
A Fast Heuristic for Tasks Assignment in Manycore Systems with Voltage-

Frequency Islands

Shervin Hajiamini
*
, Behrooz Shirazi

*
, Hongbo Dong

+

*
School of Electrical Engineering and Computer Science,

+
Department of Mathematics

Washington State University

Pullman, WA, U.S.A.

Email: {shervin.hajiamini, shirazi, hongbo.dong}@wsu.edu

Abstract—Dynamic Voltage/Frequency Scaling (DVFS) is a

well-known technique that dynamically scales cores’

Voltage/Frequency (V/F) levels to save energy or minimize the

application’s execution time in manycore systems. This paper

proposes an optimization framework that provides a DVFS-

based cost- and energy-efficient methodology to balance time-

energy tradeoffs in manycore systems with Voltage/Frequency

Island (VFI) architectures. The proposed methodology has two

steps: 1) formulating a Mixed Integer Linear Programming

(MILP) problem that populates islands through the task-to-

island assignments given that the islands are symmetric, 2)

formulating an Integer Linear Programming (ILP) problem

that computes the V/F levels of cores in each island per

execution phase of parallel applications. The first step, which is

performed at compile-time, considers the per execution phase

computational characteristics of the tasks for islanding while

the second step optimizes the V/F levels of formed islands at

runtime. As solutions time of the proposed task-to-island

assignment problem increases significantly with a large

number of tasks or islands, this paper presents a fast heuristic

that only requires a sorting procedure in its most time-

consuming step and obtains near-optimal solutions. The

proposed framework’s energy efficiency is compared to an

optimal, per-core islanding that establishes the best energy-

time solutions for the experimented applications. Using

Energy-Delay Product as performance metric, experimental

results show that the framework’s energy efficiency, at the

worst case, is within 13% of the per-core DVFS. The results

also show that this framework utilizes the idle times of low

Central Processing Unit (CPU)-intensive benchmarks to

increase energy saving with reasonable performance loss.

Keywords-Manycore System; Task Partitioning; Dynamic

Voltage-Frequency Scaling; Voltage-Frequency Islands;

Optimization Framework; Energy Efficiency.

I. INTRODUCTION

Large-scale computer systems have become more
pervasive by providing computing resources to solve
complex applications. Parallel computing utilizes the
multiprocessing aspect of the computing resources (e.g.,
CPU cores) to perform simultaneous computational
processes (tasks) in order to increase the speed of the system.
To strengthen the Operating System (OS) capability for
running the user tasks in parallel, applications are
instrumented by parallel programming techniques to take
advantage of the increasing cores’ computing power, which
are interconnected and used as shared resources within a
single computer system. As the number of cores continues to
scale in manycore systems, excessive energy consumption

has become a primary concern for the system designers and
devising effective energy-aware techniques that are
sustainable with the applications’ computational demands is
an important research area.

The Dynamic Voltage and Frequency Scaling (DVFS) is
a method for executing high performance applications on
manycore systems while maintaining the system energy
consumption below a user-defined energy budget [6]. There
are three approaches to apply the DVFS for energy
efficiency optimization in the manycore systems. (1)
Running an application on a chip-wide DVFS, where a
common Voltage/Frequency (V/F) level is assigned to all the
cores [1]. This method does not scale with the varying
applications’ computational demands. (2) In the per-core
DVFS approach, the V/F level for each core is adjusted
throughout the program execution, resulting in the best
energy efficiency, but at the cost of hardware complexity and
complicated system level control [2]. (3) As a compromise, a
more flexible Voltage and Frequency Island (VFI) approach
has been adopted, where cores in an island share the same
V/F level, which may vary during the program execution
based on the program characteristics [3].

Nowadays, large high performance computing
applications have changing computational behavior during
the applications runtime. Fixing the VFIs’ V/F levels for the
entire application execution limits exploiting opportunities to
speed up or down the islands speed to gain high performance
or energy saving depending on the application characteristics
[8]. To address this limitation, this work applies the DVFS
on islands where each VFI’s V/F level can be configured
individually during the program runtime.

The traditional approach for islanding is to group cores
executing similar tasks across the application’s execution
phases (intervals) [14]. A more effective approach to
perform the partitioning is to identify the similarities of tasks
within the individual execution phases of the applications.
This way, the system energy efficiency can be further
improved by incorporating the tasks computational
variations, across and within the execution phases, into the
problem’s optimization objectives.

The VFIs may have the same size or number of cores
(symmetric) or may be asymmetric in size [4]. To simplify
the task-to-island assignment problem, this paper assumes a
symmetric system, where the VFIs sizes (the number of
cores in a VFI that execute the assigned tasks) are the same.

This paper presents a framework for optimizing the task-
to-island assignments (tasks partitioning) and the VFIs' V/F
level assignments. Using this framework, this paper’s goal is
to minimize the applications’ total execution times

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

(makespans) without exceeding user-defined energy
budgets/limits.

The framework proposed in this paper has the following
contributions compared to our previous work [4], which also
discussed a method for an energy-constrained, optimized
makespan VFI-based system:

 The VFIs’ V/F levels are dynamically changed per
execution phase of the experimented applications.

 The same V/F level can be assigned to different
VFIs in each execution phase to achieve an overall
better energy/time tradeoff.

 To improve the system’s energy efficiency,
application tasks, with similar computational
characteristics, are assigned to the VFIs before
applying DVFS.

 This paper demonstrates the extent to which the
energy efficiency is maximized considering the
applications with different compute/memory
intensive workloads.

 Compared to [4], the proposed heuristic is faster and
more scalable for larger applications or system sizes.

This paper is structured as follows. Section II
summarizes related works followed by our contributions.
Section III describes a system model and a model for
executing applications on the system. Section IV explains the
proposed two-step framework. Section V and Section VI
present experimental setup and the results, respectively.
Section VII concludes this paper.

II. RELATED WORK

The multi/manycore processing is a form of parallel
computing where a parallelized application uses the shared
hardware resources (CPU cores) to simultaneously execute
the applications’ threads and shorten the application runtime
[5]. Increasing the number of cores in a chip may improve
the application speedup but it overheats the chip due to the
energy consumed by cores during the idle and busy periods.
The DVFS is a well-known method that has been used to
address this problem with two mainstream techniques. The
per-core DVFS is a resource-demanding technique where a
separate voltage regulator is allocated to each core to adjust
its V/F level at runtime (lowering energy during idle periods
and increasing it during compute phases). As a second
method, the VFI-based systems provide a less complex and
economical alternative where the V/F level of an island of
cores is tuned by a single regulator. The VFI-based systems
are cost-effective and provide reasonable energy saving
opportunities with acceptable application execution delay
[6][7]. The following summarizes the VFI-based works that
are related to this paper.

The VFIs’ V/F levels are determined either statically (at
compile-time) or adjusted dynamically (at runtime) to
account for the applications’ computational variations. For
example, Duraisamy et al. [8] used the cores’ number of
instructions per cycle and inter-core data transfers for per
VFI static V/F level assignment, while Ogras et al. [9] used a
feedback controller to dynamically adjust the V/F levels of a

Network-on-Chip (NoC)-based VFI system using the
occupancy levels of inter-VFI queues.

In terms of VFIs formation, both the symmetric and
asymmetric partitioning of cores has been deployed. David et
al. [10] partitioned 24-tile Intel’s single-chip cloud computer
into 6 VFIs, each one containing 4 tiles (symmetric). Jin et
al. [11] used asymmetric VFIs whose sizes are reconfigured
once by adding cores that were not assigned to the same VFI
through multiple static optimizations of VFIs formation.

The prior research works have solved one or both of the
islanding and V/F level assignment problems. Ozen et al.
[12] used two VFIs with corresponding fixed V/F levels in a
NoC, where cores’ slack times were used to run the under-
loaded VFIs with lower V/F levels to minimize the energy
consumption. Ogras et al. [13] performed the islanding and
V/F level assignment iteratively by merging two VFIs, which
resulted in reducing the system energy consumption while
maintaining the performance constraints.

The islanding and V/F level assignment problems have
been solved by heuristics or linear programming-based (LP)
techniques. Ghosh et al. [14] used ILOG CPLEX, an Integer
LP-based technique, for determining the physical locations
of cores on NoC-based VFIs and their respective V/F levels.
Jin et al. [15] used a statistical heuristic that used the
probability distributions of the tasks’ execution times and
energy consumptions under different V/F levels. The VFIs’
V/F levels were determined such that tasks with large energy
variations are assigned more slack and run with lower V/F
level to maximize the energy saving.

A number of works have addressed the task scheduling
(or task assignment) when formulating energy efficiency
objectives for systems with homogenous and heterogeneous
compute nodes. Leung et al. [17] proposed a list scheduling
algorithm to compute the tasks priorities, executed on NoC-
based equally-sized islands, based on the links
communication delays. Chou et al. [18] devised an iterative
task mapping heuristic that identified and grouped the
neighboring idle cores of a NoC, with pre-defined V/F
levels, for the application tasks assignment. Oxley et al. [19]
analyzed the robustness of a set of heuristics, used for the
static assignment of tasks to heterogeneous nodes, in terms
of meeting makespan deadlines or energy budgets
considering the stochastic tasks execution time.

The research contributions of this paper include:

 Formulating a MILP for the task-to-island
assignment problem that forms the symmetric
islands of tasks with similar computation behavior.
In a sense, the proposed formulation aims at forming
per execution phase islands based on measuring the
tasks characteristics for each execution phase of the
applications.

 Formulating an ILP for the VFIs’ V/F level
assignment problem that performs DVFS on the
islands per execution phase in order to minimize the
applications makespans under the user-defined
energy budgets.

 Proposing a fast and low-cost heuristic to solve the
task-to-island assignment (tasks partitioning)
problem. The experimental results show that when

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

using the heuristic for task-to-island assignments, the
system energy efficiency, measured by the Energy-
Delay Product (EDP) metric, is, at worst, within
13% of the optimal per-core DVFS across the
experimented benchmarks. Furthermore, the results
show that the proposed framework efficiently
maximizes the energy saving of low CPU-intensive
benchmarks.

III. MANYCORE SYSTEM CONFIGURATION

This section presents assumptions about the multiple-VFI
manycore system setup and the execution model of
applications running on this system. This section also
explains an applications profiling strategy that provides the
task-level application characteristics that are utilized by the
VFI-based optimization framework to measure the energy-
performance tradeoff.

A. VFI-based Manycore System Design

This paper assumes an N-core manycore system C =
{c1cN}, where cores are arranged in a √N √N mesh of
homogenous cores. It is assumed that the system is
partitioned into a fixed number of symmetric islands, I =
{i1 iK} where there are Q = N/K cores per island. For
example, Figure 1 shows a partitioned system with K = 3.
Also, Q = 1 represents a manycore system with the most
fine-grained islands. The cores in a VFI operate under a
common V/F level, which is determined by the V/F level
assignment step of the framework. These V/F levels are
attained from a range of available CPU performance states: S
= {s1sL} where s1 and sL correspond to the lowest and
highest V/F levels, respectively. Any two VFIs may have the
same or different V/F levels, which impact the system’s
overall energy efficiency. Each core has a local non-unified
L1 cache and all cores share a unified L2 cache.

B. Application Execution Model

This paper considers multithreaded applications chosen
from benchmark suites, which will be explained in Section
V, where each thread of execution runs on a particular core
and is not re-assigned to another core during the application
execution. The execution of these applications follows Single
Program Multiple Data (SPMD) parallelization technique
wherein the same program is split up among cores to
perform tasks on different data. These benchmarks are
developed and utilized in a shared memory system that
facilitates inter-core/thread data exchange at runtime [16].
The execution runs, which are used to evaluate the
optimization goals, encompass a unique section inside the

benchmark’s source codes known as Region Of Interest
(ROI).

ROIs, representing the parallel sections of the
applications, are divided into multiple tasks, according to the
SPMD model, and are assigned to cores/threads for the
parallel execution. Because of the changing workloads of the
applications (benchmarks), the execution of the ROIs
represents distinct application characteristics in the form of
phases or execution windows during the runtime. During the
applications execution, some of threads produce data while
the others consume it. To ensure that the consumer threads
obtain the correct data before executing the next phase of the
applications, the benchmarks’ ROIs are instrumented by
synchronization routines (such as barriers), which resolve,
among the cores, data memory access delays within the
phases, as well as data transfers across the phases of the
applications. The execution of a number of instructions
between two consecutive synchronization points defines a
distinct computational phase of the benchmark, which are
represented as the cores’ parallel tasks within that execution
phase. Figure 2 shows an example of an application with P
execution phases where within each phase gray portions
show the computation periods of cores executing their tasks
and black portions show the core’s idle periods. These
periods, representing execution overheads, may be created
by memory access delays (or data transfers) resulting in idle
periods upon reaching synchronization points at the end of
each phase.

Task model
An application consists of a set of tasks sets T =

{T1 TP} defined over the P execution phases where Tj
denotes a task set executed in phase j (1 ≤ j ≤ P) of the
application. Each task set Tj is composed of tasks executed
by cores in the corresponding application phase where τj,i
denotes task i (1 ≤ i ≤ N) in phase j. Thus, it is assumed that
each core executes one task in the application phase. As
indicated above, the execution of a task set in the next phase
is dependent on the completion of a task set in the previous
phase. As such, the assignment of tasks to islands represents
typical application task graphs, assuming a negligible/zero
memory access delays between the dependent tasks (because
the memory access delays for data transfers among the task
sets are already accounted for in the tasks execution time).

The tasks partitioning formulation considers the
similarity of the tasks’ workloads in an execution phase to
perform the task-to-island placements. The outcome of the
task-to-island assignments guides the VFIs’ V/F level
assignment formulation to improve the system’s energy
efficiency by slowing down VFIs with lower workloads and
speeding up the highly loaded VFIs.

c

c

L1L1

L1L1

c

c

c

...

c

...
L1L1

L1L1

L1L1 L1L1

...

c

c

c

...

L1L1

L1L1

L1L1

c
core in

VFI 1

L1L1 L1 cache

L2 L2 cache

c
core in

VFI 2

1

2

1 2

L2

c
core in

VFI 3

N

N

Figure 1. A manycore system with three islands

Cores

c1

c2

cN

1 2 P
Execution phases

τ1,1

τ1,2

τ1,N

τ2,1

τ2,2

τ2,N

τP,1

τP,2

τP,N

Figure 2. Execution of a P-phase application with N tasks per phase

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

C. Application Profiling Methodology

The optimization framework has a priori knowledge of
the benchmarks/applications execution. The profiling data
used for the static optimization of the task-to-island
assignments and their V/F levels include the execution times,
energy consumptions, and workloads of the task set for each
execution phase of the benchmark collected at each possible
V/F level. This paper uses a profiling strategy that runs the
benchmark on the manycore system once per V/F level and
collect the pertinent per phase execution time, energy usage,
and workload information of all tasks in that phase. Here, the
execution time corresponds to the computational period of a
task in the execution phase before reaching the barrier (black
portions in Figure 2). The energy consumption means the
rate of the task power usage during its execution in the
corresponding phase. The workload is defined as the ratio of
the task’s busy (computation) cycles to the total cycles (the
summation of the busy and idle cycles) in the execution
phase.

IV. TWO STEP TASK-TO-ISLAND ASSIGNMENT AND V/F

LEVEL ASSIGNMENT TECHNIQUE

The task-to-island assignment and V/F level assignment
steps are formulated in this section. To reduce the
computation time of solutions obtained by the optimization
framework, this paper solves the above steps sequentially.
The islanding step uses the tasks’ workloads to identify the
groups (islands) of tasks with similar computational
similarities per execution phase. The V/F level assignment
step considers the execution time and energy usage of the
islands under multiple V/F levels to make the best
performance-energy tradeoff that minimizes the benchmarks
makespan given an energy budget.

A. Task-to-Island Assignment

As mentioned above, partitioning the tasks among the
islands is based on the similarity of tasks. To measure the
degree of similarity among tasks, this formulation computes
the percentage difference ratio between a task workload and
the maximum workload in an island to which the task may
be assigned. To find the maximum similarity among the
tasks, this optimization step minimizes the ratio that
indicates the wasted workload.

The following are the problem’s objective and
constraints:

kijkkkki xzcFy
Minimize

,,, ,,,,
 TTyY j

N

i

K

k

kij
 1 1

, (1)

IiTFtxy kjijkikiki ,,,, (2)

Iizac k

r

j

jkjk
1

, (3)

Iiz
a

F k

r

j

jk
j

k

1

,

1
 (4)

IiTcxt kjijkkii ,,, (5)

Iittctt kNkN)max()min(11 (6)

jij

K

k

ki Tx

,

1

, 1 (7)

IiQx k

N

i

ki
1

, (8)

Iiz k

r

j

jk

1

1

, (9)

Iizzz krkkk }{ ,1, (SOS-2 variable set) (10)

IiTy kjijki ,0 ,, (11)

IiF kk 0 (12)

Iic kk 0 (13)

IiTx kjijki ,}1,0{ ,, (14)

rjIiz kjk 1,0, (15)

The task-to-island assignment formulation aims at
minimizing the wasted workloads of islands for every
execution phase. The island’s maximum workload is not
known before solving the above optimization problem.
Therefore, the problem objective (the percentage wasted
workload) becomes non-linear. The non-linear functions are
typically linearized to obtain optimum solutions more
efficiently. The non-linear curve of a function representing
the island’s maximum workload, is linearized by a
mathematical technique, known as the piece-wise linear
function [19], which approximates the actual value of the
non-linear function. For the linearization, this technique
divides the function’s non-linear curve (such as the objective
function in this paper) into multiple segments of straight
lines that each can be represented by a linear function.

Yj denotes the total wasted workload in execution phase j.
yi,k is the wasted workload of task τj,i Tj (1 ≤ i ≤ N) in
island ik. ck is the approximation of island’s maximum
workload. Fk approximates 1/ck. These approximations use
Special Ordered Set (type 2) variables (SOS-2), zk,j, where
each variable indicates how likely it is that a line segment,
connected by two adjacent points (i.e., aj and aj+1),
approximates ck or 1/ck. Technically, the SOS-2 variables
transform the piece-wise linear functions to a form that can
be used by linear programming methods to solve
optimization problems. ti is the workload of task τj,i. xi,k
shows where task τj,i is assigned to island ik. Q denotes the
number of tasks assigned per island. r is the number of
adjacent points that form the line segments.

Constraint (1) minimizes the total amount of wasted
workloads for a task set across all the islands. Constraint (2)
computes the wasted workload if a task is assigned to an
island. Constraints (3) and (4) approximate ck and 1/ck,
respectively. Constraint (5) determines ck (the maximum
workload of an island). Constraint (6) ensures that the
island’s maximum workload is within the minimum and
maximum values of tasks workload in an execution phase.
Constraint (7) shows that a task is assigned to only one
island. Constraint (8) indicates that all islands have an equal
size. For all the SOS-2 variables defined in (10), only two of

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

them are non-zero. These non-zero variables, which have to
be adjacent, indicate the two end points of a line segment.

Figure 3 shows an application running on a system with 2
execution phases (P = 2) and 4 tasks per phase (|Tj| = 4, 1 ≤ j
≤ 2) before (3(a)) and after (3(b)) applying the task-to-island
assignment formulation. For two symmetric islands (K = 2),
it is observed from 3(b) that in the first execution phase, i1 =
{τ1,1, τ1,3} and i2 = {τ1,2, τ1,4} whereas for the second
execution phase, i1 = {τ2,1, τ2,4} and i2 = {τ2,2, τ2,3}. For
example, for the first phase in Figure 3, the wasted workload,
Y1, is computed based on i1 and i2 where the task pair in each
island has the most similar execution workloads. It should be
noted in Figure 3 that i1 and i2 can be executed on any
combination of 4 cores in each execution phase because 1) it
is assumed that the system consists of homogenous cores,
and 2) the islanding is performed independently per
execution phase due to the synchronization of threads at the
end of the phase.

B. VFIs’ V/F Level Assignment

The goal of islanding step, discussed above, is to separate
the islands with different workloads using the tasks
computational similarity. For a given V/F level, any two
islands with different workloads may have different
execution performance. Such performance gap among the
islands is utilized by the V/F level assignment step to
maximize the system energy saving while increasing the
performance within the allocated energy budget. This is
accomplished by slowing down islands with low workloads
and speeding up the ones with high workloads.

Running the islands (VFIs) under the fixed V/F level for
the entire application execution may improve energy-
performance tradeoff for applications with steady workloads
but it has poor performance outcomes for applications with
changing workloads at runtime. The second step in the
optimization framework addresses this concern by adjusting
the islands’ V/F levels per execution phase of applications
based on the workloads intensity of islands in the
corresponding application phase.

The following are the objective and constraints for
formulating the V/F level assignment problem:

P

j

j
a jlkj

Minimize

1
, ,,

 (16)

TTIiad jkj

L

l

jlkjlk

,

1

,,,, (17)

TTIia jk

L

l

jlk

,1

1

,, (18)

0

1 1 1

,,,,

EBEBae

P

j

K

k

L

l

jlkjlk (19)

ak,l,j {0, 1} SsTTIi ljk ,, (20)

Where, ϴ is the makespan of application. ϴj is the
execution time of phase j, which is determined by the
maximum finish time among islands in that phase. dk,l,j and
ek,l,j are the execution time and energy consumption of a core
running a task, assigned to VFI ik, under V/F level l at the
execution phase j, respectively. ak,l,j states whether the V/F
level l is assigned to ik in phase j. EB constrains the system
energy consumption for the application execution.

The problem objective (16) minimizes the benchmark’s
makespan, defined by the execution times of application
phases. Constraint (17) determines the execution time of a
phase. Constraint (18) affirms that only one V/F level is
assigned to an island per execution phase. Constraint (19)
ensures that the system’s energy consumption, computed by
the energy usage of VFIs across all execution phases, does
not exceed the user-defined energy budget.

Figure 4 depicts an example of V/F level assignment step
for the same application task sets shown in Figure 3. It is
observed from Figure 4 that in the first execution phase, V/F
levels s2 and s4 are assigned to i1 and i2, respectively. Since i1
has a lower computational workload than i2 in the first phase,
running it with the lower V/F level (s2) results in saving
more energy while running i2 with the higher V/F level (s4)
improves the performance. For the second execution phase,
i1 and i2 have comparable workloads. Thus, s3 is assigned to
both islands.

C. Fast Heuristic for Task-to-Island Assignment

The task-to-island assignment problem is an NP-hard
problem due to its growing complexity when experimenting
with larger task sets size or the number of islands per
execution phase. To reduce the computation time of solving
this problem, this section presents a fast, practical heuristic
that only requires a sorting procedure in its most time-
consuming step.

This heuristic performs the following two steps per
application phase: 1) tasks are sorted in the increasing order
of their execution workloads. In other words, the sorting
procedure orders the tasks (i.e., from small to large tasks)
based on their computational workloads. As mentioned in

Cores

c1

c2

1 2
Execution phases

τ1,1

τ1,3

τ1,2

τ2,1

τ2,4

τ2,2

τ1,4

c3

c4

τ2,3

Cores

c1

c2

1 2
Execution phases

τ1,1

τ1,3

τ1,2

τ2,1

τ2,4

τ2,2τ1,4

c3

c4

τ2,3

i1

i2

Figure 3. Application task sets with N = 4 and K = 2 showing (a)

default and (b) optimized tasks assingment

Cores

c1

c2

1 2
Execution phases

τ1,1

τ1,3

τ1,2

τ2,1

τ2,4

τ2,2τ1,4

c3

c4

τ2,3

i1

i2

s2

s4

s3

s3

Figure 4. Per phase V/F levels assignment for islands i1 and i2

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

Section III-C, the execution workload refers to the task
utilization measured over an application phase’s time span
and is computed as the ratio of the core’s busy cycles to the
total execution cycles. The utilization values do not
significantly change when running cores/islands with
different V/F levels at runtime. Therefore, this performance
measure was chosen for the task-to-island assignments in
each execution phase. 2) every Q = N/K consecutive sorted
tasks are assigned to an island (N and K are number tasks and
islands, respectively). The time complexity of step (1)
increases with O(N log(N)) in the best case while step (2) is
performed in constant time.

It should be mentioned that the assignment of tasks to
islands implies that Q cores are allocated to the
corresponding Q tasks assigned to an island because the
application execution model (see Section III-B) assumes that
a core executes only one task in each phase.

D. Real-life Realization of VFI-based System

The application of the proposed optimization framework
in embedded systems is useful when multicore processors
are designed to run specific applications many times given
system configurations that are pre-optimized once at
compile-time. To use this framework for such cases, the
applications are first profiled using the profiling method
explained in Section III-C. At compile-time, the islanding
step assigns tasks to islands and the V/F level assignment
step determines the VFIs’ V/F levels. The per VFI, per
execution phase V/F levels are then stored in a look-up table
to be used later at runtime when at the start of each execution
phase the OS fetches the V/F levels from the table and uses
special registers to communicate the V/Fs with DVFS
controllers that tune the islands’ performance.

V. EXPERIMENTAL SETUP

To measure the energy efficiency of the proposed
framework, General Execution-driven Multiprocessor
simulator (GEM5) [20], a full-system simulator, is used to
model 64 cores that are arranged as a 8х8 mesh structure of
homogenous cores, where each core has 64KB L1 instruction
and data caches and a shared 8MB L2 cache. All the
benchmarks are run 4 times using the following V/F levels:
s1: 0.5V/ 1.25GHz, s2: 0.667V/ 1.666GHz, s3: 0.834V/
2.083GHz, s4: 1.0V/ 2.5GHz, which are within a nominal
range of states that provide stable performance and power
data. The per execution phase task sets workload and
execution time are collected as explained in Section III-C. To
obtain the phases’ energy consumption, the GEM5’s
performance outputs are fed to Multicore Power, Area, and
Timing (McPAT) [21] that generates the energy
consumption for the task sets. The time/energy overheads
caused by V/F level switching are not incorporated in the
optimization objectives and constraints because they are only
about a few hundreds of nano seconds/Joules order of
magnitude [6].

The proposed two-step optimization framework is tested
on three benchmarks, namely Fast Fourier Transform (FFT),
Lower and Upper triangular matrices (LU), and Cache-
Aware Annealing (CANNEL) [22][23]. These benchmarks

are used in different application domains and represent
applications with high or low CPU-intensiveness: the
percentage of compute intensity of FFT, LU, and
CANNEAL is 96%, 92%, and 85%, respectively where FFT
and CANNEAL are high and low CPU-intensive
benchmarks, respectively.

Similar to [8], the 64-core system, used in this paper, is
partitioned into 4 islands (K = 4) where each island has 16
(Q = 16) tasks, whose assignments to islands are defined by
the islanding formulation in Section IV-A. This
configuration was chosen to assign sufficient tasks per island
in each execution phase.

The formulations, discussed in Section IV, are
implemented with a modeling language, Algebraic Language
for Mathematical Programming (AMPL) [24], which is used
for modeling large-scale constrained optimization problems.
To find solutions that make the best energy-performance
tradeoff, Gurobi [25], a solver included in the AMPL
software package, is used to solve the islanding and V/F
level assignment problems. The heuristic is implemented and
solved in MATLAB. All experiments for the symmetric VFI-
based system are conducted on a CentOS workstation with
Intel dual Core x86, 3.3 GHz processor and 3.6 GB RAM.
The time and energy usage of workstation’s physical cores
when running AMPL/Gurobi are not included in the
formulations since the problems are solved pre-runtime.

VI. EXPERIMENTAL RESULTS

The experimental results consist of four parts. The first
part presents the performance (execution time) of
benchmarks under the proposed VFI-based optimization
framework compared to the optimal performance obtained
by the per-core DVFS VFIs. The second part demonstrates
the framework’s impact on system energy efficiency using
two well known metrics. The third part explains the VFIs’
V/F level assignment outcomes. The fourth part discusses the
optimality of heuristic islanding and VFIs’ V/F level
assignments.

Figure 5 and Figure 6 refer to the per-core DVFS as Fine-
Grained (FG) since K = N (K and N are the number of islands
and tasks, respectively) and dynamically tuned VFI system
as DCG (Dynamic Coarse-Grained) because the V/F levels
of a group of cores are adjusted per execution phase. To
constrain the energy budget, the MILP-based formulation
considers three levels for EB (19): High (EB(H)), Medium
(EB(M)), and Low (EB(L)), which correspond to 7.5%,
22.5%, and 37.5% energy reductions from the benchmarks’
energy consumption when all cores run at the fastest V/F
level (s4 in Section V).

There is a large body of research that use (meta)
heuristics, greedy, and machine learning techniques for
assigning tasks to cores and determining the cores’ V/F
levels to obtain the best objective values [26]. Instead of
comparing the proposed framework performance to such a
wide range of existing techniques in the literature, it is
compared to the per-core DVFS, which is considered as the
most energy-efficient method in high performance
computing platforms. Moreover, the degree to which the
VFI-based system’s energy efficiency is close to the per-core

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

DVFS indicates how close the proposed framework’s
outcomes are to the optimal solutions.

A. Execution Time Comparison

The ILP-based formulation minimizes the performance
(16) of running symmetric coarse-grained islands under the
energy budget levels. Figure 5 evaluates DCG vs. FG
performance (execution time) relative to the non-DVFS
baseline, when all cores operate at the fastest V/F level (s4),
using the following criteria:

1) Energy Budget
Intuitively, decreasing the energy budget increases the

benchmarks execution times because the islands are slowed
down to consume less energy below the energy budgets.
Interestingly, for EB(H) in Figure 5, the performance of
DCG is comparable to FG. The reason is that for EB(H) the
execution time of islands with high workloads dominate the
execution time of under-loaded ones. Thus, scaling up the

V/F levels of highly loaded islands in DCG improves the
system performance while slowing down the under-loaded
islands not only has a negligible impact on the overall
benchmark execution time but also increases energy saving.
By further decreasing the energy budget, the highly loaded
islands have to run slower, resulting in a noticeable
execution time increase for EB(M) and EB(L).

2) Benchmarks CPU-intensiveness
Regarding the impact of benchmarks CPU intensity on

DCG, Figure 5 shows that for CANNEAL the system
performance penalty stays below 18% across the energy
budgets. This is due to the low CPU-intensiveness of
CANNEAL whose execution time is not degraded by
lowering the energy budget. As such, for CANNEAL, the
DCG performance is closer to FG compared to FFT and LU.
Since LU has low CPU-intensiveness in some phases, it is
observed from Figure 5 that in EB(H) DCG performance is

close to FG. Clearly, for a CPU-intensive benchmark like
FFT, DCG has the poorest performance when the VFIs run
slower in the lower energy budgets.

B. Energy Efficiency Metrics Comparison

Besides measuring the framework impact on application
performance, the following metrics are used to evaluate the
system energy efficiency: 1) Energy-Delay Product (EDP)
and 2) Instructions Per Second, per Watt (IPS

2
/Watt) [27].

The former measures the amount of energy saving obtained
despite performance loss while the latter specifies the
amount of throughput gained in exchange for consuming
power for running a number of instructions in a time period
(e.g., execution phase in the application model). Lower
values for EDP and higher values for IPS

2
/Watt are

desirable.

Figure 6 shows the framework impact on EDP and
IPS

2
/Watt resulting from the application of the FG and DCG

configurations normalized to the corresponding EDP and
IPS

2
/Watt of non-DVFS for the same benchmarks.

Figure 6 suggests that CANNEAL, compared to FFT and
LU, obtains the best (lowest) EDP across the energy budget.
Especially, in EB(H), DCG utilizes the CANNEAL’s
memory access times to maximize energy saving without
losing performance while, as a CPU-intensive benchmark,
most of the FFT’s execution run consists of floating-point
instructions, which provide less opportunity for energy
saving and cause the EDPs of FG and DCG to be close to
one another in EB(H). For LU, compared to FFT and
CANNEAL, the EDP gap between FG and DCG is larger,
which can be explained by the LU’s workload variations
across its execution phases. Overall, the average EDP
improvements of DCG, compared to non-DVFS, are within

Figure 5. Execution time of Fine-Grained (FG) and Dynamic Coarse-Grained (DCG) system configurations over High (H), Medium (M), and Low (L)

Energy Budgets (EB). The execution times are normalized to non-DVFS baseline.

Figure 6. EDP and IPS2/Watt of Fine-Grained (FG) and Dynamic Coarse-Grained (DCG) system configurations over High (H), Medium (M), and Low (L)

Energy Budgets (EB). The EDP and IPS2/Watt are normalized to non-DVFS baseline.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

1%, 5%, and 13% of the best EDP improvements obtained
by FG for FFT, CANNEAL, and LU, respectively.

IPS
2
/Watt is inversely proportional to EDP. Thus, the

relative energy efficiency of FG and DCG in terms of
IPS

2
/Watt is similar to EDP. Figure 6 specifies finer scaling

range for the IPS
2
/Watt axis compared to EDP to show a

clearer difference between the energy-efficient solutions
obtained by these two configurations across the energy
budgets. Of note, in Figure 6, the upper bound limit of EDP
axis is set to 1 to show the EDP improvements against the
non-DVFS baseline across the studied benchmarks.

C. VFIs’ V/F Levels

As mentioned in Section IV-B, the V/F assignment step
tunes the VFIs performance to increase the system energy
saving by lowering the V/F levels of less loaded islands and
increasing the V/Fs for the heavily loaded ones. The extent
to which the islands V/F levels are scaled up or down,
depends on the overall characteristics of benchmarks.

Table I shows the V/F states distribution among all
islands and across all the execution phases of FFT, LU, and
CANNEAL at the high energy budget (EB(H)). This table
suggests that the highest V/F level (s4) constitutes the largest
percentage of assignments for FFT and LU (68% for FFT
and 61% for LU). This observation matches the high CPU-
intensiveness of these benchmarks having highly loaded
islands and their V/F states are scaled up to maximize the
performance. On the other hand, for CANNEAL, a lower
V/F state (s3) is assigned to 65% of islands, which again
corroborates with the low CPU-intensiveness of CANNEAL
since lowering V/F levels for such benchmarks saves energy
without significant performance loss. Table I also shows that
for LU s1 and s2 are used for the V/F assignment. That’s
because some execution phases of LU have less amount of
computation, which are utilized by the V/F level
optimization step for slowing down the VFIs and saving
energy.

D. Optimality Analysis of Solutions obtained by Heuristic

and ILP-based Formulation

Section IV-C explained a heuristic for the MILP-based
formulation of islanding problem. To find out the extent to
which the heuristic solutions are close to optimal, the MILP-
based formulation, which provides optimal solutions, is
solved for a number of execution phases of the experimented
benchmarks. To solve the associated problems, the heuristic
task-to-island assignments (Section IV-C), are used as initial
solutions. For larger problems size, the experiments are run
for a week after which it was observed that the differences of
solver’s objective values (1) were negligible (less than a
percent) compared to the objective values obtained by the
heuristic and used as the initial seeds to solve the MILP-
based formulation. Considering such minimal difference, the
islands, obtained by the MILP-based formulation and

heuristic, were found to be identical, indicating that the
proposed heuristic performs optimally to solve the islanding
problem. For N = 64, K = 4, and r = 10 used for Section IV-
A, the MILP-based formulation has 560 variables and 644
constraints per application’s execution phase.

The computation complexity of solving ILP-based V/F
level assignment problem (Section IV-B) depends on the
number of islands (K), number of V/F levels (L), and number
of execution phases (P). To solve the V/F level assignment
problem for DCG (coarse-grained VFIs), K = 4, L = 4, and P
is set to 8, 15, and 31 for FFT, LU, and CANNEAL,
respectively. Using the above parameter values, the ILP-
based problems are optimally solved within a minute, from
which the associated performance and energy efficiency
results are obtained as shown in Figure 5 and Figure 6.

VII. CONCLUSION

This paper presented a framework that optimizes the
tasks partitioning and VFIs’ V/F levels to minimize the
benchmarks makespan without exceeding the user-defined
allocated energy budget. Furthermore, this paper proposed a
fast, low-cost heuristic that has optimal performance for the
experimented problems sizes. The energy efficiency of the
coarse-grained VFI-based system was compared to the
optimal per-core DVFS on multiple benchmarks and with
different energy budgets. While using multiple VFIs lowers
the manufacturing and operating costs of manycore chips,
the results showed that the VFI system’s EDP, at the worst
case, was within 13% of the EDP obtained by the per-core
DVFS. The results also showed that the proposed framework
gains greater EDP improvements for benchmarks with low
CPU-intensive workloads.

According to [28], it is estimated that data centers in the
U.S. are expected to consume electricity up to 73 billion
kilowatt-hours per year from 2014 to 2020, which cost the
American businesses $6 billion annually. Based on this
report, the most efficient technologies and management
practices will save energy up to 40% in 2020. Considering
the system configuration used in this paper, the proposed
framework saves more than 30% of energy in EB(L). Even if
this framework reduces energy by 5% when it is deployed on
larger system sizes, it will have a big economic impact on the
energy costs of the future high performance computing.

REFERENCES

[1] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, M.
Martonosi, “An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing
Performance for a Given Power Budget,” Proc. IEEE
MICRO, pp. 347-358, 2006.

[2] S. Borkar, “Thousand core chips: a technology
perspective,” Proc. ACM DAC, pp. 746-749, 2007.

[3] S. Pagani, A. Pathania, M. Shafique, J. J. Chen, J.
Henkel, “Energy Efficiency for Clustered
Heterogeneous Multicores,” IEEE Trans. TPDS, pp.
1315-1330, 2017.

[4] S. Hajiamini, B. Shirazi, C. Cain, H. Dong, “Optimal
Energy-Aware Scheduling in VFI-enabled Multicore
Systems,” Proc. IEEE HPCC, pp. 490-497, 2017.

[5] K. Greene. 2006. MIT Technology Review [online].

TABLE I. PERCENTAGE OF V/F LEVELS ASSIGNED TO VFIS

Benchmark s1 s2 s3 s4

FFT 0 0 31 69

LU 16 10 12 62

CANNEAL 0 0 65 35

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

https://www.technologyreview.com/s/406760/the-
trouble-with-multi-core-computers/ [retrived: July,
2018]

[6] W. Kim, M. S. Gupta, G. Y. Wei, D. Brooks, “System
level analysis of fast, per-core DVFS using on-chip
switching regulators,” Proc. IEEE HPCA, pp. 123-134,
2008.

[7] U. Y. Ogras, R. Marculescu, D. Marculescu, E. G.
Jung, “Design and management of voltage-frequency
island partitioned networks-on-chip,” IEEE Trans.
VLSI, 17, pp. 330-341, 2009.

[8] K. Duraisamy et al., “Energy efficient MapReduce
with VFI-enabled multicore platforms,” Proc. ACM
DAC, pp. 1-6, 2015.

[9] U. Y. Ogras, R. Marculescu, D. Marculescu,
“Variation-adaptive feedback control for networks-on-
chip with multiple clock domains,” Proc. ACM/IEEE
DAC, pp. 614-619, 2008.

[10] R. David, P. Bogdan, R. Marculescu, U. Ogras,
“Dynamic Power Management of Voltage-Frequency
Island Partitioned Networks-on-Chip using Intel
Single-Chip Cloud Computer,” Proc. ACM/IEEE
NOCS, pp. 257-258, 2011.

[11] S. Jin, S. Pei, Y. Han, H. Li, “A Cost-Effective Energy
Optimization Framework of Multicore SoCs Based on
Dynamically Reconfigurable Voltage-Frequency
Islands,” ACM Trans. Des. Autom. Electron. Syst. 21,
pp. 1-14, 2012.

[12] M. Ozen and S. Tosun, “Genetic algorithm based NoC
design with voltage/frequency islands,” Proc. IEEE
AICT, pp. 1-5, 2011.

[13] P. Ghosh and A. Sen, “Efficient mapping and voltage
islanding technique for energy minimization in NoC
under design constraints,” Proc. SAC, pp. 535-541,
2010.

[14] S. Jin, Y. Han, S. Pei, “Statistical energy optimization
on voltage–frequency island based MPSoCs in the
presence of process variations,” Elsevier J.
Microelectronics, pp. 54, 23-31, 2016.

[15] N. Barrow-Williams, C. Fensch, S. Moore, “A
communication characterisation of Splash-2 and
Parsec,” Proc. IEEE IISWC, pp. 86-97, 2009.

[16] Lap-Fai Leung and C-Y. Tsui, “Energy-aware
Synthesis of Networks-on-chip Implemented with
Voltage Islands,” Proc. DAC, pp. 128-131, 2007.

[17] C. L. Chou and R. Marculescu, “Incremental run-time
application mapping for homogeneous NoCs with
multiple voltage levels,” CODES+ISSS, pp. 161-166,
2007.

[18] M. A. Oxley et al., “Makespan and Energy Robust
Stochastic Static Resource Allocation of a Bag-of-
Tasks to a Heterogeneous Computing System,” IEEE
Trans. TPDS, pp. 26, 2791-2805, 2015.

[19] B. Hamann and J.L. Chen, “Data point selection for
piecewise linear curve approximation,” in Computer
Aided Geometric Design, 11, pp. 289-301, 1994.

[20] N. Binkert et al., “The gem5 simulator,” ACM Comput.
Archit. News, 39, pp. 1-7, 2011.

[21] S. Li et al., “McPAT: an integrated power, area, and
timing modeling framework for multicore and
manycore architectures,” IEEE Proc. MICRO, pp. 469-
480, 2009.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta,
“The SPLASH-2 programs: characterization and
methodological considerations,” ACM Comput. Archit.
News, pp. 24-36, 1995.

[23] C. Bienia, S. Kumar, J. Singh, K. Li, “The PARSEC
benchmark suite: characterization and architectural
implications,” Proc. ACM PACT, pp. 72-81, 2008.

[24] D. M. Gay, “The AMPL Modeling Language: An Aid
to Formulating and Solving Optimization Problems,”
Proc. Mathematics & Statistics, pp. 134, 95-116, 2016.

[25] AMPL Products: Solvers. 2018.
https://ampl.com/products/solvers/ [retrived: July,
2018]

[26] S. Mittal, “A survey of techniques for improving
energy efficiency in embedded computing systems,”
IJCAET, 6, pp. 440-459, 2014.

[27] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,
D. M. Tullsen, “Single-ISA heterogeneous multi-core
architectures: the potential for processor power
reduction,” Proc. IEEE MICRO, pp. 81-92, 2003.

[28] https://eta.lbl.gov/publications/united-states-data-
center-energy [retrived: July, 2018]

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-667-5

GREEN 2018 : The Third International Conference on Green Communications, Computing and Technologies

