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Abstract—Various survey tools are available to measure social
engagement, but they often suffer from infrequent measurement
and recall bias. To address this, we developed a mobile application
that estimates turn-taking in conversations and generates engage-
ment features. These features were used to create an autoencoder-
based hidden representation of individuals, which distinguishes
between Parkinson’s Disease and control subjects. The study
aims to create reduced representations to robustly compare
speaker-test outcomes with limited samples. An autoencoder
was employed to reduce the number of features related to
social engagement. This tailored assessment tool was applied
to extract 42 speaker assessment scores, which were distilled
into two-dimensional embeddings using a 9-layer autoencoder.
We compared the proposed hidden representation with Principal
Component Analysis, assessing metrics such as conversation per-
centage, turn-taking, and total pauses. These embeddings enabled
a cross-validated reconstruction of all 42 features, accounting
for 58% of the variance and were validated using multiple
classification methods, including K-Nearest Neighbors (KNN),
Support Vector Machine, Random Forest, and XGBoost. The
KNN model, using the embeddings features, achieved a 90%
macro precision score. Our results suggest that autoencoder
representations provide a concise and effective tool for the holistic
assessment of speaker behavior in limited data scenarios.

Index Terms—Autoencoder; Parkinson’s Disease; Hidden Rep-
resentation; Mobile Application.

I. INTRODUCTION

Communication disorders affect 5% to 10% of the US popula-
tion [1][2]. Individuals affected by these disorders exhibit impaired
abilities in listening, speaking, writing, reading, and social interaction.
The benchmark for rehabilitation is that these individuals must
achieve the ability to communicate effectively and independently in
natural environments following hospital discharge [3]. However, the
treatment of cognitive communication issues are challenging due to
the high variability in therapeutic approaches required for different
patients. Notably, the potential disability of everyday communica-
tion effectiveness and independence termed Participation Restriction
cannot be predicted from the nature or severity of the underlying
speech or language impairment as assessed in the hospital [4][5].
Furthermore, to reduce financial expenditures, medical practitioners
should focus on most outcomes in the shortest period of time due
to the short duration of inpatient and outpatient rehabilitation. Even
after in-hospital rehabilitation, residual impairments and associated
participation restrictions are common and may last a lifetime [6],
which may result in negative social outcomes [7] and emotional
problems [8] for the person with the communication disorder. Thus, a
valid assessment for potential communicative participation restriction
is essential to augment long-term health outcomes and patient quality
of life while reducing societal costs.

Language impairment is difficult to assess in neurodegenera-
tive conditions such as Parkinson’s Disease (PD) and Alzheimer’s
Disease (AD). There have been few studies on how to measure

individuals with communication difficulties in their natural setting,
such as at home, and the evaluation methods used can be highly
diverse, such as post-hoc and point-in-time self-report scales [9][10].
As a result, bridging the gap is a significant issue for researchers.
Additionally, speech evaluations require detailed protocols and are
influenced by factors like geographic location and physician availabil-
ity. Fortunately, as technology has advanced in at-home devices, cell
phone applications to monitor speech have been developed [11][12].
Mobile phones are affordable and accessible and have enormous
potential to assess speech [13][14]. In this study, we investigated
the use of speech and language features to distinguish between PD
and control subjects and developed a mobile application designed to
easily capture these features.

Communication impairment is a prevalent symptom of PD. Re-
search demonstrates varied impacts: Lang et al. highlighted impaired
pragmatic communication in PD [15], Robinsons et al. observed
reduced spontaneity [16], and Dushanova et al. linked changes in
verb and noun usage to the disease [17]. Despite these studies,
there is no automated globally approved scale that considers speech
and language features. This gap has spurred the use of data-driven
deep learning techniques to refine speech assessment. For example,
Yeung et al.’s analysis of speech characteristics confirmed clinician
agreement on features such as word finding difficulties, which cor-
relate with the number of pauses, word duration, and syntactic com-
plexity—key indicators of language impairment [17][18]. Orozco-
Arroyave evaluated nonlinear dynamics features and showed that
up to 76.81% accuracy could be achieved using the utterance of
vowels [19]. Berus et al. achieved an accuracy of 86.47% by apply-
ing multiple feature selection processes and proposed feedforward
artificial neural networks to classify PD [20]. Additionally, Tsanas
et al. developed a machine learning model integrated system that
assesses both PD subjects and the quality of their speech [21]. These
studies indicate the potential of using deep learning algorithms to
assist clinicians in accurately diagnosing PD. In this essence, we
adopted a data-driven approach by extracting speech and language
features to accurately identify PD.

Clinicians rely on a variety of clinical measures, many of which are
collected by automated systems and used for judgment. However, the
abundance of individual metrics can create challenges in synthesizing
information and drawing clear conclusions. To overcome this issue,
lowering the size of the data and developing summary metrics
can help. Conventional strategies for reducing dimensions include
Principal Component Analysis (PCA) [22] and Linear Discriminant
Analysis (LDA). However, these linear approaches fail to capture the
non-linear correlations between input data, resulting in a less efficient
summary representation. Recently, neural network techniques such as
autoencoders have shown promise in learning lower representations of
high-dimensional data for natural language processing and computer
vision tasks. AutoEncoders (AEs) are neural network algorithms that
learn hidden representations of high-dimensional data [23][24].

Previous works have shown that AEs can learn meaningful hidden
representations that lead to better downstream tasks, including Ng
et al. using speech signals and demonstrated autoencoder-based
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representation to distinguish disordered speech PD [25]. In order
to correctly classify PD by accurate interpretation of the speech
and vocal data, Caliskan et al. suggested stacked autoencoder em-
beddings [26]. Gunduz et al. used a convolution neural network
with a vocal feature set to differentiate between PD and control
subjects [27]. Hoq et al. compared several models to classify PD and
control subjects. Based on a Support Vector Machine (SVM) [28]
integrated with a Principal Component Analysis (PCA) and a Sparse
AutoEncoder (SAE), the results demonstrated that the proposed SAE-
SVM model outperformed not only the PCA-SVM and standard mod-
els such as Multilayer Perceptron (MLP), XGBoost [29], K-Nearest
Neighbors (KNN), and Random Forest (RF), but also surpassed two
recent studies on the same dataset. Additionally, performance was
further enhanced by applying SMOTE for oversampling and dataset
balancing [30].

Using a data-driven approach will enhance early diagnosis and
reduce the amount of time for the diagnostic process. For this project,
we developed a prototype mobile application that simplifies the
extraction of necessary attributes. We utilized an AutoEncoder (AE)
to learn the hidden representations of subjects, classifying between
PD and control using embeddings in KNN, SVM, RF, and XGBoost.
Most importantly, we demonstrated that hidden representations could
effectively capture the full spectrum of an individual’s social partici-
pation, proving that AE is a robust method for generating meaningful
representations of individuals.

The rest of the paper is structrued as follows. In Section II, we
present the materials and methods used. The results are shown and
discussed in Section III. We conclude the work in Section IV.

II. MATERIALS AND METHODS
A. Study Design

We have four modules in this study, as shown in Figure 1. The first
two modules are designed to extract features efficiently, while the last
two demonstrate how these features can be utilized in downstream
analysis.

Figure 1. Study Design: Four modules: 1) API, 2) Mobile Application, 3)
Patient Representation Extraction, and 4) Evaluation.

1) API: We have built a web API using node.js and Google Speech-
to-Text API. This API facilitates direct feature extraction and can be
integrated with various types of applications, including web, mobile,
and desktop platforms. The API is publicly available on GitHub [31].

2) Mobile Application: To utilize the API, we have developed a
mobile application that records the audio, allowing users to extract

TABLE I
NUMBER OF SUBJECTS AND H&Y, UPDRS II-5, UPDRS III-18 SCORES

Severity Number of Subjects

H&Y
2 8
3 6
4 1

UPDRS II-5
0 7
1 6
2 2

UPDRS III-18
0 6
1 6
2 3

features directly in a structured format. The prototype of the mobile
application is illustrated in Figure 2.

Figure 2. User Interface of Mobile Application: a) (left) recorder, b) (right)
demonstration of total speaking time between two speakers.

3) Patient Representation Extraction: The extracted features were
then utilized to derive the subjects’ hidden representations. We
employed an AE approach to learn these representations.

4) Evaluation: We used the hidden representations to distinguish
between PD and controls by applying classification algorithms such
as KNN, SVM, XGBoost and RF. Moreover, we demonstrated that
these hidden representations of the subjects are distinguishable based
on their Unified Parkinson’s Disease Rating Scale (UPDRS) scores.

B. Dataset
We used a publicly available dataset from King’s College London

(KCL) [32], with audio recordings made using a Motorola Moto G4
smartphone. This dataset includes assessments such as the Hoehn
and Yahr (H&Y) scale, UPDRS III-18, and UPDRS-II-5 scores.
H&Y indicates PD progression stages: ‘2’ for unimpaired bilateral
movements, ‘3’ for postural impairment, and ‘4’ for needing assis-
tance with regular activity [33]. The UPDRS III-18 score, assessing
the motor examination of speech, ranges from ‘0’ (normal), ‘1’
(slight loss of dictation), to ‘2’ (moderately impaired) [34][35]. The
UPDRS II-5 score evaluates daily speech, where ‘0’ is normal and
higher scores indicate increasing severity. The study comprised 15 PD
subjects and 21 control subjects. The distribution of patients across
H&Y and UPDRS is detailed in Table I.
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Figure 3. 9-layered stacked autoencoder architecture. Encoder and decoder
both consist of 3 fully connected layers and one drop out layer.

C. Feature Extraction
Using our API [31], we extracted a total of 42 features as listed

below, focusing on speaker segmentation and conversation dynamics.
• Total time of each speaker with all the pauses
• Total pause time during a conversation
• Gap between the turns
• Continuous repeating word
• Percentage of speaking time in the conversation
• Total turns
• Total unique words
• Average word length
• Percentage of total first half speaking time
• Percentage of total last half speaking time
• Total conversation duration between 2 people
Additionally, we quantified each Part Of Speech (POS) in the

conversations [36] utilizing the Python Natural Language ToolKit
(NLTK) [37].

D. Autoencoder Architecture
We proposed a 9-layer stacked AE, depicted in Figure 3, featuring

a fully connected architecture. The AE comprises three main parts: an
encoder, a decoder, and a middle code representing the hidden layer.
The encoder consists of an input layer, followed by a second layer
with 100 neurons, a dropout layer set at 0.1, and a third layer with
30 neurons. The decoder mirrors the encoder in reverse order, aiming
to reconstruct the original input at the output layer. The middle layer
is fixed at 2 neurons, serving as the hidden representation.

For each subject, we extracted two-dimensional hidden represen-
tations. To standardize these embeddings, we normalized the PD
subjects’ data relative to the control group by calculating the mean
and standard deviation for each dimension among the controls and
adjusting the PD values using the following equation:

AE scaledPD = (Mean(AEcontrol))− (AEPD/std(AEcontrol))

E. Hyperparameter Tuning
To optimize the hyperparameters of the AE, we employed a

grid search strategy. We tested various neuron counts for the first
dense layer (64, 96, 100, 128) and the third dense layer (8, 10,
16, 20, 24, 30, 32) in the encoder. In the decoder, the layers were
structured with the same number of neurons as the encoder but in
reverse order. Rectified Linear Unit (ReLU) and tanh were applied in
hidden layers as activation functions and different learning rates (0.1,
0.01 and 0.001) were explored. After the grid search, we chose the
hyperparameters that captured the most variance, as listed in Table II.

TABLE II
HYPERPARAMETERS OF AE

Layers Units Activation Functions
Encoder Input Layer 42

Dense Layer 100 tanh
Dropout 0.1
Dense Layer 30 tanh

Code Dense 2 tanh
Decoder Dense Layer 30 tanh

Dropout 0.1
Dense Layer 100 tanh
Output Layer 42 linear

Figure 4. Reduced dimension vs variance. AE captures more variance than
PCA.

F. Classification Models
For comparisons, we employed traditional classifiers including

KNN, SVM, RF and XGBoost algorithms. These algorithms were
fed with two sets of AE hidden representations, raw features, and
two-dimensional PCA features to classify PD versus control subjects.
All data were scaled using min-max scaling. Hyperparameters were
selected via a grid search conducted on the raw 42 features, and
these parameters were then applied consistently across all models.
Model performance was assessed using 5-fold cross-validation, and
we reported the average validation results from the 5 folds.

III. RESULTS AND DISCUSSION
Figure 4 illustrates the variance, explained by the trained AE

compared to PCA, clearly showing that AE captures more variance.
For downstream analysis, we took our 2 hidden representations
generated by the encoder and applied normalization to the PD
embeddings based on the control subject embeddings. Then, we
classified these embeddings using KNN, XGBoost, RF, and SVM
algorithms. Figure 5 compares the accuracy of three data modalities
across four classifiers and Figure 6 shows the 2D embeddings with
UPDRS-III-18 scores, while the mean macro precision, recall, and
F1-scores from a 5-fold validation are reported in Table III.

The aim of this study is to enhance insights into conversations
via our mobile application, particularly for individuals with speech
impairments who need monitoring of their social engagement. The
feature extraction API leverages the Google speech recognition sys-
tem to extract 42 features [38], which are readily accessible through
our mobile application designed for two-speaker settings, given the
dataset constraints.

Utilizing these features, we developed an AE that captures more
variance than PCA. The hidden representations extracted from the
AE were used in downstream analysis, showing a significant im-
provement in classification accuracy for PD versus control subjects,
with KNN achieving a 90% macro precision. XGBoost and RF also
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Figure 5. Mean accuracy comparisons using PCA (blue), AE (green), and
raw (red) features.

Figure 6. Autoencoder hidden representation visualization for control (blue)
and PD (green) with UPDRS-II-5 rating.

showed notable improvements using AE features, although raw-SVM
outperformed both AE and PCA. This is because KNN, XGBoost,
and RF benefit from the noise reduction and complex pattern repre-
sentation in the transformed space. SVM, however, performed better
with the original features, likely due to its effectiveness in using
simpler, direct features for maximizing class separation.

Furthermore, in Figure 6, the hidden representations of three
patients, who are close to controls and in the early stages according to
the H&Y, UPDRS II-5, and UPDRS III-18 scales, were misclassified

TABLE III
MEAN MACRO PRECISION, RECALL AND F1 SCORE COMPARISONS

Model Features Macro precision Macro recall Macro F1

KNN
AE 0.90 0.80 0.80
RAW 0.26 0.40 0.32
PCA 0.45 0.53 0.47

XGBoost
AE 0.81 0.76 0.75
RAW 0.66 0.62 0.62
PCA 0.67 0.61 0.57

Random
Forest

AE 0.76 0.73 0.72
RAW 0.62 0.55 0.54
PCA 0.62 0.60 0.54

SVM
AE 0.48 0.50 0.48
RAW 0.57 0.54 0.52
PCA 0.56 0.55 0.50

as controls by the classification algorithms. This misclassification
suggests that their communication skills may not be significantly
affected. Additionally, the existing rating systems vary from one to
another. For instance, there are seven subjects at stage 0 according
to UPDR II-5, but only six according to UPDRS III-18. To address
these inconsistencies, we propose using an AE to develop a unified
scaling system for assessing subjects. A limitation of this study
is the small sample size and the use of control subjects’ hidden
representations as a baseline for scaling. With a larger dataset,
we could directly establish a scale that more accurately evaluates
communication skills. This pilot study demonstrates the utility of
embeddings in distinguishing PD from control subjects, with less
severe PD cases tending to cluster closer to controls, as depicted in
Figure 6.

Although several previous studies have tried to distinguish be-
tween PD and control subjects using deep learning algorithms to
assist clinicians in accurately diagnosing PD, many of them are
not designed for easy integration with new environments or for
extracting features from different datasets. Our proposal includes
an application and a versatile API that can be integrated into any
platform, offering clinicians deeper insights into patient conversations
and social interactions. In the future, with greater data availability,
we can develop more accurate models for predicting the severity of
communication impairments.

IV. CONCLUSION

In this paper, we have developed a user-friendly application that
extracts features from interactive conversations. We then introduced
an AE-based model that generates reduced representations of individ-
uals’ social engagement features. Through these hidden representa-
tions, the model enabled classification between PD and control groups
using embeddings employed by KNN, SVM, RF, and XGBoost clas-
sifiers. Our findings showed that these embeddings capture diverse
data patterns and effectively distinguish PD patients from control
subjects, demonstrating that these representations can encapsulate the
full range of an individual’s social participation. This highlights the
AE model’s value in creating meaningful representations for assessing
social engagement.

Moving forward, enhancing this model with additional conversa-
tional and multimodal features, such as gesture or facial expression
data, could further improve its accuracy and adaptability to real-world
scenarios. Such expansions would support clinicians in monitoring
PD symptoms more effectively and could potentially enable early
interventions based on real-time social interaction insights. This study
highlights the potential of embedding-based methods in healthcare,
offering a pathway toward practical, non-invasive tools that can
aid in diagnosing and managing communication disorders through
assessment of social engagement patterns.
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