
Saving Energy in Text Search Using Compression

Javier Mancebo, Coral Calero, Félix García
Institute of Technology and Information Systems

University of Castilla-La Mancha
Ciudad Real, Spain

e-mail: {Javier.Mancebo, Coral.Calero,
Felix.Garcia}@uclm.es

Nieves R. Brisaboa, Antonio Fariña, Óscar Pedreira
CITIC Research Center, Faculty of Computer Science,

University of A Coruña
A Coruña, Spain

e-mail: {brisaboa, antonio.farina, oscar.pedreira}@udc.es

Abstract— The widespread use of text databases and their
exponential growth has boosted the interest in developing text
compression techniques. These techniques aim at representing
text collections using less space, but also at efficiently
processing them by providing functionalities such as searching
for words and phrases in the compressed text or
decompressing just a portion of the text. In this paper, we
study compression techniques from the perspective of the
savings obtained in energy consumption when searching
directly within the compressed text. Our results show that the
use of text compression techniques can have an important
influence on energy efficiency when the text is processed, for
example, for word or phrase searches. Our evaluation
compares the energy consumption of both compressed and
uncompressed text searches, and the results show that
compressing text databases can lead to important energy
savings (around 50%).

Keywords – Text compression; End-Tagged Dense Codes;
Energy efficiency; Green software.

I. INTRODUCTION

In recent years, the amount and size of text collections
has increased considerably. Although the capacity of new
devices to store such a large amount of data is growing
quickly, the rate of generation and growth of text collections
is even higher. Compression techniques raised as a natural
solution to reduce space needs and to save transmission
times [1]. However, in a text database, not only space
matters but also the ability to efficiently perform queries and
to retrieve any part (e.g., decompressing a relevant
document) of the whole collection [2][3]. This led to the
creation of word-based text compression techniques that not
only allowed to reduce the size of the text database to around
30%-35% of the original size but also to efficiently search
for any word or phrase directly in the compressed text,
avoiding the need for decompressing before searching.

Typically, if one aims at providing efficient access to a
document collection, the usual choice is to provide indexed
searches that require an additional indexing structure. One
could opt for a full-text inverted index that tracks the exact
positions where each word occurs within the collection. This
index would occupy around 30-40% of the size of the
original collection [4], but efficiently supports both word and
phrase searches. To save space, document- or even block-
addressing inverted indexes can be used instead [4]. For each

word, these indexes keep a list of documents/blocks where
the word occurs, hence allowing us to directly filter out the
documents/blocks where a word occurs. However, solving
phrase searches still requires to sequentially scan those
documents/blocks containing the words than compose such
phrase to verify that they occur in adjacent positions.
Consequently, the raise of text compressors that permitted to
perform searches directly within the compressed text even
faster than when those searches were performed over plain
text, boosted the performance of block-addressing inverted
indexes [4]-[6] and allowed us to represent the compressed
text plus the index in just around 35-45% of the size of the
original collection [3] and typically still permit to solve
queries within the range of 1-100 milliseconds. In practice,
the larger the block size chosen for the block-addressing
inverted index, the smaller the index and the longer blocks
have to be sequentially traversed at query time.

In this paper, we do not tackle indexing, but we consider
a new aspect of text compression techniques. We focus on
the energy consumed during the compression process and,
more importantly, at search time, where we compare the
energy used to perform online searches on both compressed
and uncompressed text.

As a matter of fact, the energy consumption of
Information Technology (IT) solutions has become in recent
years an important concern, and, in particular, software
development and maintenance with a “green” perspective in
mind [7][8]. If we focus on text databases, energy
consumption is a particularly important aspect due to the
large number of searches that can be performed on it.
Therefore, even small savings in the amount of energy
required to perform a single search can be transformed into
huge savings when all the searches performed are
considered.

We provide experimental results in which we study the
energy required when a text collection is compressed and,
more importantly, we measure the energy consumption
involved when searching both compressed and
uncompressed text. Without losing generality, we focus our
experimental evaluation on a given compressor, namely End-
Tagged Dense Code (ETDC) [6], since it is the best
compressor for representing text databases in a compressed
form [3][4] while still being able to search for words or
sentences in the compressed text without previously
decompressing it.

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

All our energy consumption measurements were carried
out by using an Energy Efficiency Tester (EET) device [9].

The remainder of this paper is organized as follows:
Section II briefly presents basic concepts on text
compression and describes the ETDC technique. Then, it
briefly discusses the search mechanism used to efficiently
perform searches for words in both compressed and
uncompressed text. In Section III, we explain the main
aspects of software sustainability, as well as the framework
used to measure software energy consumption. Section IV
presents the experimental design framework, and provides
the results obtained from our preliminary study. Our main
conclusions and future work are discussed in Section V.

II. BACKGROUND

A. Basic concepts on text compression

Word-based compressors represent each word in the text
with a code (also called codeword) and achieve compression
by assigning shorter codes to the most frequent words. By
typically using either Huffman [10] (or Dense [6]) coding,
the codewords assigned become prefix-free codes. This
means that no codeword can be a prefix of a longer
codeword and ensures that decoding any codeword can be
efficiently performed without the need of any look-ahead.

Huffword [2] is a Huffman-based compressor where each
word is given a bit-oriented code, that is, the code is a
sequence of bits. It yields strong compression ratios, around
25% in English texts, but being bit-oriented, decompression
and searches within the compressed text are slow. Plain
Huffman [5] assigns byte-oriented codes to each word, that
is, each code is a sequence of bytes. By using codes made of
bytes instead of bits, compression ratios worsen to around
30%, yet byte-wise decoding becomes much faster than that
of Huffword, and searches (using a variant of the Shift-Or
string matching algorithm [5]) are also largely sped up.

However, Tagged Huffman Codes [5] brought the most
important break-through regarding search efficiency within
the compressed text. The difference with Plain Huffman is
that the first bit of each byte is used to mark if that byte is the
first byte of a codeword. In this way, Tagged Huffman
Codes became suffix-free (a codeword cannot be a suffix of
a longer codeword), what allowed to use the fastest Boyer-
Moore [11] string matching algorithms to directly search in
the compressed text [5].

By reserving 1 bit of each byte, the compression of
Tagged Huffman worsened slightly (compression ratios
around 35%) with respect to Plain Huffman. Yet, searches
were largely boosted. Indeed, searches for either words or
phrases within text compressed with Tagged Huffman can be
up to eight times faster than the same searches in
uncompressed text [5]. Furthermore, since the beginning of
any codeword is now distinguishable, Tagged Huffman also
gained self-synchronization capabilities, that is, we can
access any byte of the compressed text and start
decompression from there on without the need for
synchronization from the beginning of the text. Even
considering the loss of compression ratio with respect to

Plain Huffman, its improved search capabilities promoted
Tagged Huffman as the best choice to compress text
databases until the proposal of Dense Codes [6].

The ETDC uses the first bit of each byte to mark the last
byte of each codeword instead of the first one, as in Tagged-
Huffman. This simple idea makes ETDC a prefix-free coding
(without the need of applying Huffman coding), and allows
ETDC to have all the same interesting properties of Tagged-
Huffman but achieving compression ratios closer to those of
Plain Huffman (around 31%) which pushed ETDC as the
best compressor for text datasets [4]. In summary, the main
strengths of ETDC are its good compression, fast
compression and decompression procedures, as well as
random decompression capabilities (self-synchronization),
and the ability to directly search within the compressed text
using Horspool algorithm [12].

For these reasons, our empirical evaluation studies,
without loss of generality, the energy savings obtained when
searching within text compressed with ETDC.

B. End-Tagged Dense Code: compression and search

ETDC [6] is a well-known two-pass word-based byte-
oriented statistical compressor. As a two-pass compressor, it
processes the source text twice at compression time. A first
pass over the text is performed in order to gather both the
different words/symbols (the set of different symbols is
typically known as the vocabulary of symbols) and their
frequency to make up a model of the original text. After that,
the vocabulary of symbols is sorted by frequency, and then,
as a statistical compressor, ETDC performs a coding stage
where shorter codewords are given to the most frequent
symbols. As a result of the coding stage, each symbol is
associated a unique codeword. ETDC is a byte-oriented
compressor, which means that codewords are variable-length
sequences composed of 1, 2, or more bytes. The exact
encoding mechanism of ETDC will be explained below.
After the coding stage, a second pass over the original text is
performed again, and, for each symbol of the original text
ETDC outputs its corresponding codeword to a new file
(compressed-file), hence creating the compressed
representation of the original text. In addition, the

correspondence symbol⟷codeword (i.e., the list of symbols
sorted by frequency in the case of ETDC) must also be kept
along with the compressed file (header-file) to allow a
further decompression. The overall compression procedure is
depicted in Fig. 1. Note that, by replacing the most frequent
symbols by the shortest codewords, compression is obtained.
In addition, since each source symbol is always replaced by
the same codeword, when performing searches for a given
word/symbol we can just obtain the codeword associated to
such word and then look for the actual positions where the
corresponding codeword occur within the compressed file.
By using Horspool algorithm [12], searches are efficiently
performed [6].

C. Encoding and decoding procedures in ETDC

The encoding procedure of ETDC is very simple [6]. In
this case, given a symbol ranked at position i in the

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

vocabulary of words (decreasingly sorted by frequency)
ETDC will assign to it a codeword ci composed of 1 or more
bytes (recall ETDC generates byte-oriented codewords).

One of the key-features of ETDC is that it marks the last
byte of each codeword with a special flag. ETDC reserves
the first bit of each byte from a codeword to mark if that byte
is the last byte or not, i.e., the first bit of the last byte of a
codeword is set to 1, and the first bit of the remaining bytes
is set to 0. Therefore, one-byte codewords will have the form
1xxxxxxx; two-byte codewords have the form
0xxxxxxxx:1xxxxxxx; three-byte codewords follow the
pattern 0xxxxxxx:0xxxxxxx:1xxxxxxx; and so on. Note that
basically, the numerical byte-values of the ending byte of
any codeword are within the range [128,255], whereas the
other bytes have values within the range [0,127].

Figure 1. Compression process in ETDC

By marking the last byte of each codeword, ETDC
becomes a prefix-free coding. Therefore, despite other well-
known Huffman-based compressors [5][10] that reserve
some bit-combinations to ensure that the final codewords
own the prefix-free property, ETDC can use all the possible
bit-combinations of each codeword byte. Actually, the
codeword assignment in ETDC is done in a completely
sequential fashion (considering the remaining 7 bits of each
byte) and does not depend on the actual frequency value of
the words, but only on their rank within the sorted
vocabulary. The codeword assignment to words decreasingly
sorted by frequency is done as follows:
 1-byte codewords are given to the first 128 words in

the vocabulary, i.e., the most frequent word receives
codeword 10000000, the second word in the
vocabulary is given codeword 10000001, and so on
until the word ranked at position 128, which is
assigned codeword 11111111. Note that the initial bit
is 1 to flag that it is an ending codeword byte, and the
remaining seven bits are assigned sequentially from
0000000 to 1111111.

 A 2-byte codeword is given to the next 128x128
words; i.e., word ranked at position 129 receives
codeword 00000000:1000000; next word is given
codeword 00000000:1000001; and so on until the
word ranked at position 128+1282 which is given
codeword 01111111:11111111.

 A 3-byte codeword is given to the next 1283 words,
from codeword 00000000:00000000:10000000 to
codeword 01111111:01111111:11111111.

 If required, 4-byte codewords would be assigned to
the next 1284 words in the same way, and so on.

Codewords are sequentially assigned to words during
compression. However, we can know at any moment which
codeword corresponds to a given word. This operation is
called encode, and allows us to search for any word or phrase
in the compressed text. We can also know at any moment the
word corresponding to a given codeword. This operation is
called decode, and allows decompressing the text starting at
any position.

D. Searching: the Horspool algorithm

Pattern-matching algorithms aim at efficiently finding the
positions of a text in which a given pattern (a sequence of
symbols, for example, a word) appears. A sequential brute-
force search would be a simple but very inefficient solution.

The Horspool algorithm [12] searches for the pattern in a
sequential fashion but skips parts of the text during the
search. The algorithm uses a search window of the same size
as the pattern we are searching for (see Fig. 2). This search
window is moved along the text during the search. At each
step, the text under the window is compared with the pattern.
If they are equals, the algorithm reports a new occurrence of
the pattern. If they are not, the algorithm moves the window
to a new position, trying to skip as much text as possible.
I.e., if β is the last symbol in the pattern, the skip distance is
the number of symbols from the last appearance of β in the
pattern to the end of the pattern. If the last symbol only
appears in that last position, the skip distance is the size of
the pattern. The efficiency of Horspool is given by its
capacity to skip large portions of the text. Therefore, the
larger the alphabet of symbols, and the larger the pattern, the
more chances to skip text, so the more efficient the algorithm
will be.

Figure 1. Horspool search algorithm scheme.

Although the Horspool algorithm was thought to be
applied in plain text, it can also be applied to text
compressed with ETDC. The result of applying this
algorithm in text compressed with ETDC is that the searches
in the compressed text are much more efficient than searches
in the original plain text [5][7].

III. SOFTWARE SUSTAINABILITY

Recent research focused on the proper use of resources
required by software has emerged in the area of software
sustainability [13]. This resulted in more sustainable and
environment-friendly software. According to Calero and
Piattini [13], there are three dimensions of Software
Sustainability: (i) Human sustainability, which analyzes how
software development and maintenance can affect the
sociological and psychological aspects of the people

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

involved; (ii) Economic sustainability, which is related to
how software lifecycle processes protect stakeholders'
investments, ensuring benefits and reducing risks; and (iii)
Environmental sustainability, which studies how the
development and maintenance, and the use of software
affects the use of resources and the energy consumption.
This dimension is also known as Green Software.

Our work focuses on the Environmental sustainability
dimension. In particular, we analyze how the usage of the
ETDC as a text compression technique reduces the amount
of energy needed to perform direct searches, compared to the
energy needed when directly searching within plain text. To
do that, we use FEETINGS (Framework for Energy
Efficiency Testing to Improve eNvironmental Goals of the
Software) [9], whose objective is to measure and analyze the
energy consumed by a software product when it is executed
in a computer. This framework is divided into two main
components:
 An Energy Efficiency Tester (EET), the hardware

device that measures the energy consumption of a
software product during its execution. The EET is
composed of different sensors that support the
measurement of three different hardware elements:
processor, hard disk, and graphics card. Furthermore,
two additional external sensors quantify the total power
consumption of the computer, and that of the monitor
connected to the computer (Device Under Test or
DUT) where the software is executed.

 A Software Energy Assessment (SEA) application,
which automatizes the processing, the analysis, and the
visualization of the data collected by the EET.

IV. ETDC ENERGY CONSUMPTION EVALUATION

A. Experimental design framework

We have carried out a set of experiments to evaluate
whether the use of ETDC as the compression method to deal
with a text collection not only leads to improvements in
space and search times but also entails savings on the amount
of energy consumed to perform searches. In addition, we
also include results showing the time and energy
consumption required to compress such text dataset.

We have used a text collection from [6] composed of a
small text named Calgary [14], and several text collections
from TREC-2 and TREC-4 [15] (AP Newswire 1988, Ziff
Data 1989-1990, Congressional Record 1993, and Financial
Times from 1991 to 1994). The size of the dataset is around
1,030 MiB, and when processed with ETDC, the vocabulary
obtained has 886,190 different words.

Aiming at performing online searches for single-word
patterns, we considered the vocabulary from the collection
and we randomly chose words (we assume words are sought
with uniform probability by following the same model in [5])
to make up three sets of patterns with varying length. These
sets of patterns contain respectively 10 words whose length
is 5, 10, and >10 characters. Note that, for this study, we did
not filter those words out by frequency.

All our experiments were run on a DUT connected to the
EET that was connected to an LCD monitor Philips
170S6FS. The DUT specifications are: (a) Asus M2N-SLI
Deluxe motherboard; (b) AMD Athlon tm 64 X2 Dual Core
5600+ 2.81 GHz processor; (c) 4 modules of 1GB DDR2
533MHz RAM memory; (d) Seagate barracuda 7200 500Gb
hard disk; (e) GPU Nvidia XfX 8600GTS; and (f)
AopenZ350-08Fc 350 W Power supply. It runs Linux Mint
18.3 Cinnamon 32 bits, and the compiler used was gcc
version 5.4.0.

We present two main experiments. First, we focus on
searches and compare both the performance and the energy
consumption obtained when we search for the ten words in
each of our query sets, using Horspool algorithm, both over
the ETDC-compressed representation of the dataset, and
over its plain/original version. Finally, we complete our
study showing the amount of energy consumed to compress
the dataset with ETDC.

Each experiment was repeated 20 times and then
averaged. Being a controlled test environment, 20
measurements are usually a sufficient sample size to mitigate
the impact of outliers (such as energy consumption devoted
to operating system tasks). Therefore, our time results are
presented as average running times, and our energy
consumption data are shown in average watt second (W·s).
In practice, we will show four different energy-consumption
values corresponding to the Hard Disk Drive (HDD), the
graphics card (GPU), the processor (CPU), and the Power
Supply Unit (PSU), which indicates the total energy
consumption of our system.

We performed two-sample t-tests on the measurements
we obtained from the experiments, assuming the variance of
the samples obtained from measurements in plain text and
ETDC are not equal. The test revealed that the means
obtained in the two samples are different with a confidence
of 99% (α = 0.005).

B. Plain text searches vs. searches over text compressed
with ETDC

In Table I, we show both the average time and the
average energy consumption corresponding to searches
performed over the original text and over the text
compressed with ETDC. Recall that we use the three query
sets discussed above corresponding to ten patterns of length
5, 10, and >10 characters, and our times include the overall
time corresponding to ten Horspool searches for those ten
patterns.

TABLE I. TIME AND ENERGY CONSUMPTION RESULTS WHEN PERFORMING 10
SEARCHES WITH HORSPOOL ALGORITHM OVER BOTH TEXT COMPRESSED

WITH ETDC AND OVER UNCOMPRESSED TEXT

HDD GPU CPU PSU HDD GPU CPU PSU

5 28.78 470.79 43.27 153.39 4120.08 14.04 230.18 20.53 62.71 1817.83

10 25.17 411.43 36.86 132.29 3647.17 13.00 212.79 19.48 56.50 1684.84

>10 23.87 390.89 34.79 126.29 3465.62 13.54 221.70 18.66 56.35 1771.77

Pattern

length
time (s)

Energy consumption (W·s)

Uncompressed Text

time (s)
Energy consumption (W·s)

Text compressed with ETDC

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

TABLE II. TIME AND POWER MEASURED BY THE EET. POWER VALUES ARE

OBTAINED AS THE ENERGY CONSUMPTION VALUES FROM TABLE 1 DIVIDED

BY THE RUNNING TIME (IN SECONDS).

HDD GPU CPU PSU HDD GPU CPU PSU

5 28.78 16.36 1.50 5.33 143.16 14.04 16.39 1.46 4.47 129.48

10 25.17 16.35 1.46 5.26 144.90 13.00 16.37 1.50 4.35 129.60

>10 23.87 16.38 1.46 5.29 145.19 13.54 16.37 1.38 4.16 130.85

Uncompressed Text Text compressed with ETDC

Pattern

length
time (s)

Power (watt)
time (s)

Power (watt)

Note that, in Table II, the HDD and GPU consumptions
do not vary in the uncompressed and compressed
representations. This permits us to conclude that, as
expected, it is more energy efficient to perform searches over
text compressed with ETDC than over uncompressed text. In
particular, we can also see that the most important energy
savings (in percentage) are obtained in the processor,
followed by the total consumption values drawn by the PSU,
and finally the HDD and the GPU are the elements where
less savings are reached.

Considering search performance, as expected from [6],
the search time is also lower in the compressed scenario (in
practice, our compressed searches require from 43% to 51%
less time). When we compare how the search times vary with
respect to the pattern length, we can see that the longer the
pattern, the faster the search is performed, and consequently
less energy is required. This is expected since longer patterns
lead to longer jumps during the left-to-right traversal in
Horspool algorithm.

Even though it could seem rather unexpected, the search
times over text compressed with ETDC only marginally
depend on the pattern length. Yet, this is true. Given a
pattern P, note that on compressed searches we do not search
for pattern P, but for the codeword associated to P. Yet, in
our dataset, all the words are given codewords of 1, 2, or 3
bytes (recall more frequent words are given shorter
codewords). Consequently, the longest “shift” during the
left-to-right traversal in Horspool will be of only 3 bytes.
The average codeword length is 2.9, 3.0, and 3.0 respectively
for the patterns in our query sets with patterns of length 5,
10, and >10 characters. This would explain that searches for
patterns of length 5 are slightly slower. Yet, we would expect
that search performance on patterns of length 10 and >10
should be similar.

In Table II, we have divided the total energy
consumption values shown in Table I by the time required to
run each experiment. This gives us power values for each
component that are independent on the time needed to
complete each run. It is interesting to see that both the HDD
and the GPU (as expected) have rather constant power needs
in both the compressed and the uncompressed scenarios.
They require around 16.3 and 1.5 watt, respectively.
However, the processor power decreases considerably in the
compressed scenario. Not only the searches over compressed
text perform faster, but the CPU requires also around 20%
less power. On the one hand, Horspool benefits from a lower
probability of match between the last character of the pattern,
and the rightmost character on the sliding window of the
text, and such probability is lower on text compressed with

ETDC than on uncompressed text. In [16], it was shown that
those probabilities of match are, respectively, around
1/119=0.008 in ETDC and 1/19.3=0.052 in plain text. This is
due to the fact that we can find any of the 256 possible
combinations of a byte both the compressed text and in the
search pattern for ETDC, whereas in plain text less than 100
different byte values are used ([A-Z], [a-z], [0-9], and
punctuation symbols). On the other hand, due to that lower
probability of match in ETDC, Horspool algorithm wastes
much less time comparing (right-to-left) the text and the
pattern, and, consequently, most of time is devoted to the
main (left-to-right) shift-loop. We conjecture that this makes
the execution pipeline simpler and more predictable and
reduces the power required by the processor.

C. Compressing text with ETDC

As shown above, searching within text compressed with
ETDC is more energy efficient than performing searches
over uncompressed text. In this section, we also take into
account the energy consumption involved when compressing
the original text. Table III shows the average time (for 20
repetitions), and the average energy consumption (and
power) required to compress our dataset with ETDC.

TABLE III. COMPRESSION WITH ETDC: TIME AND ENERGY ONSUMPTION.

HDD GPU CPU PSU HDD GPU CPU PSU

53.24 876.88 78.94 320.71 6867.21 16.47 1.48 6.02 128.99

time (s)
Energy consumption (W·s) Power (watt)

As in Table II, we already observe that the power
required by both the HDD and the GPU remain rather
constant (around 16.5 and 1.5 watt, respectively). The reason
is that those consumptions are close to the basal consumption
of those devices in the computer. However, the power
required by the CPU grows clearly with respect to the values
obtained at search time. The CPU uses around 6 watts,
whereas for searches over uncompressed text only around
5.3 watt were needed, and those values decreased to around
4.3 watt for searches over text compressed with ETDC.
Since the power needs grow, and from the fact that
compression takes more time than performing searches, the
overall energy consumption increases accordingly.

If we informally analyze the obtained data, we can see
that the energy consumption devoted to compress the
original text is equivalent to the consumption of performing
twenty searches within the uncompressed text. Similarly,
from the point of view of energy efficiency, if one is going to
search for more than 40 words over a whole large text
dataset, it would compensate to keep the text compressed
with ETDC, and to perform the searches over such
compressed text. This typically can lead to savings around
50% with respect to performing the same searches over the
original plain text.

D. Threats to validity

The study presented in this work has some limitations
that should be taken into account to understand to what
extent the results are valid. According to the classification of
threats discussed by Wohlin et al. [17] we can identify the
following threats:

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

 Threats to Construct Validity: the main threat relates
to whether the obtained energy consumption
measurements are correct. In our case, we have
overcome this threat by using the EET device [9].
This device has been validated and compared with
another measuring device in [18]. The energy
consumption results obtained by both devices were
similar. In addition, EET has previously been used in
other similar measurements. Additionally, we have
used different patterns of varying length. This fact
permitted us to analyze how the length of the pattern
influences energy consumption.

 Threats to Internal Validity: these threats are mainly
related to the configuration of the DUT in which the
measurements are made. As it is evident, if we had
used a different DUT, we would have obtained
different data. However, we believe that, even
though the absolute values of the measurements
could have varied, the energy consumption
relations/conclusions would still remain. Note also
that the state of the Operating System (e.g., existence
or not of other running tasks) could also be a
relevant factor that should be considered. To
overcome this possible issue and obtain more stable
measurements, each measurement was repeated 20
times.

 Threats to External Validity: We have used our own
EET as the tool for measuring energy consumption.
As indicated above, this device is able to obtain
exact measurements of the energy consumed by
different hardware elements. Obviously, the
measurements obtained are specific for our EET and
may differ if we use other mechanisms, such as
energy estimation or other devices. Nevertheless, our
EET was designed for the actual measurement of
different hardware components when a given
software is running, and we consider the results
obtained to be correct.

 Threats to Conclusion Validity: We have analyzed
energy consumption when searching a compressed
text only by the ETDC algorithm. Therefore, the
results obtained cannot be assumed for other text
compression algorithms. Yet, as discussed in the
future work section, we would expect a rather
similar behavior.

V. CONCLUSIONS AND FUTURE WORK

Compression methods have become a widely-used
resource nowadays. This is due to the large amount of data
that is generated and that must be stored. Undoubtedly,
compression permits to store those data within less space. In
the scope of text databases, where the ability to perform
searches and to retrieve some parts of the text collection is of
major interest, End-Tagged Dense Code [6] becomes one of
the best compression alternatives due to its reasonable
compression ratios (around 30-35%), fast compression and
decompression processes, the possibility of performing direct
searches on the compressed text very efficiently using

Horspool algorithm, and by allowing random decompression
(i.e., starting decompression from any random offset of the
compressed file).

In this paper, we have also considered a fundamental
concern such as the amount of resources used (by means of
energy consumption) when performing searches. We have
compressed a large text database with ETDC and then
performed queries both over the original uncompressed text
and over the compressed counterpart. Our results show that
compression not only reduces space and searching time, but
also leads to less energy being consumed. On the one hand,
one could expect that since a faster algorithm requires power
during a shorter amount of time, the overall energy
consumption would decrease. Our results clearly confirm
that. On the other hand, we found a rather unexpected result:
the same Horspool algorithm, running over compressed data
also required less CPU power than when it ran over
uncompressed data.

As future work, we want to extend our study to include
other well-known compression techniques for text databases
that own similar features to those in ETDC. Among them
some good candidates are Tagged and Plain Huffman, or the
Restricted Prefix Byte Codes [19]. In this way, we will be
able to know which of these techniques requires less energy
in compression time, and which one provides more efficient
searches in terms of energy. In addition, we intend to expand
the study by analyzing CPU utilization when performing text
searches (with and without compression), and to determine
the relationship between CPU utilization and energy
consumption.

Once it is clear that compression permits to reduce
energy utilization at search time, another interesting research
line involves studying the actual impact of compression in
terms of energy within a compact block-addressing inverted
index.

ACKNOWLEDGMENTS

This work was partially funded by MCIU/FEDER-UE
BIZDEVOPS-GLOBAL: RTI2018-098309-B-C32; by
MINECO/FEDER GINSENG-UCLM (TIN2015-70259-C2-
1-R); and is also part of the SOS project
(SBPLY/17/180501/000364), Regional Government of the
Autonomous Region of Castilla – La Mancha.

The group from A Coruña is funded in part by EU H2020
RISE BIRDS grant [No 690941]; by Xunta de
Galicia/FEDER-UE [CSI: ED431G/01 and GRC: ED431C
2017/58]; by Xunta de Galicia Conecta-Peme 2018 [Gema:
IN852A 2018/14]; by MINECO-AEI/ FEDER-UE
[ETOME-RDFD3: TIN2015-69951-R; Datos 4.0: TIN2016-
78011-C4-1-R; BIZDEVOPS: RTI2018-098309-B-C32].

REFERENCES

[1] T. C. Bell, J. G. Cleary, and I. H. Witten, Text compression.
Prentice-Hall, Inc., 1990.

[2] I. H. Witten, A. Moffat, and T. C. Bell, Managing gigabytes:
compressing and indexing documents and images. Morgan
Kaufmann, 1999.

[3] A. Fariña et al., "Word-based self-indexes for natural
language text," ACM Transactions on Information Systems
(TOIS), vol. 30, no. 1, p. 1, 2012.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, 2 ed. Addison-Wesley Publisihing Company, 2011.

[5] E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-
Yates, "Fast and flexible word searching on compressed text,"
ACM Transactions on Information Systems (TOIS), vol. 18,
no. 2, pp. 113-139, 2000.

[6] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá,
"Lightweight natural language text compression," Information
Retrieval, vol. 10, no. 1, pp. 1-33, 2007.

[7] E. Kern et al., "Sustainable software products—Towards
assessment criteria for resource and energy efficiency,"
Future Generation Computer Systems, vol. 86, pp. 199-210,
2018.

[8] G. Pinto and F. Castor, "Energy efficiency: a new concern for
application software developers," Communications of the
ACM, vol. 60, no. 12, pp. 68-75, 2017.

[9] J. Mancebo et al., "EET: a device to support the measurement
of software consumption," in Proceedings of the 6th
International Workshop on Green and Sustainable Software
(GREENS'18) ACM, 2018, pp. 16-22.

[10] D. A. Huffman, "A method for the construction of minimum-
redundancy codes," Proceedings of the IRE, vol. 40, no. 9, pp.
1098-1101, 1952.

[11] R. S. Boyer and J. S. Moore, "A fast string searching
algorithm," Communications of the ACM, vol. 20, no. 10, pp.
762-772, 1977.

[12] R. N. Horspool, "Practical fast searching in strings,"
Software: Practice and Experience, vol. 10, no. 6, pp. 501-
506, 1980.

[13] C. Calero and M. Piattini, "Puzzling out software
sustainability," Sustainable Computing: Informatics and
Systems, vol. 16, pp. 117-124, 2017.

[14] Calgary Corpus. Available: http://www.data-
compression.info/Corpora/CalgaryCorpus/. Last access:
19/09/2019

[15] TREC. Available: https://trec.nist.gov. Last access:
19/09/2019

[16] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá,
"New adaptive compressors for natural language text,"
Software: Practice and Experience, vol. 38, no. 13, pp. 1429-
1450, 2008.

[17] C. Wohlin et al., Experimentation in software engineering.
Springer Science & Business Media, 2012.

[18] J. Mancebo et al., "Assessing the Sustainability of Software
Products - A Method Comparison," presented at the
EnviroInfo, Kassel (Germany), 2019.

[19] J. S. Culpepper and A. Moffat, "Enhanced byte codes with
restricted prefix properties," in Proc. 12th International
Symposium on String Processing and Information Retrieval
(SPIRE’05) Springer, 2005, pp. 1-12.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-751-1

GREEN 2019 : The Fourth International Conference on Green Communications, Computing and Technologies

