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Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia

E-mail: luka.lukac@um.si

Andrej Nerat
Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia

E-mail: andrej.nerat@um.si

Damjan Strnad
Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia

E-mail: damjan.strnad@um.si

Filip Hácha
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Abstract—Image triangulation is a simple and abstract rep-
resentation of an image. Important image structures are rep-
resented with triangles that are scattered across the image in
an unstructured manner. However, quite often, when dealing
with an image triangulation, the user’s object of interest is the
original image. Various interpolation methods have been used in
order to predict the original pixel values inside the triangulation
simplices. Although yielding accurate results in some cases, their
results can be significantly inaccurate when dealing with high-
frequency details in simplices of the image triangulation, or if
the triangulation simplices have a highly irregular structure. In
this paper, a new interpolation method based on a graph neural
network is proposed. The experimental results on the popular
dataset DIV2K showed that the proposed method, in most cases,
produces smaller prediction errors than the existing interpolation
methods, such as Barycentric Coordinates or Inverse-Distance
Weighting.

Keywords-image processing; Delaunay triangulation; machine
learning; Graph Neural Network; interpolation.

I. INTRODUCTION

Image compression methods often use prediction methods
to achieve better compression ratios. Neighbouring pixels in a
real-life image are usually highly correlated [1]. Therefore,
the current (unknown) pixel value can be predicted fairly
accurately from previously-encoded pixels in the close neigh-
bourhood with a non-complex texture [2]. Such a prediction
approach assumes that pixels are encoded in a pre-determined
order, which represents a serious limitation in the case of
non-structured data, such as irregularly sampled pixels. In the
case of an image triangulation, the key pixels can be scattered
across the raster space without a specified order, which is why
conventional methods based on image convolution cannot be

applied directly to predict unknown values of pixels that are
not a part of the triangulation.

In another part of computer science, Geographic Infor-
mation Systems (GIS), data sampling locations are usually
also distributed irregularly across the observed area [3]. Quite
often, the object of our interest are locations with no available
data [4]. To enable performing environmental analyses at such
locations, many interpolation methods have been developed in
the past [5]–[8]. In terms of images, interpolation methods
have been used mostly for tasks such as super-resolution [9]
and steganography [10].

In contrast to many machine learning methods, Graph
Neural Networks (GNNs) represent a method that operates on
a graph domain instead of in the Euclidean space [11]. In the
past, GNNs were used for a variety of tasks (e.g., materials
science [12][13], recommendation systems [14], and natural
phenomena forecasting [15]). There are applications of GNNs
in the field of image processing as well, including tasks such as
super-resolution [16][17], structural image classification [18],
and image clustering [19]. However, despite the fact that
graph representation is well-suited and used widely for the
prediction of values in locations with unknown data, none
of the existing methods deal with pixel values’ prediction in
image triangulations.

This paper presents a novel method using a GNN to perform
the task of centroid pixel values’ prediction in greyscale image
triangulations. The remainder of the paper is structured in the
following way: in Section II, the proposed prediction method
is described in detail, Section III summarises and discusses
the results of the experiment, while Section IV concludes the
paper.
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II. METHOD

The proposed method consists of three major parts:

• detection of the key pixels, where pixels are detected that
carry important information about an image,

• graph construction, where the detected key pixels are
transformed into a graph with the Delaunay triangula-
tion [20]–[22] to which additional, centroid pixels’ nodes
are added,

• centroid pixel value predictions, where a GNN is utilised
to predict the value of a centroid pixel inside the corre-
sponding triangulation simplex.

In the continuation of this section, each part is described in
detail.

A. Detection of Key Pixels

Let I be a greyscale image embedded into a raster space
with x columns and y rows. In the first step of the method,
the key pixels Pk = {pki } ⊆ I are detected using one of the
established methods for image feature detection. Key pixels
can, in principle, represent various important image features.
However, in our case, the most beneficial features in an image
are pixels with maximum gradients (i.e., edges and corners)
as they carry the most important information about the image
structure. Therefore, the most suitable methods for feature
selection are edge detectors and corner detectors (e.g., Scale-
Invariant Feature Transform (SIFT) [23] or Features from
Accelerated Segment Test (FAST) [24]). Those methods are
slightly adapted in our case, enabling a user to determine the
rate r of all pixels in I (with maximum gradients) that shall
be considered key pixels. An example of a greyscale image
and its corresponding set of detected key pixels are displayed
in Figure 1.

B. Graph Construction

In the next step, a graph G = (V,E) is constructed, where
V = {vi} denotes its vertices, while E = {ei,j} represents
its edges. Firstly, the method constructs G with a Delaunay
triangulation of Pk (an example is shown in Figure 2). After
that, the centroid pixels Pc = {pci} of the triangulation
simplices are calculated, added to the graph, and marked as
vertices that shall be predicted with a GNN. Three additional,
secondary edges are formed from each pci to all three vertices
of the simplex in which the currently observed centroid is
located. Lastly, the edge weights are calculated according to
(1).

wi,j =

{
1 d(vi, vj) = 0

1
d(vi,vj)

otherwise
(1)

where wi,j denotes the weight between the i-th and j-th
vertices, while d represents the Euclidean distance between
two vertices.

(a)

(b)

Figure 1. Detection of the key pixels: (a) A greyscale image I [25], (b)
Detected key pixels Pk (r = 0.05).

Figure 2. Delaunay triangulation of Pk .

C. Centroid Pixel Value Predictions

After the construction of G, a GNN is used to predict
the values of Pc. The GNN consists of two main parts: a
graph convolution sequence and a linear sequence (as shown
in Figure 3).
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Figure 3. Design of the GNN: the embedding of the graph G is passed through ChebConv and Linear layers. A graph embedding, containing predictions of
centroid pixel values (marked with green), represents the output of the GNN.

As an input, the GNN receives G, that is, afterwards, passed
through 7 Chebyshev graph convolutional (ChebConv) lay-
ers [26] with the value K = 3. Rectified Linear Unit (ReLU)
activation function is applied after each layer. The number of
ChebConv layers indicates that the result of the convolution is
composed of vertices, which are 7 edge connections apart from
the current vertex at most. The initial value of pci is set to the
average pixel value of its corresponding triangulation simplex.
The embedding of G is constructed from the initial centroid
pixel values of Pc. The first ChebConv layer transforms
the initial embedding into a graph representation with 32
channels, while the following ChebConv layers transform the
intermediate representation into representations with 64, 128,
128, 64, 32, and 16 channels, respectively. In the second
part, the values of Pc are predicted using 3 fully-connected
layers with 8, 4, and 1 output, sequentially. The output of the
final fully-connected layer (after applying the ReLU activation
function) represents the graph embedding that includes the
predictions of the centroid pixel values.

III. RESULTS

The results of the method are presented and briefly dis-
cussed in this section. One of the most popular image datasets,
DIV2K [25], was used for the training of the GNN. Among
1,000 photos, 800 were selected for the training of the GNN,
100 for the validation, and 100 for testing purposes. The
image dataset was augmented, in order to reduce the overfitting
effect of the neural network. During the data augmentation, the
detection of key pixels in each image was performed in a way
where their rate varied from 2% to 10% of the total pixel count
in an image (effectively producing 9 different key pixel sets
from one image). Min-max normalisation of the pixel values
and graph attributes was performed, in order to rescale the
features to the interval [0,1]. The GNN was implemented with
the framework PyG (PyTorch Geometric) [27] and trained on
NVIDIA GeForce RTX 3080 Graphics Processing Unit (GPU).

The hyperparameters of the GNN were tuned with a random
search, and are summarised in Table I. However, there were

some limitations that had to be considered while tuning the
hyperparameters. As DIV2K contains large images, their graph
representations are very memory-demanding. Consequently,
the batch size for training had to be set to 1 in order to
prevent running out of memory on the GPU. Furthermore,
as the training phase was significantly time-demanding due to
large graph representations, the number of epochs was limited
to 10. After each mini-batch, the training loss was calculated
on Pc.

TABLE I. TRAINING HYPERPARAMETERS OF THE GNN.

Number of epochs 10
Learning rate 0.001
Batch size 1
Optimisation algorithm Adam [28]
Loss function Mean Squared Error (MSE)

The results of the GNN were compared with two popular
methods used for interpolation: Barycentric Coordinates (BC)
and Inverse-Distance Weighting (IDW). Root-Mean-Square
Error (RMSE) was used to evaluate the error of the predictions
on the test set (within the pixel range [0,255]). The experimen-
tal results of the three methods are presented in Table II.

TABLE II. AVERAGE PREDICTION ERROR WITH DIFFERENT INTER-
POLATION METHODS.

Method RMSE
BC 22.54

IDW 23.23
GNN 20.26

The comparison between BC, IDW, and the GNN revealed
that, on average, our method outperformed BC by 10.11%
and IDW by 12.79%. The latter indicates that our method
significantly improves the prediction accuracy. Furthermore,
the results of the experiment showed that, among 900 test
images, the GNN outperformed BC and IDW in 839 cases,
meaning that our method’s prediction produced the best result
in 93.22% of the test samples. Graphically, the results of the
tests are shown in Figure 4.
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Figure 4. Average errors of the tested interpolation methods: BC, IDW, and
the GNN.

The GNN-based prediction achieved the best result in terms
of median error and InterQuartile Range (IQR). The upper
1.5*IQR whisker of the GNN also lies significantly lower than
the BC and IDW counterparts, which indicates that the image
samples with larger error are less common when predicting
pixels with the GNN. The only case where both BC and IDW
performed better than the GNN is the lower 1.5*IQR whisker,
indicating that, in some cases, conventional interpolation meth-
ods can outperform machine learning methods.

IV. CONCLUSION AND FUTURE WORK

A new method for the prediction of centroid pixel values in
image triangulations with a GNN is introduced in this paper.
The key pixels that are detected with one of the established
methods for important image features extraction are used to
form a graph with a Delaunay triangulation. After that, the
unknown pixel values, lying at the centroids of the triangula-
tion simplices, are predicted using the GNN. The proposed
GNN was trained on a large dataset of diverse greyscale
images, which enhanced its versatility and efficiency. The
GNN significantly outperformed the widely used conventional
interpolation methods BC and IDW.

In the future, the proposed method could be integrated into
algorithms for data compression that operate on unstructured
data. In that case, it would probably be beneficial to perform
prediction not only for centroid pixels but also for all non-key
pixels in a raster space. A hierarchical GNN architecture [29]

could be used for doing that. Such task, however, could be
exceedingly demanding in terms of the computation power and
the prediction performance. Another way in which we could
continue our work is adapting our method to spatiotemporal
domains such as video.

ACKNOWLEDGMENT

This research was funded by Slovenian Research and Inno-
vation Agency under Research Project J2-4458 and Research
Programme P2-0041, and the Czech Science Foundation under
Research Project 23-04622L.

REFERENCES
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