on the requested task
only if it is paid with pi ≥ bi. Thus, the utility of winner
smart meter i is ui = pi − ci ≥ pi − bi ≥ 0. For the loser
smart meter, the utility is simply 0.

Lemma 2. SWIM is budget-balanced.

Proof. In the payment step, given the candidate for the relay
smart meter, the platform checks whether the budget can cover
the payment to the candidate. If the payment is not affordable
by the current budget, the platform discards the candidate and
repeats the winner selection rule. This step guarantees that the
payment to the winner smart meters is always decided within
the budget constraint.

Lemma 3. SWIM is computationally efficient.

Proof. Except for k-means clustering, the winner selection
algorithm takes O(MN2) time since the winner selection step
and the payment step take O(N2) for each cluster Gj and the
winner selection algorithm runs for G whose size is M .

Lemma 4. SWIM is truthful.

Proof. According to [16], we need to prove that our winner
selection step satisfies the two conditions, the monotonicity
of the winner selection and the critical value based payment
to winners. The monotonicity of the winner selection step is
obvious, since if smart meter i wins the auction by bidding bi,
he will be surely selected as winner by bidding b′i ≤ bi. For
the critical value based payment, the payment step of SWIM
calculates the critical value and set the value as the payment.
If smart meter i submits bi > pi, he will lose the auction and
be replaced. Therefore, pi is the critical value.

By Lemmas 1 to 4, we have Theorem 1 as follows:

Theorem 1. SWIM is individually rational, budget-balanced,
computationally efficient, and truthful.

VI. EVALUATION

In this section, we evaluate our incentive mechanism,
SWIM, and compare its social welfare to that of the existing
incentive mechanism [18] whose winner selection process
is also based on the greedy algorithm, while only taking
the fixed value of submitting the aggregated data itself into
consideration for the winner selection. For evaluation, we use
MATLAB.

A. Simulation Setup

We assume that all the smart meters are randomly distributed
in a 2000 m by 2000 m region and the aggregator is located
at (1000, 2500), when the vertices of the region are (0, 0),
(0, 2000), (2000, 0), and (1000, 2500). In the simulation,
we define the cost ci of smart meter i as the additional data
transmission energy needed to act as a relay. To set the cost, we
adopt the data transmission energy consumption model from
[19]. According to the model, the smart meter consumes Eelec

in a unit of nJ /bit to operate the transmitter or the receiver
and Eamp in a unit of pJ /bit/m2 to run the amplifier. Then,
the amount of energy expended to send l-bit data a distance
d is calculated as

PTX(l, d) = Eelecl + Eampld
2. (10)

For simplicity, we approximate PTX(l, d) to

PTX(l, d) ≈ Eamp × l × d2, (11)

because d affects much more significantly to the transmission
energy. In the simulation, we set Eamp = 100 nJ/bit/m2

and l = 8000 bits. For the fixed value of submitting the
smart meter data, we set the same value v = 10 for every
smart meter. That is, vj , the fixed value of completing the
smart meter data aggregation task j for Gj is |Gj | × 10 when
the number of smart meters in Gj is the size of Gj . In the
simulation, we define the derivative value ∆vjiq as the data
transmission energy saving of smart meter q when smart meter
i is the winner for task j. As the energy saving is in the unit
of J , we convert 10 J to the unit value (v = 1).

B. Simulation Results

1) Social Welfare Increment: Figure 2 shows the social
welfare increment by incorporating the derivative value in
the winner selection process in comparison with [18]. Figure
2a shows the social welfare increment corresponding to the
number of participating smart meters. Results show that re-
gardless of the system size (the number of participating smart
meters), the social welfare increment is positive, which means
that a higher social welfare is obtained by considering the
derivative value in the winner selection process. The higher
social welfare results from selecting more profitable (in terms
of social welfare) smart meters as relays as well as rewarding
them with less payment than [18], while still satisfying the
individual rationality of each smart meter. Results also show
that as the system size increases, the social welfare increment
per cluster decreases. The reason for the decrease in the social
welfare increment comes from the density change of smart
meters in the simulation region. As the density increases, the
difference between the transmission distance to the aggregator
and that to a relay smart meter becomes less, which conse-
quently results in the less transmission energy saving. Figure
2b shows the social welfare increments corresponding to the
increasing Smax. Results show that regardless of Smax, a
higher social welfare is obtained by considering the derivative
value in the winner selection process. The reason for the higher
social welfare is the same as that of the system size. Results
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Figure 2. Social Welfare Increment

also show the tendency that with higher Smax, the system can
obtain higher social welfare. Therefore, as Smax increases,
the aggregator can achieve a larger gap between the derivative
value increment and the payment to the winner smart meters.
The tendency results from a relatively lower increase rate of
the payment corresponding to Smax in comparison to that
of the derivative value. Assuming one aggregator can cover
500 smart meters, we can achieve an increment of 300 in
the social welfare, which amounts to 3000 J . Then, if smart
meters transmit data every 15 minutes, we can save 288,000
J per day from 500 smart meters. Applying the calculation
result to the number of smart meters installed in the US as
of 2014 [2], we can save 28.8 GJ of energy for smart meters
in the US. Moreover, if we can deploy smart meters with a
higher Smax, the smart meter network can achieve even more
energy saving.

2) Utility Increment of Aggregator: Figure 3 shows the
utility increment of the aggregator by incorporating the deriva-
tive value in the winner selection process, in comparison
with [18]. The simulation settings are the same as those of
social welfare increment. Figure 3a shows that regardless of
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Figure 3. Utility Increment of Aggregator

the system size (the number of participating smart meters),
the aggregator achieves the higher utility by considering the
derivative value in the winner selection process. According
to (3), the utility of the aggregator u0 is only affected by
pi since vi for each smart meter has the same value. Thus,
unlike the case of social welfare increment, the higher utility
of the aggregator only results form achieving narrower gaps
between ci and pi, ∀i ∈ Ws than [18], while still satisfying the
individual rationality of each winner smart meter. Results also
show that as the system size increases, the utility increment
of the aggregator per cluster decreases. The downturn in the
utility increment indicates that as the density of smart meters
increases, the gap between pi of SWIM and that of [18]
becomes narrower. Figure 3b shows that regardless of Smax,
the aggregator achieves the higher utility by considering the
derivative value in the winner selection process. Results also
show that with a higher Smax, the aggregator can obtain a
higher utility. Such tendency indicates that the aggregator can
achieve higher cost-effectiveness by appointing the smart me-
ters with a higher Smax as relays. The reason for the tendency
is that the reward which will be given to newly appointed smart
meters is more expensive than that of the existing relay smart
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meters for the increment of data aggregation coverage.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose SWIM, a social welfare maximiz-
ing incentive mechanism for the smart meter data aggregation.
SWIM encourages users to contribute their smart meters
to be used as relays for the smart meter data aggregation
system by rewarding the relay smart meters. In order to
enhance the overall satisfaction of participating smart meters,
SWIM maximizes the social welfare of the system, rather
than maximizing the utility of the aggregator. On top of
the fixed value of submitting the smart meter data itself,
SWIM incorporates some additional value derived from the
data aggregation process, named “derivative value”, in the
winner smart meter selection process. We prove that SWIM
achieves individual rationality, budget-balance, computational
efficiency, and truthfulness. Simulation results show that our
incentive mechanism achieves better social welfare of the
system and the utility of the aggregator, compared to the
existing incentive mechanisms. As a future work, we will
consider the data aggregation in the multi-hop heterogeneous
relay smart meter network where smart meters have different
data transmission distances and Smax.
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