
Evaluating Trade-offs for Green Routing in Communication Networks

Jan Kitanovski∗, Kaspar Zimmermann∗, Line M. P. Larsen† and Sarah Ruepp∗
∗ Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

† Department of Mobile Innovation, TDC NET, Copenhagen, Denmark
e-mail: s232649@dtu.dk, s232759@dtu.dk, lil@tdcnet.dk, srru@dtu.dk

Abstract—With the demand for high-speed, high-capacity net-
working increasing each year, it is important to focus on the
infrastructure and software running on the networking backbone.
A crucial component of this focus is the need for efficient
pathfinding algorithms, which can determine the best route for
data to travel across a network, and ensuring optimal resource
usage and performance. This paper promotes the importance of
selecting the best routing algorithm for a specific purpose of data
transport, highlighting the trade-offs involved in green routing.
It also presents the work and results of a network simulator that
uses four different algorithms (Dijkstra’s, A*, Floyd-Warshall,
and Depth-First Search) to determine which performs best in a
set environment. In terms of latency, Floyd-Warshall showed a
64% improvement over Dijkstras, whereas A* showed a 57%
improvement over Dijkstra’s. Results indicate that the tradeoff
of choosing an algorithm with a lower latency can also result in
higher carbon cost.

Keywords—Green-Routing; Denmark; Path-Finding; algo-
rithms; latency; overhead; carbon cost.

I. INTRODUCTION

As the number of Internet-connected devices continues to
rise globally, the data throughput generated by these devices
has significantly increased. In 2022, it reached nearly 1200
Tbit/s globally [1]. Consequently, new network infrastructure
needs to be built, which also consumes energy. Data cen-
ters and other similar technologies used 460TWh in 2022,
which accounted for almost 2% globally [2]. Therefore, it is
important to focus on enabling greener alternatives to how
the networks operate, as this might also impact on the end-
cost of operating the infrastructure. Choosing green routing-
themed research comes from the need to address the impact of
the growing network infrastructure. With a big shift towards
renewable energy sources, it is important to also optimise the
network performance itself.

Routing is a way of finding the path from one node or
end device, through the network to the end-point of the
data. Green-routing improves on this, by also taking into
account where the energy, powering the devices that enable
this transmission comes from, and how it can be used in the
most efficient way.

In this project, an event-based simulator will be pro-
grammed to simulate the network traffic within Denmark. The
data used for the simulator will be based on the data centers
and other smaller nodes spread throughout the country. Due
to data gathering limitations, different alternative approaches
had to be used to simulate the network behaviour.

*The first two authors have contributed equally to this paper

This paper describes a simulation project that focuses on
green routing algorithms and compares them in terms of
performance and efficiency.

The simulator operates as an event-based simulation, de-
signed to manage large-scale simulations. Each event is as-
signed specific attributes before being queued for simulation.
These attributes include the time of occurrence, which deter-
mines when the event will be processed, and the type of event.
Event types include original packet creation, which initiates
the start of the algorithm search. Normal packet creation can
generate either an overhead packet or a data packet, depending
on the algorithm’s progress. Data packets can be generated
with either high or low priority. High-priority packets are
routed through the shortest path to minimize latency, while
low-priority packets are directed through the greenest route to
minimize environmental impact.

For the remainder of this paper, Section II provides the
state of art, Section III dives into the methodology used in the
event-based simulator, Section IV provides the Testbed setup
of the simulation, Section V overlooks the results gathered
from the simulation, which are then discussed in Section VI
and concluded in Section VII.

II. STATE OF THE ART

Several studies have explored various aspects of the green
routing problem, each approaching it differently. Zhu et al. [3]
examined the development of an energy-aware network man-
agement platform, OpenNaaS, which supports SDN (Software
Defined Networking) to create green-greedy routing paths.
Their system measures energy, cost, and sustainability infor-
mation for networks, demonstrating the platform’s potential for
energy-efficient routing in large-scale networks. Wang et al.
[4] focused on power saving and QoS (Quality of Service) for
many-to-many multicast in backbone networks. They devel-
oped the GIQM (Green Intelligent flexible QoS many-to-many
Multicast routing algorithm), which uses power consumption
as a routing metric and supports flexible QoS requirements.
Their algorithm outperformed other schemes such as the CBT
(Core-Based Trees algorithm) in power savings and routing
success. In their research, Yang et al. [5] devised hop-by-hop
algorithms to achieve loop-free routing, minimizing energy
usage. They were innovated upon the Dijkstra’s algorithm,
by creating various “Dijkstra-green” versions to improve the
routing efficiency. Lee et al. [6] proposed the DEAR algo-
rithm, which improves energy efficiency while meeting flow
delay requirements in networks with diverse energy profiles.

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-203-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2024 : The Ninth International Conference on Green Communications, Computing and Technologies

The DEAR algorithm effectively identifies the least energy-
consuming path while ensuring flow delay requirements are
satisfied. Hossain et al. [7] proposed a sustainable method for
greening the Internet by introducing ”pollution-aware routing,”
which integrates considerations of carbon emissions and non-
renewable energy usage into traditional energy-aware routing.
Their holistic approach, implemented with SDN, demonstrated
significant reductions in CO2 emissions compared to con-
ventional energy-aware solutions. Nwachukwu et al. [8] has
focused on the optimization for simultaneous routing and
bandwidth allocation through the use of Lagrangian methods.
Their work shows that augmented Lagrangian algorithms are
highly effective on this matter.

Upon reviewing existing research in this field, it was found
that the primary focus has been on developing new technolo-
gies, algorithms, and enhancements to these algorithms, with
relatively few studies dedicated to comparing the various path-
finding algorithms.

The objective of this research paper is to develop an event-
based simulator capable of incorporating various data, such
as the locations of data center nodes within Denmark, and
simulating network behaviour using different algorithms. The
aim is then to compare the effectiveness of each algorithm
based on multiple result variables, including total overhead
packets, carbon cost per data transmitted, carbon cost distri-
bution between data and overhead and latency.

III. METHODOLOGY

A. Green Routing

Green routing as a principle focuses on the ability of
the network to choose transportation routes that minimize
the environmental impact, by reducing fuel consumption and
emissions. It utilizes different path-finding/optimization algo-
rithms as well as data of the types of power sources available
for powering the network. In this paper, the evaluation of
these algorithms will be based on multiple values, such as the
latencies, total overhead packets, total data packets, carbon
emission of the transmission, expressed as the carbon cost.
These values of course will be expressed as multiples of
minimum, maximum and average values. These values will
be represented in the corresponding figures.

B. Algorithms

In this research, the main focus will be on the comparison
of results, efficiencies, and drawbacks of various path-finding
algorithms. The algorithms in question will be: Dijkstra’s,
Floyd-Warshall, an advanced version of Dijkstra’s, A*, and
the DFS (Depth-First Search) approach. Figure 1 shows an
example graph that the operation of the algorithms will be
explained on.

• Dijkstra’s finds the shortest path starting from a single
point and continuing by the use of the smallest known
distance to other nodes in a weighted graph. When a
shorter route to a node is found, the table is updated,
until all paths to the end node are found. Starting from
node A, the algorithm will choose the shortest distance,

Figure 1. An example graph with 7 nodes and positive edges, used to illustrate
algorithm operation

which is to node B. The next shortest step is to node
D, after which the algorithm sets the shortest distance to
D as 10. The algorithm keeps taking the shortest path
available to it and when it gets to a node that is already
discovered, it will update the distance to it, if it is shorter.
For example, when the path from C to D is discovered,
its distance of 17 is compared to the previously found
distance of 10, and no changes are made [9]. Dijkstra’s
is tested because it is a very commonly used shortest-path
algorithm and is easy to implement.

• A* extends Dijkstra’s algorithm by incorporating heuris-
tics, which are used to guide the search towards the goal,
and utilizes tables to keep track of visited and non-visited
nodes. When A* finds the path in the Dijkstra’s searching
method, it will save it. For example, it will know that the
path from A to D is shortest through B, so next time it
won’t search the entire graph again and will use that path
[10]. A* is used to see if it is possible to fix some of the
shortcomings of Dijkstra’s, but not lose the accuracy.

• The Floyd-Warshall algorithm calculates the shortest
paths between all pairs of nodes in a weighted graph.
It initializes the distance matrix with the weights of
direct connections between nodes, using infinity for pairs
of nodes without a direct connection and zero for the
distance from a node to itself. The algorithm then updates
this matrix by considering each node as an intermediate
point and checking if a path through this node offers
a shorter route between any two nodes. For example in
the given graph, the algorithm starts by setting the initial
distances, such as A to C to 7, A to B to 4, and A to D
to infinity. It then updates paths A to D by taking into
account intermediate nodes. For example, it might find
that the path from A to D through C (with a combined
weight of 17) or through B (with a combined weight
of 10) is shorter than the initially set distance. In this
case, the path A to B to D has a total weight of 10,
which would be the updated shortest distance from A to
D [11]. Floyd-Warshalls algorithm was chosen, because
it is a competing shortest-path algorithm to Dijkstra’s.
Their difference should mostly depend on the density of

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-203-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2024 : The Ninth International Conference on Green Communications, Computing and Technologies

the graph, so results may change depending on the chosen
network size.

• DFS initiates by choosing a point of entry and randomly
continuing node by node in one direction. If a connection
is not successfully established, it backtracks its hops and
tries again. Starting from node A, it will randomly choose
node C or B. Then, it will keep going with random
choices, without backtracking. If it finds the end node,
it will use whatever path it took even if its not the most
efficient one. DFS was chosen as a reference point to
use for comparing the other algorithms. It shows why, in
general, using a routing algorithm is better than randomly
choosing which way to go.

IV. TESTBED SETUP

Python was used to set up the simulation. Additional
libraries, such as heapq and pandas were used for efficient
priority queue operations and data manipulation and analysis,
respectively, while Matplotlib was used to visualise the results.

The data for the simulator was gathered from various
sources, such as different research papers and publicly avail-
able data, which are explained below. However, very precise
data was not available, so reliance on other models for electri-
cal energy sourcing, including the estimation of the ”greeness
of sources,” and the connection between the bandwidth created
and population densities in certain areas was necessary.

The carbon cost calculation was done with the use of the
nearest energy sources to the node and multiplied by the total
distance travelled. The data has been gathered by the Danish
energy agency [12].

The latency calculation was done by combining the data for
the propagation of light through optic fiber of 500 microsec-
onds per 100km [13] and the average latency introduced by
the processing time of a switch set to 2 microseconds [14].

It is worth noting that the connections between datacenters
in Denmark were established based on a publicly available
map [15], which was transcribed into the setup shown in
Figure 2. For the simulator itself, a few different configurations
were chosen, however the main difference between them was
the number of simulations to run.

The estimation for electrical energy sourcing was derived
from a model using the closest sources of electrical power.
In this approach, a specific area around the data center,
with an estimated set power consumption, was examined. A
percentage-wise distribution of power sources, which could
be from renewables or non-renewables, was utilized. A similar
approach was used for estimating the amount of data generated
at a certain node in the network. This estimation was based on
the map of Denmark, with population densities being utilized
for the calculations.

The tests are run for 10,000 seconds to minimize the
effect of the semi-random packet generation without losing the
realistic traffic. All tests were run at least 5 times to check for
anomalies. This was normally enough, as the long simulation
time removed any randomness from the results.

Figure 2. The main network nodes of Denmark, showing the use of Dijkstra’s
algorithm for path-finding the lowest latency route, as well as the greenest
path.

The graph used for the algorithm uses the map of databases
and also places nodes in locations where fibre optic cables
meet at larger settlements. It consists of 26 points with each
having 1 to 5 connections to nearby nodes.

V. RESULTS

For the results, three main metrics were considered: Over-
head packets, which show non-data packets used by each
algorithm, Carbon cost, to show how ”Green” the algorithm
is and Latency to show how fast the algorithm is.

1) Overhead packets: The test results for total overhead
packets created by the algorithms in the simulation time are
shown in Figure 3. The amount of overhead packets created
can indicate how much additional traffic the algorithm creates
for the entire network.

Figure 3. Total overhead packets sent by each algorithm during the duration
of the simulation

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-203-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2024 : The Ninth International Conference on Green Communications, Computing and Technologies

Floyd-Warshall produces the highest amount of overhead
because it uses overhead packets to find the cost between
every pair of nodes. The random design of the DFS approach
creates around 23% less overhead than Floyd-Warshall. Both
of these approaches created significantly more overhead than
the Dijkstra-based approaches and would require a lot more
processing by all nodes in the network.

Dijkstra’s algorithm creates 97.86% less overhead than
Floyd-Warshall and therefore causes less congestion of the
network. The implementation of A* creates 53% less overhead
than Dijkstra’s and 99% less overhead than Floyd-Warsall,
which is expected, as even though it searches all connections
in the network, it only does it every 250 seconds. Using the
saved routes later means that no extra overhead is created and
the capacity can instead be used for data. This might cause
problems if a larger part of the network is disconnected right
after the full search, which is why the precise time of searches
should be balanced according to the network requirements.

Figure 4. Total Carbon cost per data packet sent by each algorithm during
the simulation

Figure 4 illustrates that DFS sends 80% fewer overhead
packets per data than Floyd-Warshall. This is due to the non-
optimal paths that the data chooses in the DFS algorithm,
which means the data travels more in the graph.

2) Carbon costs: The results from the carbon cost calcula-
tions can be seen in Figure 5. As overhead packets carry less
information than data packets, the carbon cost of overhead is
set to 1/1000 of data.

The largest carbon cost is produced by the DFS algorithm. It
uses a lot of carbon for overhead packets used for searching,
and as the routes it finds are not the most optimal, it also
uses the most on data. Although Floyd-Warshall uses the least
amount of carbon on data, its large amount of searching means
that it has the second highest carbon cost, which is still 99%
less than DFS. It is evident though that if the overhead packets
were even smaller compared to data, then Floyd-Warshall
could have the smallest carbon cost. In this simulation, A*
generates 40% less overhead than Floyd-Warshall. Since the
graph of nodes is quite small, the performance of A* is worse
than Dijkstra’s by 38% as the benefits of the heuristic model

Figure 5. Carbon cost distribution showing each algorithms carbon cost from
data and overhead packets

do not appear. The carbon cost of Dijkstra’s is the smallest,
although the paths it finds are not the most optimal, it uses less
overhead than Floyd-Warhsall, which makes it overall 57%
more ”Green”.

3) Latency: The third parameter that shows the efficiency
of the algorithm is latency. Latency in this case takes into
account the search time and the data travel time. Simulation
results are shown with maximum and minimum limits in
Figure 6.

Figure 6. Latency results with average latencies and maximum and minimum
latencies shown as limits

The largest average and maximum latency is by Dijkstra’s
algorithm, which is 55% more than the second-best DFS.
The search starts from one point and systematically searches
through the entire network. Floyd-Warshall has the lowest
average latency due to how the algorithm searches, with a 64%
improvement on Dijkstra’s. As it starts from several nodes at
the same time, it is faster than Dijkstra’s. However, as it still
needs to search most of the graph, it has the highest minimum
latency. DFS has the second-highest average and maximum
latency. This is due to the randomness, which worst case will
search the entire graph, but on average will only search half
of it. A* has the lowest minimum latency due to using pre-

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-203-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2024 : The Ninth International Conference on Green Communications, Computing and Technologies

saved paths, which do not require searching. The case where
A* searches the entire network increases the average latency,
but it is still on average 57% faster than Dijkstra’s.

VI. DISCUSSION

These results highlight that with each algorithm there are
positives and negatives. If the impact of overhead packets is
negligible and their size is small, then only the efficiency of
the routing is important. In this case, Floyd-Warshall could be
used for extensive searching. In case the goal is to minimize
the amount of overhead, using a version of A* or Dijkstra’s
is preferable. However, when choosing Dijkstra’s the network
will have longer latency, which should not be used for real-
time communication. A* can solve that problem with the use
of saved paths and heuristics. To make A* more efficient, a
larger network is needed, where the model can improve on
Dijkstra’s. The tradeoffs of each algorithm are illustrated in
Figure 7. With the X-axis showing increasing total carbon
emissions and the Y-axis showing the average latency, it is best
if the algorithms aren’t in the extremes in any axis. Dijkstra’s
is on the top left of the graph, which means that although
the total carbon emissions are low, the latency is significantly
worse than the others. Similarly, DFS is on the extreme of
carbon emissions. Floyd-Warshall and A* both do rather well,
but there is some noticeable difference in carbon emissions. In
general, as A* has a suitable average latency and low carbon
cost, it can be preferred over the other algorithms tested.

Figure 7. Carbon cost and latency comparison for all algorithms with carbon
cost on the x-axis and latencies on the y-axis

VII. CONCLUSION

This paper was set to address the environmental impact of
the expanding ICT (Information and Communication Tech-
nology) infrastructure by comparing different path-finding
algorithms.

The findings indicate that the Floyd-Warshall algorithm
produces the most overhead packets, followed by Depth-First
Search, with a decrease of 23%, while A* has the fewest,
with 99% less overhead packets than Floyd-Warshall. In terms
of carbon cost, the DFS algorithm generates the highest total
carbon cost, and A* having a 38% worse performance than
Dijkstra’s. Interestingly, Floyd-Warshall has a lower carbon

cost for data packets than Dijkstra’s; however, the higher
number of overhead packets increases its total carbon cost.
Regarding latency, Floyd-Warshall has the lowest average
latency with an improvement of 64% over Dijkstra’s, while
Dijkstra’s shows the largest range of values. A* also shows a
57% improvement over Dijkstra’s, even in the situation, where
it searches the whole network.

These results demonstrate that no single algorithm is uni-
versally optimal, as each one has its strengths and weaknesses.
However, as A* has good latency and carbon cost metrics, it
can be the preferred algorithm for most cases.

ACKNOWLEDGMENT

Support from Innovation fund Denmark, through grant
no. 1045-00047B, as well as the “Innovative solutions for
next generation of Green COMmunications infrastructures”
GREENCOM project is gratefully acknowledged.

REFERENCES

[1] ITU, “Unrelenting global consumption of Internet data continues to
drive demand for international bandwidth usage,” https://www.itu.int/itu-
d/reports/statistics/2022/11/24/ff22-international-bandwidth-usage/ [re-
trieved: June, 2024], 2022.

[2] IEA, “Electricity - Analysis and forecast to 2026,”
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-
952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf[retrieved:
June, 2024], 2024.

[3] H. Zhu, J. Aznar, C. de Laat, and P. Grosso, “Green routing in software-
defined data center networks based on opennaas,” Software Networks,
2015.

[4] X. Wang, J. Zhang, M. Huang, and S. Yang, “A green intelligent
routing algorithm supporting flexible qos for many-to-many multicast,”
Computer Networks, vol. 126, pp. 229–245, 2017.

[5] Y. Yang, M. Xu, D. Wang, and S. Li, “A hop-by-hop routing mechanism
for green internet,” Ieee Transactions on Parallel and Distributed
Systems, vol. 27, no. 1, pp. 2–16, 2016.

[6] E. J. Lee, Y. M. Kim, and H. S. Park, “Dear: Delay-guaranteed energy
profile-aware routing toward the green internet,” Ieee Communications
Letters, vol. 18, no. 11, pp. 1943–1946, 2014.

[7] M. M. Hossain, J. P. Georges, E. Rondeau, and T. Divoux, “Energy, car-
bon and renewable energy: Candidate metrics for green-aware routing?”
Sensors (switzerland), vol. 19, no. 13, p. 2901, 2019.

[8] A. C. Nwachukwu and A. Karbowski, “Solution of the simultaneous
routing and bandwidth allocation problem in energy-aware networks
using augmented lagrangian-based algorithms and decomposition,” En-
ergies, vol. 17, no. 5, p. 1233, 2024.

[9] GeeksforGeeks, Sanchhaya Education Private Limited, “What is di-
jkstra’s algorithm? — introduction to dijkstra’s shortest path algo-
rithm,” https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-
path-algorithm/ [retrieved: June, 2024], 2024.

[10] ——, “A* search algorithm,” https://www.geeksforgeeks.org/a-search-
algorithm/ [retrieved: June, 2024], 2024.

[11] ——, “Floyd warshall algorithm,” https://www.geeksforgeeks.org/floyd-
warshall-algorithm-dp-16/floyd-warshall-algorithm [retrieved: June,
2024], 2024.

[12] The Danish Energy Agency, “Power production and transmission in
denmark,” https://ens.dk/en/our-services/statistics-data-key-figures-and-
energy-maps/energy-infomaps [retrieved: June, 2024], 2019.

[13] F. Azendorf, A. Dochhan, and M. H. Eiselt, “Accurate single-ended
measurement of propagation delay in fiber using correlation optical time
domain reflectometry,” Journal of Lightwave Technology, vol. 39, no. 18,
pp. 5744–5752, 2021.

[14] T. Hegr, M. Voznak, M. Kozak, and L. Bohac, “Measurement of
switching latency in high data rate ethernet networks,” Elektronika Ir
Elektrotechnika, vol. 21, no. 3, pp. 73–78, 2015.

[15] DataCenterJournal, “Map of Denmark’s Data Centers,”
https://www.datacenterjournal.com/data-centers/denmark/ [retrieved:
June, 2024],, 2024.

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-203-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2024 : The Ninth International Conference on Green Communications, Computing and Technologies

