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Abstract— The global aging population poses significant 

challenges to healthcare systems, especially in promoting 

independent living and reducing caregiver burdens. 

Technology-Enabled Care (TEC), which leverages digital tools 

and Artificial Intelligence (AI), has emerged as a promising 

solution to support older adults. A crucial component within 

TEC is the automatic recognition of Activities of Daily Living 

(ADLs), essential for early detection of health declines and 

personalized care. Traditional ADL recognition research, often 

conducted in controlled environments, does not adequately 

address real-world complexities. This study bridges the gap 

between laboratory prototypes and practical applications by 

developing a user-friendly ADL recognition framework using 

commercial smartwatches. A hybrid model, combining 

Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) networks, was trained on accelerometer and 

gyroscope data to recognize activities like dishwashing and 

walking. Initially validated in a lab setting with an accuracy of 

94%, the model was subsequently tested over a 20-day pilot 

study involving five participants (mean age = 32 years, SD = 4.5), 

each wearing an Apple Watch device. Real-world results 

revealed a significant performance drop, with accuracy 

declining to 81%. Activities like mopping maintained high 

recognition accuracy, while subtler tasks, such as walking and 

washing face posed challenges due to movement variability. 

These findings underscore the need for model optimization 

using real-world data to improve recognition accuracy and 

address variability in movement patterns. Further research is 

essential to refine these systems for broader applications, 

develop strategies to enhance user adherence, and ultimately 

support the independence and well-being of aging individuals. 

Keywords-Activities of Daily Living; Activity Recognition; 

Deep Learning; Independent living; Smartwatch. 

I.  INTRODUCTION 

The global population is aging rapidly, with a projected 
1.5 billion individuals exceeding 65 years old by 2050 [1]. 
This demographic shift strains healthcare systems as older 
adults experience higher rates of chronic conditions and 
functional limitations [2]. Accurate assessment of functional 
health is crucial for early detection of decline, enabling timely 
interventions and improved quality of life [3]. In this regard, 

Technology-Enabled Care (TEC) offers significant 
advantages over traditional self-reported and clinical 
observation methods for functional assessment [4]. By 
providing continuous, objective, and comprehensive 
monitoring, it facilitates early detection of health issues, 
timely interventions, and personalized care plans, ultimately 
enhancing the quality of life and independence of older adults. 

 Automatic recognition of Activities of Daily Living 
(ADLs) is a key area within TEC. ADLs, such as brushing 
teeth, washing dishes, and cleaning the house, are 
fundamental for independent living and serve as indicators of 
an individual's functional health [5]. Identifying subtle 
changes in ADL performance potentially allows for 
preventative measures and interventions before decline 
becomes significant [6]. Efficient ADL Recognition (ADL-R) 
systems can offer users valuable insights into their daily 
activities, helping them improve routines and adopt healthier 
behaviors [7]. For caregivers, these systems enhance 
understanding of the care recipient's needs and patterns, 
leading to more effective and responsive caregiving and 
informed decision-making [8]. Additionally, clinicians can 
remotely monitor patients, thereby reducing the need for 
frequent in-person visits and facilitating more efficient 
management of chronic conditions. [9] This allows for timely 
interventions that can prevent hospitalizations. 

Wearable technology and AI have made significant strides 
in healthcare monitoring, enabling continuous, multimodal 
assessments that provide a comprehensive view of health. 
Recent innovations, such as hybrid sensors, track both 
biochemical and biophysical signals, offering more detailed 
insights compared to single-parameter devices [10]. Fiber-
based strain sensors have also contributed by enhancing 
flexibility and diagnostic capabilities, while reducing costs, 
making wearable devices more practical and accessible [11]. 
These advancements have also expanded the potential of 
wearable devices in Human Activity Recognition (HAR) and 
ADL-R. Inertial sensors like accelerometers and gyroscopes 
are increasingly used as privacy-conscious alternatives to 
camera-based systems, offering reliable, continuous 
monitoring that suits personal and home environments [12]. 
As a result, wearables are becoming a valuable tool for ADL-
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R in healthcare, where they can provide insights into routines 
and health conditions in real time. 

However, several challenges hinder the widespread 
adoption of ADL-R systems outside controlled laboratory 
environments. Many wearables designed for research are 
bulky and uncomfortable, making them impractical for daily 
wear [13]. The complex machine learning models necessary 
for accurate activity recognition can strain device resources, 
leading to frequent charging requirements and technical 
difficulties [14]. Real-life deployments also face logistical 
hurdles, such as ensuring users can operate the devices 
independently and maintaining consistency across settings, 
which often require home visits and substantial user training 
[15]. These issues highlight a broader limitation of existing 
solutions: while they may excel in specific contexts, such as 
tracking upper limb movements for rehabilitation using deep 
learning models [16], they lack the versatility needed for 
broader ADL applications. Additionally, stationary sensor 
setups, like those integrating Wi-Fi and Inertial Measurement 
Unit (IMU) data [17], though promising for capturing detailed 
activity characteristics, are often impractical for mobile and 
daily use. 

To address these challenges, recent developments in 
wearable technology focus on improving user-friendliness 
and efficiency. For instance, wearable devices that combine 
photoplethysmography and inertial data offer a more holistic 
assessment by capturing a broader range of signals [18], 
though they may introduce added complexity and user burden. 
Adaptive algorithms, such as “one-size-fits-most” models, 
generalize across devices and body locations, enhancing 
accuracy for specific activities like walking [19]. However, 
these models often struggle to account for the full diversity of 
daily activities in natural settings. 

A user-centric approach that leverages familiar, widely 
used devices like smartwatches and smartphones offers a 
promising solution for real-world ADL-R. These devices are 
accessible, comfortable, and capable of supporting ADL-R 
systems that optimize for low power consumption, reducing 
the need for frequent charging and improving practicality for 
long-term use. Recent studies emphasize that optimizing AI 
models specifically for these devices not only extends battery 
life but also ensures that ADL-R is sustainable and adaptable 
to everyday environments [20]. 

This pilot study specifically aims to evaluate the feasibility 
of a smartwatch-based framework in addressing ADL-R 
challenges under real-life conditions. By using a single, 
widely adopted smartwatch, we address the common 
limitations of bulkiness and impracticality that have plagued 
previous ADL-R systems, enabling a more accessible and 
minimally intrusive approach to recognize ADLs in natural, 
home-based environments. This user-centric design reduces 
the need for specialized equipment and provides a sustainable 
solution for real-world health monitoring that overcomes 
these significant barriers. By emphasizing user-friendliness 
and computational efficiency, this pilot study lays the 
groundwork for developing robust, accessible TEC solutions 
for ADL-R. Through this feasibility assessment, we aim to 
pave the way for broader adoption and improved functional 

health monitoring, particularly benefiting aging populations 
who require practical and scalable ADL-R systems. 

The remainder of this paper is organized as follows: 
Section II outlines the methods, including model design, 
participant recruitment, and data collection procedures. 
Section III presents the results, covering model performance 
and participant engagement. Section IV discusses the 
findings, addressing discrepancies and engagement factors. 
Section V explores implications for future research and 
advancements in ADL-R. 

II. METHODS 

A. ADL Recognition Model 

The activity recognition model was designed as a hybrid 
architecture combining lightweight Convolutional Neural 
Networks (CNN) and Long Short-Term Memory (LSTM) 
networks to leverage the strengths of both approaches in 
handling sensor data. The model was trained on accelerometer 
and gyroscope data collected in a simulated living 
environment, focusing on target activities, which were: 
dishwashing, shelving items, brushing teeth, washing face, 
mopping & hoovering, and walking. Data was sampled at 
34Hz and segmented into 442-sample windows, 
approximately 13 seconds each. The CNN part of the model 
consisted of multiple convolutional layers, each with varying 
filter sizes and numbers of filters to extract spatial features 
from the raw sensor data. Typically, the first convolutional 
layer used 32 filters with a 3x1 kernel size and Rectified 
Linear Unit (ReLU) activation, followed by a second 
convolutional layer with 64 filters of the same kernel size and 
activation function. Max-pooling layers were used after 
certain convolutional layers to reduce the dimensionality of 
the feature maps while retaining important spatial features. 
The final convolutional layer was followed by a flatten layer, 
converting the 2D feature maps into a 1D feature vector for 
the LSTM layers. The LSTM network then processed this 
feature vector to capture temporal dependencies and 
sequential patterns in the activity data. Typical configurations 
included an initial LSTM layer with 128 units and a dropout 
rate of 0.2, followed by a second LSTM layer with 64 units 
and the same dropout rate. A grid search was conducted to 
optimize hyperparameters for both the CNN and LSTM 
components, including the learning rate, batch size, and 
dropout rate. The learning rate was tested in the range of 0.001 
to 0.01, with 0.001 selected. Batch sizes of 16, 32, and 64 were 
evaluated, and 32 was chosen. Dropout rates from 0.2 to 0.5 
were assessed specifically for the LSTM layer, with 0.2 
providing optimal regularization. The output layer was a fully 
connected dense layer with a SoftMax activation function to 
predict the activity classes.  

The model was trained using the Adam optimizer with 
categorical cross-entropy as the loss function and then 
evaluated using a 5-fold cross-validation approach to ensure 
an unbiased assessment of its performance. Accuracy and F1-
score were used to evaluate the model's effectiveness in 
recognizing the target activities. After the model was 
developed and initially tested, a pilot study was designed to 
validate its feasibility and effectiveness in real-life settings.
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This study aimed to assess the practical application of the 
ADL-R system, focusing on user interaction, data collection, 
and system performance in everyday environments. Over the 
course of 20 consecutive days, participants wore Apple watch 
devices (series 8) that collected motion data through a custom-
developed application and used these data to recognize the 
activity performed. 

B. Participants 

Participants were recruited through convenience 

sampling, primarily targeting individuals within the 

University community for convenience and accessibility. Five 

participants (mean age = 32 years, SD = 4.5), including two 

females and three males, were enrolled. The only inclusion 

criterion was to have access to an iPhone. All participants 

were generally familiar with technology and provided written 

informed consent before commencement of data collection. 

The study was reviewed and received a favorable ethical 

opinion by the Queen Margaret University Ethics Committee, 

(REP 0278). 

C. Real-life ADL Recognition procedures 

The custom-developed iOS application, QMU ADL 
Tracker, was created using Xcode and deployed via Apple 
TestFlight for easy installation and updates. The application 
consists of a smartphone app with a companion smartwatch 
app, designed to facilitate seamless data collection and user 
interaction. Data collection is conducted through the 
CoreMotion framework, ensuring consistent and precise 
capture of sensor data. The CNN-LSTM model was deployed 
in the app through CreateML. 

The smartwatch app features a user-friendly interface (Fig. 
1), including a Start/Stop toggle button that simplifies the 
process of beginning and ending data collection. To ensure 
accurate activity recognition, users are instructed to start data 
collection prior to performing an activity and to stop it 
afterward. Once data collection is stopped, the sensor data is 
processed by the CNN-LSTM model, which provides a real-
time prediction of the activity. Users are then prompted to 
confirm the prediction's accuracy by selecting "Yes" or "No" 
(Fig. 1). If the prediction is correct, users press "Yes." If 

incorrect, they press "No," prompting a list of remaining target 
ADLs for selection. In cases where the user's activity is not a 
target ADL, an "Other" button allows access to a list of 
additional activities, such as tidying up, cleaning windows, 
driving, shopping, sitting, lying down, eating, drinking, and 
preparing meals. Once the user confirms the activity, both the 
motion data and the user’s selection are sent to the smartphone 
app for storage. The smartphone app primarily functions as a 
data repository, allowing users to view collected information 
and providing instructional support. 

Data collection parameters, including sampling frequency 
and window size, were aligned with those used in the 
simulated environment for consistency with the CNN-LSTM 
model. As shown in Fig. 1, the application was configured to 
include a 3-second buffer period to stabilize sensor readings 
before data collection begins. Consequently, the minimum 
total time required for a prediction was 16 seconds (3 seconds 
delay plus a 13-second prediction window). Participants were 
instructed to perform each activity for at least 16 seconds to 
ensure accurate predictions. 

III. RESULTS 

A. Model Performance: Simulated Data Training and 

Testing 

As shown in Table I, the validation of the CNN-LSTM 
model assessed accuracy and F1 score for each activity, with 
the F1 score reflecting the balance between precision and 
recall, indicating the model’s accuracy in classifying true 
positives from false positives and negatives. The model 
achieved an overall accuracy of 94% and an F1-score of 93% 
in recognizing ADLs within the simulated environment. A 
more granular analysis reveals that shelving items exhibited 
the highest accuracy (99%) and respectable F1-score (94%), 
suggesting robust recognition of this activity. Conversely, 
while washing face achieved a high accuracy of 96%, its F1-
score of 89% indicated potential challenges in correctly 
identifying this activity. The model’s confusion matrix, as 
shown in Fig. 2, provides a detailed visualization of the 
model’s predictions compared to the true activities. To further

Delay 
Prediction 

window 

3 sec. 13 sec. 

Data Collection 
period 

YES 
Correct 

Prediction 

ADL 

No 
Incorrect 
Prediction 

Figure 1. Workflow of the smartwatch app's data collection and activity prediction process. 
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investigate the model's generalization capabilities, we carried 
out the validation in real-life through this pilot study. 

B. Model Performanece in real-life 

Feedback from participants on the predicted activities 
provided valuable insights into the model's performance. 
Based on this feedback, we constructed a confusion matrix 
(Fig. 3) to quantitatively assess the accuracy of activity 
recognition. The matrix revealed an overall accuracy of 81% 
in identifying daily activities in real-world settings, indicating 
a moderate level of success in ADL-R. However, this also 
highlights the challenges of applying the model to real-life 
scenarios. 

As detailed in Table II, the activities of 
mopping/hoovering achieved the highest accuracy at 95.08%, 
which suggests that the model is particularly adept at 
recognizing the distinct motion patterns associated with this 
activity. Despite its high accuracy, mopping/hoovering was 
sometimes misclassified as dishwashing. Another activity, 
shelving items, showed a similarly commendable accuracy of 
92.68%. While it was generally well recognized, there were 
instances of confusion with the activity of brushing teeth, 
likely due to the similar repetitive hand movements involved. 
The high accuracy rates for these specific activities 
demonstrate the model's effectiveness in distinguishing 
certain types of ADLs. 

On the other hand, washing face had the lowest accuracy 
at 65.83%, with frequent misclassifications as brushing teeth 
and dishwashing. This high confusion rate highlights the 
challenge in recognizing the movements involved in washing 
the face, pointing to a need for better feature differentiation 

and potentially additional sensor data. Unexpectedly, walking 
also exhibited a low accuracy of 68.21%, with the primary 
confusion occurring with mopping/hoovering. The substantial 
misclassification rate indicates that the model struggles to 
distinguish between these activities, possibly due to similar 
sensor data patterns. Brushing teeth exhibited a moderate 
accuracy of 85.53%. Misclassifications primarily occurred 
with dishwashing and shelving items, suggesting challenges 
in distinguishing repetitive hand movements across these 
tasks. Similarly, dishwashing had a moderate accuracy of 
79.03%, often confused with brushing teeth and washing face. 
This overlap in recognition points to the difficulty in 
differentiating between activities involving similar hand and 
arm movements, indicating a need for refined feature 
extraction to improve accuracy. 

C. Participants’ Engagement 

Various indicators related to participant engagement with 
the ADL tracker app are shown in Fig. 4, which reveals 
variations in how participants used the app. In Fig. 4A,  the 
number of each activity participants performed using the 
application during the study data collection period is 
illustrated. On average, participants logged approximately 81 
activities over the 20-day period, with noticeable individual 
differences in activity logging. Participant P5 exhibited the 
highest level of engagement, recording 115 activities, while 
Participant P2 logged the fewest with 61. 

The frequency of app usage, as measured by average 
sessions per day (Fig. 4B), was consistent across participant 
with a mean of four sessions. This suggests a limited 
engagement with the study's requirements. Nevertheless, the

Activity Accuracy  F1 Score  

Walking   95% 91% 

Brushing Teeth   95.8% 85.6% 

Washing Face  96% 79% 

Mopping/Hoovering  97% 94.7% 

Dishwashing  92.5% 80.9% 

Shelving Items 99% 94.5% 

Overall  94% 93% 

Activity Accuracy  F1 Score  

Walking   68% 68% 

Brushing Teeth   85.5% 85.5% 

Washing Face  65.8% 45.8% 

Mopping/Hoovering  95% 95% 

Dishwashing  79% 72.5% 

Shelving Items 92.6% 92.6% 

Overall  81% 76.5% 

TABLE II.  CNN- LSTM MODEL PERFROMANCE ON 

REAL-LIFE DATASET 

Figure 3.  Confusion Matrix for Model’s predictions using 

simulated data.  

 

Figure 2.  Confusion Matrix for Model’s predictions using 

simulated data.  

 

TABLE I.  CNN- LSTM MODEL PERFROMANCE ON REAL-
LIFE DATASET 
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 duration of these sessions, as shown in Fig. 4C, varied 
considerably. Participant P3 demonstrated the longest average 
session duration at 148 seconds, while Participant P4 recorded 
the shortest at 68 seconds. These findings imply differences in 
how participants utilized the app, with some spending longer 
periods per session, potentially logging multiple activities or 
engaging in more detailed data exploration. 

The analysis of the activities performed by participants 
reveals several important trends and patterns. Notably, 
walking was the most frequently performed activity, with 
participants engaging in it between 10 and 41 times over the 
testing period. Additionally, personal hygiene activities such 
as brushing teeth and washing face were consistently 
performed by all participants, indicating regular adherence to 
daily hygiene routines. Less frequent activities, such as 
mopping & hoovering and shelving items, were performed 
less often compared to other activities. This lower frequency 
could be attributed to the nature of these activities, which may 
not occur on a daily basis, resulting in fewer recorded 
instances. 

Examining participant-specific trends, Participant P5 
demonstrated the highest overall engagement, particularly in 
walking (41 instances) and dishwashing (15 instances). 
Conversely, Participant P2 did not record any instances of 
shelving items, which may indicate a lack of engagement in   
this specific activity or a potential oversight in the recording. 
The data also reflects a diverse range of activities performed 
by the participants, with each individual engaging in multiple 
types of activities. Participant P4, for example, exhibited a 
balanced engagement across all activities, performing at least 
nine instances of each, which is beneficial for comprehensive 
training of the recognition model. 

IV. DISCUSSION 

A. Model Performance and the Gap Between Simulation 

and Reality 

The proposed hybrid CNN-LSTM model demonstrated 
good performance in the simulated environment, achieving a 
notable accuracy of 94% in ADL-R. This highlights the 
potential of such architectures in handling sensor data for 
activity recognition tasks. However, the stark contrast 
between simulated and real-world performance, with an 
overall accuracy of 81% in the latter, underscores the 
challenges inherent in bridging the gap between controlled 
environments and complex, dynamic real-world settings. 

Several factors may contribute to this performance 
discrepancy. The simulated environment likely presents a 
more idealized representation of ADLs, with controlled 
conditions and limited variability in sensor data. In contrast, 
real-world activities are subject to a multitude of factors, 
including environmental noise, variations in how objects are 
utilized, and the inherent variability of wearable sensor 
performance. These complexities introduce significant 
challenges for the model, hindering its ability to generalize 
effectively. 

Moreover, the way participants performed ADLs in the 
real world may have differed substantially from the simulated 
patterns. The model, trained on simulated data, might not 
have been adequately prepared to handle the diverse and 
nuanced variations observed in real-life behavior. This 
discrepancy highlights the need for more representative 
training data that captures the full spectrum of human activity. 

The differential performance of the model across different 
ADLs provides valuable insights into the factors influencing 
recognition accuracy. Activities like mopping/hoovering and 
shelving items, characterized by distinct and repetitive 
movement patterns, were recognized with high accuracy. This 
suggests that the model can effectively capture and classify 

   

                                    (A)                                                                   (B)                                                       (C) 

Figure 4. Indicators of participants engagement showing: (A): Number of each ADL logged by participants during the 20-day data collection 

period, (B): Frequency of app usage (sessions per day), and (C): Average duration of data collection in each session. 
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well-defined activities. In contrast, washing face and walking 
presented significant challenges. The low accuracy for 
washing face might be attributed to the subtle and often 
occluded movements involved in this activity, making it 
difficult to differentiate from similar actions. For walking, the 
confusion with mopping/hoovering suggests potential overlap 
in sensor patterns, especially when considering variations in 
walking speed and style. 

These results highlight the complexities involved in 
automatic feature extraction. While the model's ability to learn 
discriminative features directly from raw sensor data is 
advantageous, it also presents certain limitations. A hybrid 
approach, combining automatically learned features with 
carefully crafted domain-specific features, could offer a 
promising avenue for enhancing the model's overall 
performance. By leveraging the strengths of both 
approaches, it may be possible to address the challenges posed 
by complex and varied ADLs. 

B. Participant Engagement and Data Quality 

Participant engagement in the ADL tracker app varied 
significantly, influencing the quantity and quality of data 
collected, which, in turn, impacted the model’s performance. 
This variability highlights a critical challenge: while some 
participants frequently interacted with the app, others engaged 
less consistently. Such differences in engagement can affect 
the representativeness of the dataset, as well as the accuracy 
and generalizability of the model in real-world settings. 

Several factors may contribute to these engagement 
disparities. One primary challenge is that certain ADLs, like 
mopping/hoovering or shelving items, are not performed 
frequently, which naturally leads to less frequent app usage. 
Additionally, the perceived inconvenience of wearing a device 
throughout the day and a lack of immediate, visible benefits 
from using the app may also contribute to lower engagement 
levels. These factors underscore the difficulty of integrating 
wearable technology seamlessly into everyday life when it 
doesn’t directly align with the user's regular routine. To 
address these challenges, accurately measuring engagement 
could provide valuable insights into adherence patterns. 
Developing metrics that capture not just the frequency of app 
usage but also the context of interactions would offer a clearer 
understanding of participant behavior. By gaining a more 
detailed view of how participants engage with the app, 
researchers can better align ADL-R models with real-world 
usage patterns, ultimately enhancing model accuracy and 
generalizability. 

To improve engagement, several strategies could be 
implemented. Personalized feedback that provides insights 
into activity patterns can make the data collection process 
more relevant and motivating for users. Gamification 
elements, such as rewards for consistent engagement, could 
foster a sense of accomplishment and incentivize regular app 
usage. Additionally, in-app reminders may help prompt users 
to engage without being intrusive. Streamlining the user 
interface and ensuring that the app operates smoothly in the 
background could reduce perceived burdens, encouraging 
participants to incorporate the technology into their routines 
more naturally. Collectively, these strategies aim to create a 

more engaging and user-friendly experience, enhancing 
adherence and supporting the broader application of wearable 
ADL-R systems. 

V. IMPLICATION FOR FUTURE RESEARCH 

This pilot study provides first critical insights into the 
challenges and opportunities for improving ADL-R in real-
world settings. It successfully demonstrates the feasibility of 
conducting ADL-R research using a user-centric approach, 
highlighting practical applications and potential 
enhancements. The seamless recruitment of participants with 
minimal interaction, facilitated by online platforms like 
TestFlight, and the user-friendly design of the app, enhanced 
the efficiency of the study. Moreover, the dataset collected in 
this study serves as a valuable resource for refining ADL-R 
models. By retraining the model on an expanded sample, we 
can enhance its accuracy and robustness, enabling it to learn 
from a wider range of activity patterns and variations. To 
further improve performance, combining automatically 
learned features with carefully crafted domain-specific 
features is essential, leveraging the strengths of both data-
driven and knowledge-based approaches. Enhancing feature 
engineering to capture temporal dynamics, contextual 
information, and activity transitions can further enrich the 
model's representational power. In addition to that, exploring 
advanced model architectures, such as attention 
mechanisms, transformers, or graph-based approaches can 
unlock the potential for capturing complex dependencies 
within the data. 

To maximize the potential of ADL-R systems, a 
paramount focus on user engagement and data quality is 
essential. Implementing strategies to increase user 
participation and motivation is crucial for the success of such 
systems. Understanding the most frequently performed ADLs 
allows for a more targeted approach to app customization. By 
focusing on core activities, the app can provide relevant 
features and notifications, enhancing the user experience and 
encouraging sustained engagement. This interplay between 
user engagement, data quality, and app personalization is 
fundamental to the development of robust ADL-R systems. 

Moreover, these insights can inform future developments 
in wearable technology for ADL-R by emphasizing the 
importance of user-centric design. As wearables evolve, 
integrating advanced sensing capabilities that capture a 
broader range of ADLs could enhance the comprehensiveness 
of ADL-R systems. Furthermore, the development of adaptive 
algorithms capable of personalizing recognition based on 
individual usage patterns can make ADL-R systems more 
responsive to user needs. Such advancements could expand 
the scope of wearable technology, making it more versatile for 
different user demographics and environments, ultimately 
broadening the impact of ADL-R systems beyond specific 
study settings. By leveraging data on user engagement and 
preferences, future wearable devices could incorporate 
enhanced features, such as context-aware prompts and 
dynamic feedback, which adjust in real-time to optimize user 
adherence and data quality. 

While this pilot study provides valuable insights, the small 

sample size may limit the generalizability of the findings. 
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Future research should aim to recruit a larger and more diverse 

participant pool, potentially by partnering with community 

organizations or leveraging online recruitment platforms. This 

approach would enhance the representativeness of the data 

and further validate the model’s effectiveness in broader real-

world settings. 
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