
Real-time Optimization of Testbeds for Cloudified Radio Access Networks Using
Artificial Intelligence

Animesh Singh
Ericsson AB

Stockholm, Sweden
animesh.singh@ericsson.com

Chen Song
Uppsala University
Uppsala, Sweden

chen.song.1637@student.uu.se

Jiecong Yang
Uppsala University

Uppsala, Sweden
jiecong.yang.2357@student.uu.se

Sahar Tahvili
Ericsson AB

Stockholm, Sweden
sahar.tahvili@ericsson.com

Abstract—The evolution towards cloudification in Radio Access
Networks (RAN) is transforming the telecommunications industry.
To validate and assess the performance of Cloudified Radio
Access Networks (C-RAN) applications, deploying cloud-native
infrastructures in the form of test environments, testbeds, and
test infrastructures becomes imperative. However, the intricacies
and expenses associated with these testbeds surpass those of
traditional testing environments. Effectively utilizing the potential
of cloud-native testbeds necessitates real-time decision-making on
multiple criteria, including compatibility, capability, cost, capacity,
and availability. This paper introduces an Artificial Intelligence-
based expert system designed to automatically schedule C-RAN
testbeds. The proposed expert system is designed to consider
and balance various factors in real time, ensuring optimal
utilization of resources and test infrastructures. Employing
Artificial Intelligence (AI) based solutions optimizes scheduling
decisions, adapts to dynamic environments, maximizes resource
utilization, reduces operational costs, and improves turnaround
times by dynamically adjusting priorities based on real-time
conditions. The feasibility of the AI-based solution proposed in
this paper is rigorously assessed through an empirical evaluation
conducted on a Telecom use case at Ericsson AB in Sweden. The
results demonstrate a remarkable 17% optimization in overall
costs with the implementation of the proposed solution.

Keywords-Software Testing; Artificial Intelligence; C-RAN;
Testbed; Optimization; Reinforcement Learning

I. INTRODUCTION

The rapidly evolving telecommunication industry places a
growing demand on expediting the delivery of telecommunica-
tion applications and products. Finding a balance between prod-
uct quality, cost-effectiveness, and swift deployment remains a
persistent challenge in large-scale industries [1] [2]. To address
this, various solutions, like Cloudification, have emerged in this
domain, offering the potential to maintain scalability, accessibil-
ity, and mobility for telecom products. One key concept gaining
significant attention is Cloud RAN (C-RAN), which involves
the utilization of cloud-based services and infrastructures for
radio access networks [3]. While the C-RAN solution provides
numerous advantages, it also has its challenges, including
system complexity and infrastructure costs, such as those
associated with developing, building, constructing, establishing,
and utilizing the C-RAN infrastructure. The main differences
between a traditional RAN and a C-RAN architecture lie in their
respective testing environments, testbeds, and infrastructure. In
a traditional RAN setting, the testing infrastructure tends to be
well-established and relatively straightforward. The equipment
and procedures used for testing are typically well-defined

and familiar to telecom professionals. In contrast, the testing
environment for C-RAN introduces a range of complexities,
flexibilities, and differences. Since C-RAN relies on cloud-
based solutions and virtualized network functions, a testing
environment (often called a testbed) must embed various
virtualized components, such as hardware, radio gateways,
simulators, and software components. These components are
essential for emulating the C-RAN environment accurately. In
essence, a configuration serves as a comprehensive description
of a test bed’s capabilities and capacities, which can be
presented as a unique ID. The utilization of a configuration
ID proves invaluable in distinguishing and uniquely identi-
fying various configurations within the testing environment.
This systematic approach facilitates efficient management
and organization of testing resources. Efficiently optimizing
the utilization of C-RAN infrastructure, including testbeds,
offers a host of compelling advantages that span well beyond
cost reduction, scalability, performance, energy efficiency,
and network reliability. Furthermore, considering the crucial
aspects of on-time delivery and the diverse dimensions of C-
RAN products, traditional optimization models may prove less
effective. In contrast, employing the power of AI and Machine
Learning (ML) techniques introduces a plethora of advantages
for the dynamic optimization of C-RAN testbeds during the
testing process. By aligning the availability of testbeds with the
timing of requests, the system can strategically power on and
off these resources. This on-demand usage minimizes overall
energy consumption, promoting energy efficiency and reducing
the carbon footprint of the testing infrastructure. Utilizing
agile methodologies, such as different IT service management
software (e.g., Jira, Azure DevOps) for testbed scheduling
can help teams manage software development. However, some
manual tasks like request creation, analysis, and information
provision still face challenges of ambiguity, uncertainty, and
time efficiency. This challenge is more pronounced in large
industries, where engineers use distinct terminologies when
requesting testbed bookings. For example, the testing team
manually initiates a ticket in text format, navigating through
predefined options to specify the testing requirements. Subse-
quently, test managers assess the compatibility and availability
of a suitable testbed, relying heavily on domain knowledge.
This manual process introduces subjectivity, risking, e.g.,
double bookings or delaying product delivery. As C-RAN
products scale, these inefficiencies highlight the impracticality

111Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

and scalability of manual processes in modern software
development. Addressing these issues requires automated,
streamlined approaches to enhance efficiency, accuracy, and
productivity. This paper introduces, implements, and evaluates
an AI-based solution for dynamically scheduling testbeds in
the context of testing the C-RAN applications. The feasibility
of the proposed solution is studied by an empirical evaluation
that has been performed on a telecommunication use case
at Ericsson AB (EAB) in Sweden. The empirical evaluation
demonstrates promising results, indicating the adaptability and
potential applicability of the proposed AI-based solution in
larger industries. The performance of the proposed AI-based
solution in this paper has also been compared with a first-
come, first-served (FCFS) queuing approach. The positive
outcomes suggest that the scheduling system can be effectively
integrated into diverse industrial settings, showcasing its
versatility and suitability for broader applications within the
telecommunications domain. The organization of this paper
is laid out as follows: Section II provides a background of
the initial problem and also an overview of research on test
environment optimization, Section III describes the proposed
AI-based expert system. An industrial case study has been
designed in Section IV. Section V clarifies some points of
future directions of the present work and finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

Test optimization holds a vital role in the software develop-
ment life cycle. One avenue for achieving this is through the
management of the available testing resources, such as testbeds,
and test environments, to ensure that the overall quality of
the final product is improved while the time to market is
reduced [1] [4]. Employing the traditional analytical technique
that attempts to find the globally optimal solution through
mathematical models can be excessively time-consuming due
to the large search space. On the other hand, heuristic or meta-
heuristic techniques might discover a sub-optimal solution
but within a reasonable timeframe [5]. Moreover, addressing
a substantial set of available data in the industry requires a
solution capable of handling large-scale data within a tight
deadline. The generalizability and extensibility of machine
learning-based solutions have been demonstrated and validated
across various industrial, real-world problems in the software
testing domain [2]. The process of enhancing test activities
including test planning and analysis, test design, test execution,
and test evaluation, through the application of AI is referred to
as test optimization. The test resource scheduling approaches
can enable an optimized allocation of resources, ensuring
that testbeds are actively used which reduces unnecessary
energy consumption and operational costs associated with
maintaining idle testbeds. Optimized resource utilization not
only benefits the environment but also leads to cost savings. By
dynamically managing testbeds based on demand, organizations
can minimize operational expenses associated with energy
consumption and maintenance. The AI and ML-based solutions
prove to be a promising approach for optimization in industrial

systems due to their ability to adapt and learn from interactions
with dynamic environments [4]. In industrial settings, where
system dynamics, constraints, and objectives may evolve, AI
and ML-based models, such as reinforcement learning offer
a flexible framework. This benefit lets the system learn the
best ways to make decisions by trying things out, which
helps it improve tasks like scheduling, managing resources,
and controlling things. The adaptability of AI-based solutions
makes them well-suited for handling complex, uncertain,
and changing conditions in industrial systems, ultimately
leading to improved efficiency, resource utilization, and overall
performance. Testbeds and test resource management can be
viewed as dynamic scheduling problems. In this context, AI-
based solutions, particularly reinforcement learning, which
is capable of handling large-scale data, can be dynamically
applied in the industry to make informed decisions regarding the
scheduling of testing resources. Q-learning, Genetic Algorithms
(GA), and Ant Colony Optimization (ACO) are some examples
of the optimization techniques used in scheduling, where each
has its strengths and weaknesses. Considering dynamic changes
and large data sizes utilizing AI/ML-based approaches for
dynamic scheduling has received a great deal of attention. In
this regard, AI/ML-based solutions (such as Q-learning) stand
out due to their adaptability to dynamic environments and
ease of implementation, especially when the state and action
spaces are well-defined. On the contrary, while traditional
optimization solutions, such as Genetic Algorithms (GA) and
Ant Colony Optimization (ACO) demonstrate prowess in
managing large search spaces and intricate objective functions,
they often encounter challenges in dynamic environments and
demand meticulous parameter tuning. These factors can hinder
their effectiveness, particularly in scenarios characterized by
fluctuating conditions and extensive datasets [6]. In contrast,
Q-learning’s adaptability positions it as an attractive choice
for such dynamic environments and substantial data sizes.
Its ability to learn and adjust strategies based on real-time
feedback makes it well-suited to navigate unpredictable scenar-
ios efficiently. Additionally, Q-learning’s capacity to prioritize
cost optimization while considering request priorities enhances
its versatility in addressing various scheduling challenges.
Furthermore, FCFS scheduling, although simplistic, has its
merits [7]. It offers a straightforward and intuitive approach,
making it easy to implement and understand. In scenarios where
task priorities are relatively homogeneous or where quick task
processing is essential, FCFS can provide a pragmatic solution
with minimal computational overhead. However, FCFS may
struggle in situations with highly variable task priorities or
when resource allocation requires more sophisticated decision-
making processes. While Q-learning shines in dynamic and
data-intensive scheduling environments, FCFS remains a viable
option in certain scenarios due to its simplicity and ease of
implementation. The choice between Q-learning and FCFS, as
well as other optimization algorithms, should be made based
on a thorough understanding of the specific characteristics
and requirements of the scheduling problem at hand. Using
Reinforcement Learning algorithms helps optimize testbeds

112Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

High Level Functions

Metadata

Configuration
Prediction

Scheduling
Testbed info

New Schedule

Optimize

Configuration

Expert System

Component 1 Component 2

Input
Update

ID, Start Date, Duration, Priority

Figure 1. A holistic overview of the proposed expert system in this study.

by learning the best scheduling methods through ongoing
interaction with the testing environment. This means making
smarter decisions and improving testbed setups over time, using
past data and changing needs. Machine Learning also plays a
key role in managing test resources effectively, predicting
resource needs by studying past usage, test requirements,
and outside factors. This predictive analysis helps allocate
resources better, making testing more efficient in industries.
Reinforcement learning has been explored in previous research
for solving scheduling problems. In a study by Reyna et
al. [8], they presented a Q-Learning-based approach specifically
addressing scheduling problems like the Job Shop Scheduling
Problem (JSSP) and Flow Shop Scheduling Problem (FSSP).
Another work by Martinez [9] introduced a generic multi-
agent reinforcement learning approach adaptable to various
scheduling scenarios. However, both studies mainly focused
on JSSP, FSSP, and their multi-stage job variants. Kaur et
al. [10] explore three distinct approaches within Goal Pro-
gramming: the Weighted Approach, the Preemptive Approach,
and the Chebyshev Approach, providing a comprehensive
analysis. Additionally, the study discusses the handling of
the three objectives individually as single-objective problems.
The proposed optimization models are validated using a dataset
from agile-based software development, and sensitivity analysis
is conducted to assess the impact of the involved variables.
Anand et al. [11] investigate the aspect of multi-upgradation,
proposing various optimization problems that address the
optimal allocation of testing resources to different versions.
The solution presented in [11] comprises a set of models solved
using a dynamic programming approach, complemented with
numerical illustrations.

III. THE PROPOSED SOLUTION

The AI-based expert system proposed in this study contains
two main components. Figure 1 shows a detailed representation
of the expert system, emphasizing the essential elements,
the necessary input, the sequential steps involved, and the
expected output. The development path of the expert system

introduced in this study embarks on a journey that commences
with the analysis of numerous requests which are composed
in semi-controlled natural language by the testing team. To
analyze this textual data, various natural language processing
techniques are deployed. However, even with AI assistance,
the process of natural text analysis can be time-consuming
and prone to errors. Through our experiences in text analysis,
we arrived at a significant insight: a subset of the information
provided by the testing team can be sufficient for discerning
the anticipated capabilities and characteristics of a Cloud-
native testbed. In light of this realization, we turned to
different keyword extraction techniques to efficiently identify
the essential information required for configuration prediction.
This shift in approach not only streamlines the process but also
reduces the potential for errors and accelerates the development
of the expert system. It underscores the value of leveraging
keyword extraction as a powerful tool for discerning the vital
details within the textual requests, facilitating the seamless
prediction of configurations for a Cloud-native testbed. The
following paragraphs provide more details about the data, the
embedded components, and the expected output of the proposed
AI-based expert system in this study.

A. Input Data

As highlighted in Figure 1, the extracted keywords have
been categorized into two primary groups: 1- High-Level
C-RAN Functions and 2- Metadata. The metadata category
plays a crucial role in facilitating real-time decision-making
processes. Metadata refers to additional information or data that
provides context or details about the main data. In the context
of the proposed AI-based expert system, metadata includes
details, such as request ID, timestamps, source locations,
priority of each request, or other relevant contextual infor-
mation. Capturing the metadata enhances the understanding
and utility of the primary information, contributing significantly
to the system’s effectiveness in real-time decision-making
for scheduling C-RAN testbeds. Meanwhile, the high-level
functions category is instrumental in the automated prediction

113Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

of configurations for the testbed. A testbed configuration
represents the capacity and capability of a C-RAN testbed. The
high-level functions, as illustrated in Figure 1, provide essential
elements for configuring the C-RAN testbed. These elements,
derived from the extracted keywords, include parameters, such
as network topology, bandwidth, number of cells, and other
key hardware (HW) and software (SW) settings. The AI-based
expert system can efficiently adapt the testbed to various
scenarios, optimizing its capacity and capabilities based on
the provided information. This ensures a flexible and adaptive
C-RAN testbed configuration tailored to specific needs and
requirements.

Functions
Band
Mode
...
Cell

Configuration

Configuration ID1

Configuration ID2

...
Configuration IDn

Figure 2. The Many-To-One mapping of the high-level functions using
classification models for configuration prediction.

To acquire the requisite input for the proposed expert system,
we have created a graphical user interface (GUI). This interface
displays a spectrum of metadata choices, including Request
ID, Date, Duration, and Request Priority. In essence, the
proposed expert system in this study will receive input from
all possible combinations of the mentioned data. Figure 2
provides a high-level overview of the prediction process for C-
RAN testbed configurations using high-level functions provided
by the end users. To generate a testbed configuration, it
is recommended to employ multiple classification models,
enabling many-to-one mapping. In a general sense, many-to-one
mapping signifies a single-valued association, wherein a group
of entities can be linked to a similar entity. This methodology
improves the adaptability of the system by permitting the
creation of diverse configurations grounded in different sets
of input parameters. The many-to-one mapping is particularly
useful in situations where multiple inputs correspond to a
single configuration option. This flexible modeling approach
significantly enhances the robustness and versatility of the
C-RAN testbed configuration prediction process.

B. Component 1

As illustrated in Figure 1, the proposed expert system in
this paper comprises two core AI-based components intricately
linked together. As we can see in Figure 1, the output of
Component 1 feeds into the second component, establishing
a vital connection between these essential elements of the
system’s architecture. Component 1 focuses on the prediction
of configurations based on the high-level function information
provided by the end user. As mentioned earlier, a testbed
configuration describes crucial details about a testbed’s capacity,
capability, and properties. In this process, employing various
classification models, such as random forest and Support Vector
Machine (SVM), enables the expert system to create a unique

identifier describing the distinctive features of the testbed.
The mentioned classifiers analyze the high-level function
information and assign a specific identifier or unique ID to each
configuration. This ID serves as a comprehensive representation
of the testbed’s distinctive characteristics. It is important to note
that, even though each configuration is unique, there might be
instances where multiple testbeds share the same configuration.
This occurrence is due to the inherent complexity of the C-
RAN environment, where different testbeds may exhibit similar
features or capacities despite being distinct entities. Using
classification models enhances the system’s ability to efficiently
categorize and identify various configurations, contributing to a
more nuanced understanding of the C-RAN testbed landscape.
Figure 2 offers an insightful depiction of the configuration
prediction process, showcasing the innovative solution proposed
in this study.

C. Component 2

Component 2 focuses on scheduling the testbed using both
the metadata provided by end users and the configurations
generated by Component 1. As previously mentioned, the
configuration of a testbed highlights its features, and multiple
testbeds may share the same features. However, even if testbeds
have identical features, their costs can vary. For instance, the
cost of an embedded simulator may differ across testbeds,
even if the simulators have the same capacity and capability.
The final cost of a testbed is influenced by various factors,
including the brand of hardware, software, and suppliers
involved. Considering the diversity in costs and features,
optimal testbed scheduling involves factoring in the gathered
metadata. The metadata, provided by end users, provides
some essential details, such as the starting date, duration, and
priority of each request. Integrating this metadata information
with the generated configurations and the associated costs of
each testbed enables the expert system to schedule testbeds
more efficiently. Combining the metadata information with
the generated configuration and cost of each testbed can help
the expert system, to schedule the testbeds more efficiently.
Considering a broad spectrum of upcoming requests from end
users and a multitude of testbeds with diverse configurations
and costs, reinforcement learning models are embedded into
Component 2 for the real-time scheduling of the C-RAN testbed.
In a reinforcement learning approach, an agent, action, state,
and reward are all abstract concepts that can be differently
defined to solve various problems. In a Reinforcement Learning
(RL) model, agents must learn through interaction with the
state by sensing and influencing it. The application of RL to
the scheduling problem in this study is fitting, considering an
agent capable of continuously assigning newly arrived requests
for scheduling a testbed. The state, action, and reward can
also be defined as the arrangement of existing requests, the
assignment of a new incoming request, and the optimization
objective, respectively. In this context, an RL model can be
seen as an intelligent search method seeking the most optimal
scheduling strategy by interacting dynamically with incoming
requests.

114Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

2023 2024

December January February March April May June

49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

T1 Request 9 Request 41 Request 11

T2 Request 14 Request 3

T3 Request 8 Request 13

T4 Request 18 Request 5

T5 Request 118 Request 23

T6 Request 7 Request 2Request 127

Figure 3. A holistic overview of scheduled C-RAN testbeds utilizing the proposed AI-based expert system. The Y-axis denotes the testbeds, while the X-axis
depicts calendar time. Each color represents the priority of each request.

In this paper, Q-learning model has been implemented in
the AI-based expert system to determine optimal scheduling
for C-RAN testbeds. Q-learning is particularly well-suited
for scenarios where an agent interacts with an environment,
learning to make decisions that maximize cumulative rewards
over time. In Q-Learning, a Q-function defines the computation
of the expected reward of each state-action pair, and a Q-table
is used to store the expected reward of all state-action pairs.
Their concrete format and structure depend on the problem to
be solved. The following list is the overall steps of Q-learning,
and it describes how the Q-learning algorithm does scheduling
tasks briefly.

1) Initialize the Q-table:
a) The structure and initialization of the Q-table

depend on the concrete problem.
2) Define Q-function and reward:

a) The format of the Q-function depends on the
concrete problem.

3) Learning loop for multiple episodes:
a) Select and perform an action to perform: first,

the agent will capture the current state, and then it
will choose an action with the highest Q-value.

b) Measure the reward: To learn more optimally, the
rewards need to be measured and the Q-table needs
to be updated dynamically by the program.

c) Update the Q-table: using the measured reward,
the expected reward corresponding to the selected
action and current state will be updated based on
Equation (1) and Equation (2).

TD = r + γ ×max(Q)−Qold (1)

where, TD is the temporal difference, γ shows
discount factor, max(Q) means estimated optimal
future (next state) value, Qold is current Q value
of the given state and given action.

Qnew = Qold + α× TD (2)

where, α indicates learning rate, Qnew shows the
new Q value in the Q-table of the given state and
action.

4) Generate the most optimal scheduling decision
a) The scheduling decision with the highest reward

which has been found during the learning loop will
be selected as the final decision.

D. Optimization

As depicted in Figure 1, the expert system dynamically
receives new requests for scheduling and booking the testbeds.
Within the optimization segment of the proposed AI-based
expert system in this study, a self-defined optimization objective
needs to be established. In this regard, a testbed’s total cost
(Overall Cost) is employed as the objective, calculated as
Equation (3):

OC = i1 ·makespan+ i2 ·
N∑
i=1

wi · pi + i3 ·
N∑
i=1

ci (3)

where i1, i2, and i3 are weights that require manual con-
figuration by end users, makespan denotes the maximum
completion time of all requests, wi signifies the waiting time
(real starting time - release time) for each request, pi represents
the priority of each request, and ci corresponds to the cost
of executing each request on its designated testbed. However,
simply summing different objectives with weights can make
the setting of weights challenging in practice due to their
different scales [12]. Therefore, normalization is necessary to
ensure that this single optimization objective yields meaningful
information. To bring all three sections to similar scales, the
normalized Overall Cost (OC) can be calculated, as shown in
Equation (4).

OCnorm = i1 ·
makespan

r + d
+ i2 · log

N∑
i=1

wi · pi+ i3 ·
∑N

i=1 ci
N · c

(4)

where r and d represent the average release time and duration of

115Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

all requests, respectively, and c denotes the average utilization
cost of all testbeds. The use of log in the second section is
necessitated by the fact that waiting time cannot be estimated in
advance. Although log cannot map the original numbers into a
fixed range, it helps align the scale of the second section
with the other two. Alternative functions like sigmoid or
other normalization methods can also be considered. It is
important to note that all Overall Costs mentioned later in this
study refer to this normalized form. The objective’s intuition
is straightforward. By minimizing OC, the generated schedule
can, in general, reduce the finish time, decrease waiting times
for requests with higher priority, and cut down on the cost of
utilizing testbeds. The three weighting factors, set with different
ratios, allow different parts to dominate the objective, leading
to schedules suitable for different scenarios.

E. Expected Output
The expected output of the proposed AI-based expert system

in this study is the real-time scheduling of the C-RAN testbeds.
Given that each request may vary in time span and priority,
the expert system must be executed upon receiving a new
request. Furthermore, considering the finite number of testbeds
and their distinct costs, the priority assigned to a request (as
provided by the end user in the Metadata section, see Figure 1)
significantly influences decision-making. Indeed, the decision
to schedule a request on a particular testbed may be subject
to change if the expert system receives a new request with a
higher priority for the same testbed configuration. This dynamic
consideration of priorities ensures that the expert system adapts
to changing conditions and optimally manages the allocation of
resources based on the most pressing needs. Figure 3 provides a
comprehensive view of the real-time scheduling of the C-RAN
testbeds using the solution presented in Figure 1. As illustrated,
multiple requests are received and scheduled concurrently. The
Y-axis represents the testbeds, and the X-axis depicts calendar
time. Each color represents the priority of each request.

IV. EMPIRICAL EVALUATION

To analyze the feasibility of the proposed AI-based expert
system, we designed an industrial case study at Ericsson AB
(EAB) in Sweden, by following the proposed guidelines of
Runeson and Höst [13] and also Tahvili and Hatvani in [2]. A
subset of the utilized database to simulate the case study can
be found at the GitHub repository [14].

A. Unit of analysis and procedure
The units of analysis in this study consist of a set of available

C-RAN testbeds and requests submitted by the testing team
for scheduling and booking a testbed for testing a C-RAN
application. The case study in this paper is conducted in several
sequential steps:

• A total of 500 requests have been extracted from the
internal database at EAB and are submitted to book a
testbed for testing various C-RAN applications.

• Various text analysis techniques are employed to extract
critical keywords, which are then presented in the Graph-
ical User Interface (GUI) of the AI-based expert system.

This guides end-users in submitting their requests to book
a C-RAN testbed.

• A total of 23 unique configurations for several testbeds
are analyzed, and the resulting configuration information
is incorporated into the internal database of the AI-based
expert system. Subsequently, 197 testbeds are identified
that match these unique configurations.

• Evaluations from test managers concerning the generated
configurations for each testbed and the scheduling of
requests are collected and analyzed.

B. Case Study Report

As mentioned earlier, the primary objective of the proposed
AI-based expert system is real-time testbed scheduling. Making
accurate real-time decisions for scheduling a testbed is directly
linked to the upcoming testing requests and the corresponding
capacity and capability of the testbeds. Booking a testbed
that fails to meet the engineering requirements of a submitted
request can have a direct impact on the testing process. In
essence, if the capacity, capabilities, and features of a testbed
do not align with the testing requirements, the testing team will
be unable to successfully execute the test cases. As mentioned
before to apply Q-Learning to the problem, both the Q-table
and the Q-function need to be defined. The Q-table further
depends on how the state and action are defined based on the
problem. In the proposed solution in this paper, the Q-table is
organized around three different states that signify the state of
a request: “Start”, “In Process”, and “Finish”. Simultaneously,
an integer set defines the action space: “0” denotes the “Wait”
action, while the remaining values represent various test beds.
Moreover, the total number of actions is limited by the number
of available testbeds, plus one extra action for “Wait”.

Table I. AN EXAMPLE OF A Q-TABLE ILLUSTRATING THE SCHEDULING OF
5 DIFFERENT TESTBEDS (TB), WITH STATES INCLUDING “START”, “IN

PROCESS”, AND “FINISH”.

Actions Wait TB1 TB2 TB3 TB4 TB5
States (0) (1) (2) (3) (4) (5)

Start (0) 0 1 0 0 0 0
In Process (1) 0 0 2 0 0 0

Finish (2) 0 0 0 0 3 0

This design results in a Q-table arrangement, where available
actions are represented in columns and request states are
represented in rows. Each cell in the table has a Q-value
representing the expected total reward for carrying out a specific
action in a particular state. The learning process is facilitated
by the repeated update of these Q-values, allowing the model
to intelligently allocate testbeds based on prior experiences and
input from the environment. Table I provides an example of a
Q-table for scheduling five different testbeds. The definition of
the Q-function further depends on the definition of the reward.
To minimize the overall cost (OC), the expected reward in our
proposed solution is described in Equation (5).

rtotal reward =
1

OCnorm
(5)

116Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

https://github.com/Animesh963/Real-time-Optimization-of-Testbeds/tree/main/Data

C. Performance Evaluation

Given that the expert system introduced in this paper inte-
grates multiple ML and AI techniques, it becomes imperative
to conduct performance evaluations for each step and model
independently. Similarly, assessing the performance of an
RL model for real-time scheduling presents a multifaceted
challenge. This process necessitates the consideration of diverse
metrics that are tailored to align with the specific objectives and
constraints of the scheduling problem at hand. The selection
of evaluation criteria must be thoughtfully tailored to the
application’s unique requirements, highlighting the importance
of striking a balanced approach to optimize real-time scheduling
performance.

1) Component 1 Evaluation: In the experiment, the
Train/Test split ratio on the dataset is set to 0.8/0.2. Metrics,
such as Precision, Recall, and F1-Score are essential for
assessing multi-class classification performance as they offer
a thorough understanding of the model’s efficacy. Precision
highlights the accuracy of positive predictions by calculating
the ratio of accurately predicted instances to all instances
anticipated as positive. Conversely, Recall evaluates how well
the model captures all relevant cases by calculating the ratio
of all real positive instances to all correctly predicted positive
instances. The experimental results for the mentioned metrics
on different classifiers are presented in Table II.

Table II. PERFORMANCE EVALUATION OF COMPONENT 1 USING PRECISION,
RECALL, AND F1-SCORE ARE MEASURED ON MULTIPLE CLASSIFIERS.

Classification Model Precision Recall F1-Score
KNN 0.92 0.91 0.91
Random Forest 0.99 0.99 0.99
Logistic Regression 0.98 0.97 0.98
SVM 0.97 0.97 0.97
Multinomial Naive Bayes 0.89 0.89 0.89

Table II, indicating that Random Forest achieved a signifi-
cantly higher F1-Score compared to the other classifiers. This
could be attributed to its ensemble learning approach, which
combines multiple decision trees to improve classification accu-
racy and generalization. The inherent randomness in Random
Forest helps reduce overfitting and increases robustness, which
can lead to better performance, especially in complex datasets
like the one being analyzed.

2) Component 2 Evaluation: The performance of the second
component is evaluated using the following metrics:

• Cumulative Cost (CC): this metric measures the sum of
the costs associated with all tasks or components assigned
to the testbeds. The lower the CC, the more cost-effective
the solution, aligning with our objective of minimizing
expenses.

• Tardiness (Ti), also known as cumulative days difference,
represents the difference between the actual start date
and the requested start date for the tasks or components
assigned to the testbeds. The lower the tardiness, the more
efficient the solution, reflecting our aim for expedited
project timelines.

• Cumulative Reward (CR): this metric, denoted as CR, is
calculated by considering cost, priority, and days which
is defined as follows:

CR = K ·
N∑
i=1

(L− pi · ICi)−M ·
N∑
i=1

(Ti)−Makespan

(6)
where K, L, and M represent weights that require manual

configuration by end users. N denotes the total number of
requests, and Ti signifies the tardiness, calculated as the
real starting time minus the requested time. Moreover, for
each request, pi denotes the priority of the request and
ICi corresponds to the cost of executing that request on its
designated testbed. Makespan in 6 represents the total time
required to complete a set of tasks on a given set of resources.

D. Performance comparison between Q-Learning and First
Come, First Served (FCFS) scheduling approaches

As reviewed earlier in Section II, various approaches have
been proposed for scheduling testbeds and environments in
the state of the art. Among these methods, we have chosen to
compare the performance of our proposed AI-based solution
with the First Come, First Served (FCFS) scheduling approach.
FCFS is widely utilized due to its simplicity and straightforward
rule: it schedules the first request to arrive and allows it to run to
completion. It is important to note that in certain real industrial
cases, FCFS scheduling can enhance efficiency compared to
more complex and advanced scheduling techniques. This is
because FCFS prioritizes simplicity and immediacy, ensuring
that tasks are processed in the order they are received. In
scenarios where tasks have similar priorities or where quick
turnaround times are critical, FCFS can provide a straightfor-
ward and effective solution. Additionally, FCFS minimizes the
overhead associated with decision-making and prioritization,
making it suitable for environments where resource allocation
needs to be rapid and uncomplicated [7]. However, it is
also crucial to acknowledge that FCFS may not always
be the optimal choice, particularly in situations where task
priorities vary significantly or where certain tasks require high
costs. In such cases, more sophisticated scheduling algorithms,
including AI-based approaches, may offer better performance
by dynamically adjusting resource allocation based on various
factors, such as task urgency, resource availability, and overall
system optimization goals. Therefore, while FCFS remains a
valuable and widely used scheduling strategy, its effectiveness
ultimately depends on the specific requirements and constraints
of the given scenario. As mentioned earlier, this case study
involves the utilization of multiple testbeds and requests, each
operating within distinct timelines. The study adheres to a
set of rules extracted from EAB’s industrial projects, which
govern the allocation and scheduling of resources. These rules
are meticulously applied to ensure the accuracy and relevance
of the study’s findings to real-world industrial scenarios. For
the training of the Q-learning model, the following has been
initialized:

117Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 4. Performance comparison of Component 2 with Q-learning and FCFS approaches, utilizing cost, tardiness, priority, and reward metrics.

1) The release timetable: each element is generated as a
discrete random integer variable ranging from 0 to 20
(representing different starting weeks) with a uniform
distribution.

2) The compatibility table: each element is generated as a
boolean variable with a uniform distribution. Additionally,
at least one testbed is compatible with each request.

3) The testbeds cost table: each element is randomly chosen
from a set of real cost numbers of the testbeds provided
by the industrial partner.

4) The priority table: each element is generated as a
discrete random integer variable ranging from 1 to 5.
The distribution decreases from 1 to 5, simulating that
most requests have low priority while only a few requests
have high priority.

5) The duration table: each element is generated as a discrete
random integer variable ranging from 1 to 6 (representing
different numbers of weeks). The distribution of 2 is
higher while others are the same, simulating that the
number of requests requiring two weeks is relatively
higher based on our observation of real data.

Figure 4 presents a comparative performance study of the
Q-learning and First-Come-First-Served (FCFS) scheduling
approaches. This study delves into the metrics of cumulative
cost, tardiness, priority, and reward as they relate to the number

of processed requests. The results are encapsulated within
three graphs, each depicting a unique aspect of performance
and providing valuable insights into the effectiveness of
the scheduling methods. Figure 4a demonstrates that the Q-
learning method consistently surpasses FCFS in terms of
cost optimization across different request volumes. This trend
persists, highlighting the robustness of the Q-learning approach
in reducing costs by up to 17% compared to the FCFS
approach. Contrarily, Figure 4b demonstrates FCFS’s strength
in minimizing tardiness. It consistently exhibits high efficiency
in this aspect compared to Q-learning. The Q-learning model
excels in prioritizing both the cost-optimized allocation of
testbeds for each request and their associated priorities. As
depicted in Figure 4c, with the increase in requests, both
strategies demonstrate a similar and consistent rise in rewards.
Furthermore, the Q-learning approach outperforms the FCFS
model, showcasing its superior performance as the workload
intensifies. This convergence of reward trajectories highlights
the comparable overall performance between Q-learning and
FCFS, with Q-learning demonstrating its effectiveness in
managing increasing request volumes. When the number of
requests escalates from 100 to 400, employing the Q-learning
approach leads to a significant 19% growth in the overall cumu-
lative reward compared to the FCFS approach. In conclusion,
the Q-learning algorithm offers a more economical solution

118Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

despite its tendency to incur more tardiness compared to
FCFS. The cumulative reward evaluation illustrates a noticeable
trend of reward growth favoring Q-learning over FCFS. This
trend suggests that Q-learning gradually outperforms FCFS in
optimizing task allocation, showcasing its capability to achieve
higher rewards as the number of requests increases. The Q-
learning model used for comparison was trained over 1000
episodes with a learning rate of 0.1 and a discount factor of
0.9. This rigorous training regime underscores the reliability
of the findings and the robustness of the Q-learning approach
in scheduling testbeds effectively.

V. DISCUSSION AND FUTURE DIRECTION

The main objective of this study is to design, implement, and
evaluate an AI-based expert system dedicated to scheduling
C-RAN testbeds for diverse applications. In pursuit of this
goal, we present the following contributions:

• Multiple Natural Language Processing (NLP) based ap-
proaches are used to extract critical keywords, enabling
end users to configure and schedule a C-RAN testbed
effectively. The extracted keywords are later embedded
and presented in the GUI of the proposed solution in this
study.

• Multiple machine learning models are employed to predict
configurations for C-RAN testbeds based on end-user
input.

• A Reinforcement Learning approach has been proposed
for the optimal scheduling of testbeds, utilizing Q-learning
to identify feasible time slots.

• These outlined phases are seamlessly integrated into a
Python-based tool.

However, during conducting this study, several challenges
have been faced including the lack of sufficient and balanced
datasets makes the usage of oversampling necessary which
may affect the model’s performance in production due to
overfitting [2]. Moreover, some potential threats to the validity
of the obtained results in this study can be summarized as
follows. Addressing these threats through sensitivity analysis,
robust experimental design, and validation against real-world
data can strengthen the reliability and generalizability of the
results.

• Simulation assumptions: the results may be influenced
by the assumptions made in the simulation environment.
Assumptions regarding testbed compatibility, request
priorities, and cost distributions could impact the gen-
eralizability of the findings to real-world scenarios.

• Parameter sensitivity: the performance of the algorithms
could be sensitive to the choice of hyperparameters,
such as learning rate, discount factor, and exploration-
exploitation trade-off in the case of Q-learning. Small
variations in these parameters may lead to different results
and interpretations.

• Algorithm initialization: the initial state of the Q-learning
algorithm, including the initialization of Q-values and
exploration strategy, could impact the learning process

and subsequent performance. Variations in initialization
methods may yield different results.

• Environmental dynamics: the simulation environment may
not fully capture the complexity and dynamics of real-
world industrial scheduling scenarios. Factors, such as
changing priorities, unexpected events, and resource con-
straints could influence the performance of the algorithms
differently in practice.

• Evaluation metrics: the choice of evaluation metrics,
such as cumulative cost, tardiness, and reward, may not
fully capture the overall performance of the scheduling
algorithms. Other important factors, such as resource
utilization, scalability, and robustness, should also be
considered for a comprehensive evaluation.

The future scope of this paper may involve transitioning
to a multi-label categorization paradigm. In contrast to the
existing method, multi-label categorization acknowledges the
potential overlap or presence of distinct qualities by allowing
the simultaneous examination of multiple test beds for a
given set of functionalities. This transition would empower
the model to identify more intricate linkages and nuances in
the data, fostering a more comprehensive understanding of the
underlying patterns. Expanding to multi-label categorization
has the potential to unveil previously undiscovered aspects
of predictive power. This is especially relevant in situations
where a group of selections may concurrently belong to several
testbeds. Such an extension could result in a classification
model that is more resilient and adaptable, effectively handling
scenarios in which examples exhibit different attributes and
simultaneously belong to different categories. The enhanced
model’s ability to capture complex relationships within the
data may lead to more accurate predictions and a deeper
insight into the intricacies of the underlying system. Moreover,
in this paper, our focus was on scheduling the currently
existing testbed. However, the same approach can be extended
to the creation of new testbeds in response to upcoming
requests. In practice, testbeds can be commissioned for a
limited period, leveraging the provided metadata specified in
the submitted build requests. The decision on whether to retain,
decommission, or update a testbed can be informed by the
nature of upcoming requests. This expansion of the approach to
include the creation of new testbeds allows for a more dynamic
and adaptive system. The system can respond proactively to
emerging requirements, optimizing resource allocation not only
for the current testbeds but also for the potential introduction
of new ones. This adaptability enhances the overall efficiency
and responsiveness of the scheduling system, ensuring that the
available resources are aligned with the evolving needs of the
testing environment. Utilizing the above-mentioned approach
has several advantages, particularly in terms of energy efficiency
and environmental impact. The approach’s adaptability to create
new testbeds based on upcoming requests ensures that the
testing environment can scale efficiently. This scalability is
essential for accommodating growth in testing demands without
compromising energy efficiency.

119Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

VI. CONCLUSION

Test optimization plays a crucial role in the software
development life cycle, and effective scheduling of testbeds
and environments stands out as a key strategy for achieving this
optimization. In this paper, we have introduced, implemented,
and evaluated our proposed approach and tool for scheduling
C-RAN testbeds to facilitate testing across various applications.
The AI-based expert system presented in this study provides a
user-friendly GUI, allowing end-users to input requests in the
form of high-level functions and metadata. The system com-
prises two main components. The first component automatically
predicts and presents configurations that include the capability,
capacity, and required features for testing a C-RAN application.
The second component prioritizes testing requests for execution
based on their metadata. Empirical evaluations conducted at
Ericsson AB, combined with an analysis of results from an
industrial project, confirm that the proposed AI-based system is
a practical tool for scheduling testbeds effectively. Furthermore,
the proposed system exhibits versatility in handling a diverse
set of testing requirements and testbeds with distinct config-
urations. Its adaptability is evident in dynamically receiving
and analyzing upcoming testing requests, providing different
decisions based on the inserted requests. This adaptability
ensures that the system remains responsive to changing testing
needs and effectively manages the scheduling of testbeds
accordingly. By optimizing the utilization of testbed resources,
our approach not only improves operational efficiency but also
aligns with sustainable practices. The dynamic management
of testbeds, powering them on and off based on demand,
contributes to energy efficiency and reduced environmental
impact. This holistic approach positions our AI-based expert
system as a comprehensive solution for testbed scheduling,
combining user-friendliness, adaptability, and sustainability
for an enhanced testing environment. In conclusion, while
First Come, First Served (FCFS) offers a straightforward and
easily implementable approach to scheduling, the utilization of
reinforcement learning, such as Q-learning, presents significant
advantages in handling dynamic environments, large datasets,
and improving accuracy over time. The continuous learning
capability of reinforcement learning algorithms allows for
adaptability to changing conditions and optimization of resource
allocation strategies. We need to consider that AI/ML-based
approaches to industrial processes require an initial investment
in terms of cost and effort. However, the return on investment
typically outweighs these initial expenses [15] [16]. The
enhanced efficiency, improved resource allocation, and ability to
adapt to evolving conditions offered by reinforcement learning
justify the adoption of such advanced techniques in industrial
settings. Therefore, while FCFS and other traditional scheduling
and optimization approaches remain viable options in certain
scenarios, the recommendation is to leverage reinforcement
learning algorithms for scheduling tasks in dynamic and data-
intensive environments. This strategic shift towards AI/ML-
based approaches promises to unlock new levels of productivity
and efficiency in industrial operations, ultimately leading to

substantial gains in performance and competitiveness.

ACKNOWLEDGMENTS

This work was supported by the VINNOVA grant 2023-
00244 through the D-RODS project.

REFERENCES

[1] S. Tahvili, “Multi-criteria optimization of system integration
testing”, Ph.D. dissertation, Mälardalen University, Dec. 2018,
ISBN: 978-91-7485-414-5.

[2] S. Tahvili and L. Hatvani, Artificial Intelligence Methods for
Optimization of the Software Testing Process With Practical
Examples and Exercises, Elsevier, Ed. Elsevier, Jun. 2022,
ISBN: 978-0323919135.

[3] A. Younis, T. X. Tran, and D. Pompili, “Bandwidth and energy-
aware resource allocation for cloud radio access networks”,
IEEE Transactions on Wireless Communications, vol. 17, no. 10,
pp. 6487–6500, 2018.

[4] M. Felderer, E. P. Enoiu, and S. Tahvili, “Artificial intelligence
techniques in system testing”, in Optimising the Software
Development Process with Artificial Intelligence, F. C. José
Raúl Romero Inmaculada Medina-Bulo, Ed., Springer, Jun.
2023, ISBN: 978-981-19-9947-5.

[5] A. Arisha, P. Young, and M. El Baradie, “Job shop scheduling
problem: An overview”, in International Conference for
Flexible Automation and Intelligent Manufacturing (FAIM 01),
2001, pp. 682–693.

[6] N. Sariff and N. Buniyamin, “Comparative study of genetic
algorithm and ant colony optimization algorithm performances
for robot path planning in global static environments of different
complexities”, Jan. 2010, pp. 132–137.

[7] T. Aladwani, “Types of task scheduling algorithms in cloud
computing environment”, Scheduling Problems-New Applica-
tions and Trends, pp. 1–12, 2020.

[8] Y. Fonseca-Reyna, Y. Martinez, J. Cabrera, and B. Méndez-
Hernández, “A reinforcement learning approach for scheduling
problems”, Investigacion Operacional, vol. 36, pp. 225–231,
Jan. 2015.

[9] Y. M. Jiménez, “A generic multi-agent reinforcement learning
approach for scheduling problems”, PhD, Vrije Universiteit
Brussel, vol. 128, 2012.

[10] J. Kaur, O. Singh, A. Anand, and M. Agarwal, “A goal program-
ming approach for agile-based software development resource
allocation”, Decision Analytics Journal, vol. 6, p. 100 146,
2023, ISSN: 2772-6622.

[11] A. Anand, S. Das, O. Singh, and V. Kumar, “Resource
allocation problem for multi versions of software system”, in
2019 Amity International Conference on Artificial Intelligence
(AICAI), 2019, pp. 571–576.

[12] Z. Wang, K. Tang, and X. Yao, “Multi-Objective Approaches
to Optimal Testing Resource Allocation in Modular Software
Systems”, IEEE Transactions on Reliability, vol. 59, no. 3,
pp. 563–575, 2010.

[13] P. Runeson and M. Höst, “Guidelines for conducting and re-
porting case study research in software engineering”, Empirical
Softw. Engg., vol. 14, no. 2, pp. 131–164, Apr. 2009, ISSN:
1382-3256.

[14] A. Singh, Real time optimization of testbeds, https://github.
com/Animesh963/Real-time-Optimization-of-Testbeds, 2024.

[15] H. Eljak et al., “E-learning-based cloud computing environment:
A systematic review, challenges, and opportunities”, IEEE
Access, vol. 12, pp. 7329–7355, 2024.

[16] S. Tahvili et al., “Cost-benefit analysis of using dependency
knowledge at integration testing”, in The 17th International
Conference On Product-Focused Software Process Improvement,
Nov. 2016.

120Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

https://github.com/Animesh963/Real-time-Optimization-of-Testbeds
https://github.com/Animesh963/Real-time-Optimization-of-Testbeds

	Introduction
	Background and Related Work
	The Proposed solution
	Input Data
	Component 1
	Component 2
	Optimization
	Expected Output

	Empirical Evaluation
	Unit of analysis and procedure
	Case Study Report
	Performance Evaluation
	Component 1 Evaluation
	Component 2 Evaluation

	Performance comparison between Q-Learning and First Come, First Served (FCFS) scheduling approaches

	Discussion and Future Direction
	Conclusion

