
Database Technology Evolution III: Knowledge Graphs and Linked Data

Malcolm Crowe

Emeritus Professor, Computing Science

University of the West of Scotland

Paisley, United Kingdom

Email: Malcolm.Crowe@uws.ac.uk

Fritz Laux

Emeritus Professor, Business Computing

Reutlingen University

Reutlingen, Germany

Email: Fritz.Laux@reutlingen-university.de

Abstract— This paper reviews the changes for database

technology represented by the current development of the

draft international standard ISO 39075 (Database Languages -

GQL), which seeks a unified specification for property graphs

and knowledge graphs. This paper examines these current

developments as part of our review of the evolution of database

technology, and their relation to the longer-term goal of

supporting the Semantic Web using relational technology.

Keywords— semantic web; linked data; knowledge graphs;

relational database; knowledge management; database

management system; property graph; information integration.

I. INTRODUCTION

Tim Berners-Lee originated the concept of the Semantic
Web in 1999, as a way of enabling computers to analyze all
the content, links and transactions between people and
computers on the Web [1]. Initial approaches to this dream
focused initially on the addition of semantic information to
everything in all documents [2], documenting semantic
information using subject-relation-object triples. Thinking of
objects as nodes or vertices and triples as edges or
relationships yields the concept of a knowledge graph [3][4]
[5]. While some triples merely described the content in a
document, those that were links to other documents proved
to be more interesting to human readers, leading to the topic
of linked data [6]. There are now many open data projects
whose nodes are items of information on the Web with less
focus today on the detail of document internals [7].

The underlying technology for managing such
knowledge bases originally seemed completely different
from relational databases, which processed representations in
the form of tabular data while in knowledge bases the links
were first-class objects. There were also differences in scale:
databases dealt with the needs of individual companies,
while knowledge is worldwide.

Graph database technology is more efficient than
relational technology in following chains of relationships,
because in relational technology such sequences imply joins
of all the corresponding tables. Many graph database
products are now available [8] and the business case for
further development in this area is compelling, with use
cases including medical research [9], fraud detection [10]
and cybersecurity [11], global engineering design [12] and
supply chain management [13].

Even the most radical products for processing knowledge
data use data storage, and there is now a new international
standard for a database language GQL [14] to include triple

graphs and property graphs (the name GQL in the title of the
standard is not an acronym, although some authors have
been persuaded to invent a three word phrase with these
initials). In the past, databases of triples (subject, predicate,
object) tied to HTTP urls looked very different from
databases consisting of linked sets of objects with given
property values. Implementations of this new GQL standard
can be expected soon.

 In 2023 we reported at IARIA [15, sec III.A] on a way
of implementing GQL by adding new metadata to the ISO
9075 Standard Query Language (SQL) [16], and we
exemplified this in 2024 with a brief account of a Financial
Benchmark for GQL [17][18]. The implementation described
was relational in nature, using the property graph approach
of GQL, and did not discuss knowledge graphs, cross-
platform linked data, issues evident in the recent research
papers referenced above, so that it makes sense to continue
our story of database evolution [19][20] in this paper by
introducing a very lightweight implementation of knowledge
graphs and web services.

This paper is thus a practical contribution to data and
systems research, through concept development in the
context of a lightweight open-source proof of concept
implementation [21]. It also takes up the question of
semantic alignment from [22] and implements ideas for
graph schema under discussion in the GQL community.

The plan of this paper is to motivate these developments
in Section II, with the help of two examples from recent
publications and some discussion of related implementation
issues. The first example, in Figure 1, is from [23] and links
two graphs, the second, in Table 1, is from [5] and illustrates
the triples approach to knowledge representation. We briefly
cover linking data by web services in Section III, and graph
schema ideas in Section IV. Section V provides some
conclusions and our plans for completing the work as an
open-source research contribution.

II. KNOWLEDGE GRAPH IMPLEMENTATION

Neither example in this section fits well with relational
database model, and they continue to require development of
the GQL specification.

A. The Yacht Club example

The current edition of GQL allows “open” graphs
without defined graph types and “closed” graphs where all
node and edge types are predefined, but there is no
mechanism for modifying such types once defined.

101Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 1: The Yacht Club example [23]

TABLE I: CREATING THE GRAPH OF FIGURE 1 IN GQL

create schema /yc;
create graph type /yc/Social {node Person {name string},
 node YachtClub {name string,address string},
 directed edge "Member" connecting (Person->YachtClub)};
create graph /yc/Fraud ANY;
insert (a2 :Account{owner:'Scott',isBlocked:false})-[:Transfer{amount:350000}]->
(:Account{owner:'Aretha',isBlocked:false})-[:Transfer{amount:2000000}]->
(p1 :Person&Account{owner:'Jay',name:'Jay',isBlocked:false})
-[:"Member"]->(:YachtClub {name:'Ankh-Morpork Yacht Club',address: 'Cable Street'})
<-[:"Member"]-(p2 :Person&Account {owner:'Mike',name:'Mike', isBlocked:true})
-[:"Member"]->(:YachtClub{name:'Emerald City Yacht Club',address:'Yellow Brick Road'}),
(p1)-[:Transfer{amount:2500000}]->(p2)-[:Transfer{amount:3000000}]->(a2);

However, this example is motivated by combining
information from two separately developed graphs.

In Figure 1, we see two graphs called Fraud and Social,
both of which contain nodes p1 and p2. In the Fraud graph,
these are of type Account, while in the Social graph, they are
of type Person. Nodes cannot belong to several graphs in the
current GQL standard, and GQL statements can make
changes to the data in at most one graph. With a little
goodwill on these points, the script in Table I constructs an
open graph (Fraud) and a closed graph type (Social).

Here the labels Person and Account make up p1’s label
set. GQL types have label sets (unlike its predecessors such
as Neo4j). The single node p1 has properties from a node
type in each graph and so belongs to both graphs, while
Person&Account is a label expression, not a node type. From
the relational database viewpoint, tables consist of relations
of the same type, so that, if both Person and Account are row
types, each corresponding table gets a row when the record
for p1 is inserted.

Open graphs allow new node and edge types to be
introduced on insertion, but labels such as Person and

Account need to be well defined (property sets, connections)
before they can be combined with others. In Table II,
Transfer is defined as connecting Account nodes before it is
used for Person&Account. Note that the aliases a2, p1, and
p2 are local to the insert statement as is usual in SQL. Using
match-insert combinations as suggested above can avoid
long insert sequences.

The second example is shown in Table II.
It needs to declare somehow that <sp is a relation

between edge types. This also would require changes to the
current edition of the GQL standard and we return to this
point in Section IV below.

TABLE II: A KNOWLEDGE GRAPH [5]

t1 = (:John :masterFrom :DauphineUni),

t2 = (:John :phdFrom :DauphineUni),

t3 = (:masterFrom <sp :degreeFrom),

t4 = (:phdFrom <sp :degreeFrom)

102Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 2: The transaction log and a simple Match statement for the example in Table II.

In [15, III.C] we showed that graphs based on SQL user

defined types can be constructed without prior declaration of
types (in GQL this is called using open graph types), so the
simple database for the second example can be constructed
in Pyrrho with just one statement. Starting with an empty
database,

insert (j:John)-[:degreefrom:masterFrom]->
(d:DauphineUni), (j)-[:degreefrom:phdFrom]->(d);

Figure 2 shows the transaction log resulting from this
statement in Pyrrho: it shows the mixture of type and data
creation steps This little database occupies only 339 bytes on
disk.

Match statements in GQL provide a simple way of
retrieving information from a graph, by binding free
variables to graph contents according to a graph pattern. A
graph pattern can specify labels or properties required for the
match: in this case there is no need to do so. Graph patterns
can also specify alternatives and trails through the graph, and
Match can have dependent statements with access to the
binding results, such as selection (or RETURN) of results
and aggregations, or data-modifying statements such as
INSERT, DELETE, SET or REMOVE that can modify the
graph and its contents.

B. An open-source prototype GQL implementation

Our sample implementation, Pyrrho [21] has the
ambition not only to address both these examples together

with GQL and SQL syntax. By design, the GQL
specification has chosen to accommodate this sort of fusion,
but there is an issue that some of SQL’s reserved words are
not reserved in GQL. This will mean that if a database
defines some SQL reserved words to mean something else,
syntax depending on these words will not be available.

As a research laboratory for database management,
Pyrrho also has been evolving for over two decades, and as
of May 2024 it accommodates graph objects (node and
edges) and their types alongside the standard SQL apparatus,
in the manner described above.

Some basic features of Pyrrho make the task of
implementing GQL easier. First, in this RDBMS the
database file is an append-storage transaction log so that the
position of any committed database object or record does
not change even if the contents are updated. Pyrrho makes
this position into a pseudo-column, so that the next step in
the evolution of our implementation is to use this position
where primary keys would normally be used. Introducing
this sort of flexibility into a relational DBMS is quite a step.

Another feature of Pyrrho is its optimistic concurrency
control based on shareable data structures. These two aspects
allow transactions to mix schema changes and data
modification and avoid the complications involved in two-
phase locking.

Pyrrho already provides triggers and type alteration.
GQL’s structure comes from the edge relationships, so that
the current edition of GQL does not have any concept of

103Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

integrity constraints such as primary keys or foreign keys.
Many business applications can benefit from the additional
structure provided by allowing relational constraints in a
graphical database.

In this section it remains to include a brief discussion of
the effect on the database model of Pyrrho [21]. Before the
evolution above, the node and edge structure of graph
database models used primary and foreign keys. so that
columns ID, LEAVING and ARRIVING would be added to
node types and edge types, and values for these would be
added if they were not provided. From the viewpoint of
GQL, this process is unnecessary, and now in Pyrrho the
position pseudocolumn is used instead of a new ID column,
but if an Id or primary key is already in a new node type it
will be used instead. The metadata syntax for declaring node
types and edge types includes ways of specifying which
existing columns are used for such structural properties.

This leads to smaller and faster implementation of large
graphs: smaller because fewer indexes need to be
constructed or checked, and faster because the overhead of
finding suitable values for the automatic keys is not required.

Pyrrho’s client program currently requires multiline
statements to be enclosed in square brackets, so that square
brackets within multiline statements should not be at the
ends of lines.

III. WEB SERVICES VS BIG DATA

This section describes an implementation of cross-
platform linking of data. Previous work [24] discussed how
data distributed in different institutions could be processed
without the mass import of linked data by extra-transform-
load. The key idea was view mediation: a view could be
defined with a url for retrieval from a remote source.
Assuming that the remote source granted the necessary
authorizations, selection and modification of remote data
could be allowed using HTTP, and with HTTP POST the
mechanism allowed a sequence of operations to be
performed on the remote system in a single transaction.

GQL has no details yet on viewed graphs, but the basic
idea is clear: like a viewed table, the system can retrieve and
process, but does not store, the viewed contents.

A suitable syntax for supplying the url for such remote
access is in GQL’s USE GRAPH syntax. We can simply
write USE GRAPH (url) . As before it is up to the remote
system to grant access: the local system will provide its
CURRENT_USER information within the HTTP header.
Ordinary GQL statements follow the USE GRAPH and
become the body of the HTTP POST request, and the result
of the final step (e.g. MATCH or RETURN) will be returned
from the remote server, along with a suitable ETag as
described in [24].

IV. GRAPH SCHEMA IMPLEMENTATION

A new suggestion for Graph Schema has arisen in
discussions about GQL [25] that is very close to the
suggestions for Typed Graph Schema in [21]. The idea is
that for any graph G, the Graph Schema should itself have
the form of a graph S so that nodes of S are node types of G,

edges of S are edge types of G, the properties of object types
in S are the property types of corresponding objects in G.

Schema information can then be accessed using a
MATCH SCHEMA statement. The vision here is that data-
modifying statements affecting S should provide a
mechanism for altering the graph types of G.

For example, it could be argued that since [5] is all about
the consequences of implication, the discussion of example 2
above assumed assertions t3 and t4 (see Table II) at the
outset. It would be more in keeping with the context of [5] to
be able to implement example 2 using the original triples as
follows:

INSERT (:John)-[:masterFrom]->(:DauphineUni);
INSERT (:John)-[:phdFrom]->(:DauphineUni);
INSERT SCHEMA [:masterFrom=>:DegreeFrom];
INSERT SCHEMA [:phdFrom=>:DegreeFrom];

This respects the statement in [5] that the last two triples
specify a relationship at the schema level: that :masterFrom
and :phdFrom are subproperties of :degreeFrom, and we
assume this is done without creating new instance nodes in
the graph. In an open graph, the first statement would be
allowed in GQL, with the use of unbound identifiers in the
first INSERT implying the creation of nodes and edges and
associated (singleton) types. The second does something
similar for the unbound label :phdFrom but is at least
unusual in its use of the singleton labels :John and
:DauphineUni. Normally such an insertion would be
specified by a statement such as

MATCH (j:John),(u:DauphineUni)
INSERT (j)-[:phDFrom]->(u);

If so, it is arguable that the third statement implies the
creation of an edge type for the unbound :DegreeFrom, while
the fourth inserts the implies relationship.

This represents ongoing research in discussions with the

GQL community.

V. CONCLUSIONS

This short paper has provided some notes on the current
developments in the new database language GQL, and their
relationship with recent research papers on knowledge
graphs and linked data. Our SQL implementation, Pyrrho
[21] is being updated to take account of these changes, and in
time will implement all of GQL. Despite this ambition,
Pyrrho’s executable binaries are very lightweight (less than 2
MB in total) and are very economical with disk space as
indicated in section II above. Pyrrho’s test suite includes
simple cases that show the integration of the relational and
typed graph model concepts, and benchmark tests on
databases of 500MB show that the design scales well.

Research will continue in order to find the best way of
implementing a full GQL implementation while offering a
full SQL feature set.

104Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, pp. 34-43, May 2001.

[2] C. A. Lynch, “Networked information resource discovery: an
overview of current issues”, IEEE Journal on selected areas in
communications 13.8 pp. 1505-1522, 1995.

[3] J. F. Sowa, “Conceptual graphs as a universal knowledge
representation”, Computers & Mathematics with Applications
23.2-5, pp. 75-93, 1992.

[4] C. Steinfield, R. Kraut, and A. Plummer, “The impact of
interorganizational networks on buyer-seller relationships”,
Journal of computer-mediated communication 1.3 (137),
1995.

[5] K. Belhajjame and M.-Y. Mejri, “Online maintenance of
evolving knowledge graphs with RDFS-based saturation and
why-provenance support”, Web Semantics: Science, Services
and Agents on the World Wide Web 78, pp. 100796, 2023.

[6] M. Bennett, and K. Baclawski, “The role of ontologies in
linked data, big data and semantic web applications”, Applied
Ontology 12.3-4, pp. 189-194, 2017.

[7] H. Kaindl, S. Kramer, and L. M. Afonso, “Combining
structure search and content search for the World-Wide
Web”, Proceedings of the Ninth ACM conference on
Hypertext and hypermedia: links, objects, time and space,
1998.

[8] Gartner Research, Market Guide for Graph Database
Management Systems, 2022.

[9] C. Payal, K. Huang, and M. Zitnik, “Building a knowledge
graph to enable precision medicine”, Scientific Data 10(1),
p.67, 2023.

[10] X. Mao, S. Hao, X. Zhu, and J. Li, “Financial fraud detection
using the related-party transaction knowledge graph”,
Procedia Computer Science 199, pp. 733-740, 2022.

[11] X. Zhao, R. Jiang, H. Yue, A. Li, and Z. Peng, “A survey on
cybersecurity knowledge graph construction”, Computers &
Security, 103524, 2023.

[12] A. Haruna, M. Yang, P. Jiang, and H. Ren, “Collaborative
task of entity and relation recognition for developing a
knowledge graph to support knowledge reasoning for design
for additive manufacturing”, Advanced Engineering
Informatics 60, 102364, 2024.

[13] J. Deng, C. Chen, X. Huang, W. Chen, and L. Cheng.
“Research on the construction of event logic knowledge graph

of supply chain management”, Advanced Engineering
Informatics 56, 101921, 2023.

[14] S. Plantikow and S. Cannan, International Standards
Organization, ISO/IEC 39075:2024 “Information Technology
- Database Languages – GQL”, 12 April 2024.

[15] M. Crowe and F. Laux, “Graph Data Models and Relational
Database Technology”, DBKDA 2023: The Fifteenth
International Conference on Advances in Databases,
Knowledge, and Data Applications, IARIA, pp. 33-37, ISSN:
2308-4332, ISBN: 978-1-68558-056-8, 2023.

[16] ISO 9075 Information technology - Database languages -
SQL, International Standards Organisation, 2023.

[17] LDBCouncil.org, “The LDBC Financial Benchmark
(v.0.1.0)”, Arxiv preprint, 2306.15975v2 (retrieved June
2023)

[18] M. Crowe and F. Laux, “Implementing the draft Graph Query
Language Standard: The Financial Benchmark”, DBKDA
2024, The Sixteenth International Conference on Advances in
Databases, Knowledge, and Data Applications, ISSN 2308-
4332, p.7-11, 2024.

[19] M. Crowe and F. Laux, “Database Technology Evolution”,
IARIA International Journal on Advances in Software, vol 15
(3-4), pp. 224-234, ISSN: 1942-2628, 2022

[20] M. Crowe and F. Laux, “Database Technology Evolution II:
Graph Database Language”, IARIA Congress 2023, The 2023
IARIA Annual Congress on Frontiers in Science, Technology,
Services, and Applications, ISBN 978-1-68558-089-6, p.215-
222, 2023.

[21] M. Crowe, PyrrhoV7alpha,
https://github.com/MalcolmCrowe/ShareableDataStructures

[22] F. Laux, “The Typed Graph Model - a Supermodel for Model
Management and Data Integration”, arXiv preprint
arXiv:2110.02021, 2021

[23] N. Francis et al., “A Researcher’s Digest of GQL”, The 26th
International Conference on Database Theory, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[24] M. Crowe, C. Begg, F. Laux, and M. Laiho, "Data validation
for big live data”, DBKDA 2017, The Ninth International
Conference on Advances in Database, Knowledge, and Data
Applications, ISSN 2308-4332, pp 30-36, 2017.

[25] R. Angles et al., “PG-Schema: Schemas for property graphs”,
Proceedings of the ACM on Management of Data, 1(2), pp.1-
25, 2023.

105Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

