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Abstract—Passive Acoustic Monitoring (PAM) using compu-
tational intelligence techniques offers new avenues for biodi-
versity conservation, particularly in identifying and monitoring
species within tropical ecosystems. While various methods exist
for animal sound identification, a comprehensive understand-
ing of their advantages and disadvantages is often lacking.
This work evaluates five methods for automatically identifying
species vocalizations across different taxonomic groups using
an acoustic dataset from a Colombian agricultural ecosystem.
We conducted a comparative analysis of supervised techniques,
including Convolutional Neural Networks (CNN), Random Forest
(RF), and Support Vector Machine (SVM), as well as unsuper-
vised methods such as spectral clustering, DBSCAN, and the
Learning Algorithm for Multivariate Data Analysis (LAMDA)
3pi, evaluating their species detection performance through the
F1-Score metric. Our research underscores the critical role of
methodological selection in achieving accurate species identifica-
tion. Furthermore, this study advances the understanding of clus-
tering interpretation, illustrating its potential beyond bioacoustic
studies. It presents how unsupervised learning techniques can
be valuable in scenarios characterized by limited labeled data,
common in tropical ecosystems, and high uncertainty regarding
the number of clusters obtained. This approach facilitates the
exploration of prototype patterns, aiding species association and
potentially extending to other areas requiring insight into uniden-
tified clusters. This study offers valuable insights into selecting
suitable tools for bioacoustic studies, emphasizing the need for
comprehensive input preparation for model training. The findings
underscore the potential of PAM and computational strategies
in furthering biodiversity research and conservation efforts,
effectively addressing the challenges of species identification and
clustering interpretation.

Keywords-Machine learning, Deep learning, Clustering, Bioa-
coustics, Soundscape, Species identification.

I. INTRODUCTION

Monitoring ecosystems and their species is crucial for
understanding and conserving biodiversity [1]. Traditionally,

species identification has been performed through direct ob-
servation, which faces significant challenges, such as detecting
individuals in densely vegetated areas common in tropical
ecosystems. Therefore, it is essential to have alternatives that
support this task. Passive Acoustic Monitoring (PAM) emerges
as an alternative tool that enables the identification of patterns
in ecosystems using sound from different sources, such as
biological organisms, geophysical phenomena, and human
activities [2]. This alternative involves deploying acoustic
sensors to record sounds across different areas, thereby serving
as a helpful tool to detect the presence of animal species at
a specific location and time, answering biological questions
that help identify the conservation state of ecosystems due to
external impacts [3].

The evolution of sensor technology has significantly en-
hanced the collection of acoustic data, allowing sampling for
months at a time, recording every minute, resulting in vast
volumes of acoustic recordings that must be processed and
analyzed by biology and ecology experts [4], [5]. In the case
of acoustic animal identification, this process, if conducted
manually, demands extensive time to identify specific species’
vocalizations or calls within each recording. Automatic species
call detection algorithms offer a solution by employing various
computational intelligence techniques to detect and classify
animal vocalizations or calls from diverse taxonomic groups
[6]–[11].

Generally, available methodologies encompass a series of
stages, such as signal processing, in the case of machine
learning methods, segmentation, and feature extraction stages,
and finally, the implementation of algorithms to classify
species calls. Many of these proposals are implemented in
software solutions, such as Avisoft [12], Arbimon [13], and
Kaleidoscope Pro [14], offering a practical application of
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these methodologies. On the supervised side, commonly used
computational intelligence techniques include Convolutional
Neural Networks (CNN) [8], [15], [16], Random Forest [17],
[18], Support Vector Machine [18], [19], and Hidden Markov
Models [12]. Meanwhile, in the unsupervised domain, tech-
niques such as spectral clustering [14], LAMDA - Learning
Algorithm for Multivariate Data Analysis - [10], [16], [20],
and DBSCAN [21] are available.

Each technique within species identification brings its own
set of characteristics and advantages, tailored to address dis-
tinct research questions ranging from species-specific, individ-
ual identification to the detection of multiple animal species.
While supervised methodologies dominate the field, requiring
extensive, labeled datasets for model training [22], unsuper-
vised identification methods are necessary. These approaches,
free from the constraints of prior species knowledge or labeled
data, offer the potential to uncover data patterns indicative of
specific species in a habitat, especially in countries with high
biodiversity like Colombia, where unknown species to science
still exist, making the process of obtaining large, labeled
datasets difficult. However, the challenge with unsupervised
techniques, such as clustering, primarily revolves around in-
terpreting the results. Accurately associating each cluster with
a particular species requires time and expert knowledge.

This work aims to analyze and compare different machine
learning and deep learning methodologies, encompassing su-
pervised and unsupervised approaches, proposed for automat-
ically detecting calls and vocalizations of multiple animal
species in soundscapes. Additionally, by leveraging the unsu-
pervised approach proposed in [10], we performed an analysis
to interpret clusters and automatically assign them to specific
species. The performance of each method was assessed using a
collection of audio recordings from the Colombian agricultural
ecosystem. Our objective was to facilitate the selection of the
most appropriate methodology tailored to the specific research
problem, thereby advancing the field of bioacoustic monitoring
by identifying the most effective tools for species identification
in soundscapes.

The structure of this article is organized as follows: Section
II outlines the data utilized, a description of the characteristics
of the analyzed algorithms, and a description of clustering
interpretation. Section III presents the results obtained from
our analysis. Finally, conclusions and future work are drawn
in Section IV.

II. MATERIALS AND METHODS

A. Study site and acoustic dataset

The data used in this work were provided by An-
tioquia’s Herpetological Group (GHA), collected via pas-
sive acoustic monitoring conducted in a rural area of
the municipality of Puerto Wilches, Santander, Colombia
(7◦21′52.5”N, 73◦51′33.0”W ). The area of this study site is
primarily dominated by oil palm plantations, accounting for
75% of the land, of varying ages. Additionally, it encompasses
a diverse mixture of secondary vegetation (7.6%), forest
patches (6.13%), grasslands (5.5%), and aquatic vegetation

zones (3.2%). The region is dotted with several buildings and
crisscrossed by a secondary road network that serves the palm
oil and livestock industries.

The analyzed dataset is composed of acoustic data from the
audible and ultrasonic spectrum. Audible data consists of a
subset of 207 recordings from the primary collection (19,598
recordings), which were rigorously labeled by experts to make
the comparison. Experts found 11 species, including six bird
species, four anuran species, and one primate. This dataset was
collected using a Song Meter Mini device (Wildlife Acoustics,
Inc.), configured to record one minute every 10 minutes with a
sampling rate of 48 kHz. The ultrasonic dataset consists of 197
recordings collected in the same location as the audible dataset
using a Song Meter Mini bat device (Wildlife Acoustics,
Inc.), recording 15 s every 15 min with a sampling rate of
384 kHz. In these recordings, 7 species of bats were found.
Labels provided by experts were used for the training process
of supervised methods and the validation of unsupervised
methods.

B. Computational intelligence methods for species identifica-
tion

The selection of computational intelligence methods for
multi-species identification started with a detailed literature
review to ascertain the most widely used and popular method-
ologies in the field. This preliminary phase aims to identify
techniques that have been effectively implemented in both soft-
ware applications and open-source code environments. Fur-
ther, our analysis examined both supervised and unsupervised
learning approaches, ensuring a comprehensive understanding
of their application in species identification tasks. The selected
approaches are described as follows:

1) Arbimon [13]: Arbimon is a free web-based platform
that enhances passive acoustic monitoring with cloud storage
and data analysis capabilities. It utilizes artificial intelligence
algorithms, such as Random Forest for the supervised classi-
fication of animal vocalizations and includes a BETA version
of a clustering tool that employs the DBSCAN algorithm for
enhanced vocalization detection and categorization. The anal-
ysis in this software starts with uploading audio databases to
the web platform and organizing them into playlists, which are
crucial for the model’s training phase. The platform facilitates
audio labeling through a pattern matching tool by selecting
the acoustic pattern of interest, streamlining the training of
the Random Forest model with identified species presences
and absences. Additionally, Arbimon is developing an unsu-
pervised tool that includes Acoustic Event Detection (AED)
and cluster analysis, using the same database for Random
Forest model training. This process requires setting species-
specific parameters, such as species frequency information
and thresholds, to detect and classify vocalizations accurately.
The importance of precise parameter configuration is crucial
to achieving accurate detection and analysis outcomes. Each
parameter was fine-tuned according to specific species require-
ments.
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2) Raven Pro/Koogu [23]: This methodology integrates
the widely recognized Raven Pro software, created by the
Cornell Lab of Ornithology [24], known for its spectrogram
visualization and manual species calls labeling tools, with
the Koogu Python library, designed to train a convolutional
neural network model using Raven’s selection table. The
process involves manually labeling species calls on the Raven
platform, organizing species labels and audio recordings, as
well as configuring parameters in the Convolutional Neural
Network (CNN) model. In this case, a DenseNet architecture
was trained, where parameterization included species-specific
bandwidth information, the number of training epochs, and
batch size. Upon completion of the model’s training, the
results can be incorporated back into Raven Pro to observe the
identification of species calls. In our study, each species was
trained individually, allowing for the fine-tuning of parameters
to the specific requirements of each species, ensuring precise
and effective species identification.

3) Kaleidoscope Pro [14]: This software requires a paid
license and is designed to detect animal vocalizations in audi-
ble and ultrasound spectrum through a Hidden Markov Model
(HMM) and spectral clustering. The use of this software begins
with the preparation of an initial database containing audio
recordings of the targeted species. This software demands
the configuration of several parameters, such as frequency
range, the maximum and minimum detection durations, and
the maximum time interval between vocalizations, all of which
were manually adjusted for each species under study. The
clustering analysis option also requires setting the maximum
distance to the cluster center, the Fast Fourier Transform
(FFT) window size, the number of maximum states, and the
maximum cluster number. In this case, after testing with
different values, most parameters were maintained at their
default settings; the FFT window size was adjusted according
to the frequency range of interest (5.33 ms [128 @0–12 kHz,
256 @13–24 kHz, 512 @25–48 kHz, and 1024 @49–96 kHz]).

4) Unsupervised Acoustic Animal Identification [10]: This
unsupervised methodology proposed by Guerrero et al. (2023)
employs the LAMDA 3pi algorithm to analyze acoustic
data without needing pre-defined labels in the database. The
methodology simultaneously facilitates analysis across the au-
dible spectrum and ultrasound for multiple species. It includes
a segmentation stage that isolates potential acoustic events
or species calls, followed by a feature extraction stage that
captures relevant acoustic information from each segment.
The process culminates in a fuzzy clustering stage, which
groups segments based on acoustic similarity, enabling the
simultaneous identification of multiple species associated with
various taxonomic groups. Although this method effectively
identifies vocalizations in all frequency ranges simultaneously
and does not require user-defined parameters, it has difficul-
ties with cluster interpretation. The generation of numerous
clusters, while beneficial for exhaustive audio analysis, poses
a significant challenge for researchers due to the number of
clusters to analyze and the inherent intra-cluster variation
that results from data uncertainty. This aspect can make

the manual examination of each cluster labor-intensive and
complex, underscoring a critical consideration in the balance
between comprehensive analysis and practical feasibility.

C. Clustering interpretation

Addressing a prevalent challenge in species identification
via clustering, we focus on the manual linking between
clusters and species-specific vocal patterns. While this method
is not constrained by the requirement for labeled data, the pro-
cess of interpreting clustering results can be time-consuming
for experts. We used the fuzzy clustering approach presented in
[10], which decomposes the soundscape into acoustic entities
named sonotypes (clusters). This method not only validates the
possibility of associating sonotypes with species calls but also
reveals that the aggregation of these clusters provides insights
into acoustic biodiversity patterns over time. Remarkably, this
biodiversity pattern aligns with those identified by alterna-
tive methods, with the distinctive advantage of enabling the
breakdown of these patterns by individual species, a feature
unattainable with other techniques.

To streamline the process, our study also ventured into
automating the linkage of sonotypes to species by utilizing
readily available public datasets or targeted species-specific
recordings, aiming to minimize manual efforts in interpreting
clustering outcomes.

Pursuing the methodology described in [10], we generated
clusters or sonotypes and segmented calls of species detected
in the study site utilizing directional recordings from preceding
studies and datasets from sources such as xeno-canto [25]. We
extracted pivotal time-frequency features from these segments,
including minimum and maximum vocalization frequencies,
bandwidth, peak frequency, and call duration. These features
are also automatically extracted when generating sonotypes.
The fuzzy clustering approach enables the determination of
each segment’s membership degree to its assigned cluster,
thereby identifying the cluster’s representative element, the
segment with the highest degree of belonging to its cluster.

The association of sonotypes to species was then achieved
by calculating the Euclidean distance between the median
value of the bandwidth, maximum, and minimum frequency
bands of the representative elements and the 10 segments with
the highest membership values of each sonotype, alongside
the same features of manually species segments. Scatter plots
illustrating the minimum and maximum frequencies of both
species segments and sonotypes aided in visually confirming
similarities.

D. Evaluation metrics

In the performance evaluation section, the effectiveness
of the algorithms for detecting species calls was assessed
using confusion matrices. These matrices were constructed by
comparing the original labels from the database against the
predictions made by each model, providing values for True
Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN). True Positives represent correctly
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identified presences, True Negatives denote correctly identi-
fied absences, False Positives indicate presences incorrectly
classified as absences and False Negatives refer to absences
incorrectly classified as presences.

To evaluate model accuracy, especially in cases with un-
balanced datasets across different classes, the F1-Score metric
is extensively used. This metric, derived from the confusion
matrix for each analyzed methodology, offers a balanced
measure of a model’s precision and recall. The F1-Score is
calculated using the following formula:

F1− score = 2× precision × recall
precision + recall

(1)

where precision is defined as the ratio of correctly predicted
positive cases to the total predicted positives, indicating the ac-
curacy of positive predictions and recall measures the ratio of
actual positives accurately identified by the model, reflecting
the model’s ability to capture all relevant cases.

III. RESULTS

A. Analysis of computational intelligence methods for species
identification

We applied the different methods to our dataset for species
identification across different frequency bands, including those
within the ultrasound range. For each species, models were
constructed using Arbimon in both supervised and unsuper-
vised manners, as well as in the case of Raven Pro/Koogu

and Kaleidoscope Pro, highlighting the general limitations
of simultaneously identifying multiple species and species-
specific parameterization. Figure 1 showcases the F1-score
results achieved with each method, detailing performance
across broad taxonomic groups and specific species.

The literature presents several detection proposals for ultra-
sound species analysis. Within this domain, Kaleidoscope Pro
and the approach introduced by Guerrero et al. [10], are dis-
tinguishable in their methodologies for effectively identifying
both ultrasound and audible species.

Utilizing the Random Forest algorithm, Arbimon exhibited
high performance in accurately detecting mammal species and
certain bird species. This level of accuracy, however, was not
mirrored in the detection of anuran species, with the models
notably underperforming in identifying Leptodactylus fuscus
and Leptodactylus fragilis.

The advent of Arbimon’s BETA tool, which adopts a cluster
analysis via the DBSCAN algorithm, signaled a significant
advancement in the identification capabilities for mammals
and some avian species, marking an improvement over its
supervised analog. Yet, it too faltered with anurans, unable
to discern the calls of Leptodactylus fuscus and Leptodacty-
lus fragilis. Achieving results with this methodology proved
challenging due to clustering interpretation. There is no tool
to automatically associate clusters with species labels. Ad-
ditionally, the fine-tuning of detection parameters, such as
duration, bandwidth, and threshold areas, became pivotal, as
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Figure 1. Comparative F1-score results for species identification methodologies. The bar graph on the left delineates the F1-score performance of different
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they significantly influenced the detector’s sensitivity to the
diverse vocalization characteristics inherent to each species.
An improper adjustment of these parameters often resulted
in either an overabundance of irrelevant acoustic events or
a failure to identify critical species-specific vocal segments,
which subsequently compromised the clustering process.

The methodology developed by the Cornell Lab of Ornithol-
ogy seamlessly combines Raven Pro’s capabilities for manual
call segmentation and time-frequency feature extraction with
the Python library Koogu for generating Convolutional Neural
Network (CNN) models. This approach has displayed remark-
able efficacy, showcasing high F1-scores across all examined
taxonomic groups and most of the species cataloged, thus
reinforcing CNNs’ versatility and powerful pattern recogni-
tion capabilities. CNNs’ ability to automatically learn and
distinguish subtle differences in spectrogram patterns enables
precise species identification from acoustic data.

Koogu is specifically designed to recognize labels from
a Raven Pro selection table, making the initiation of the
CNN model training straightforward. However, this process
faced its own set of challenges, particularly when bandwidth
configurations were narrowly aligned with the spectral ex-
tremities of segments identified in Raven Pro. To circumvent
this constraint, a strategy involving the use of expanded
bandwidths was adopted, allowing for a more generous and
inclusive detection range.

The performance of Kaleidoscope Pro, in contrast, was
found to be less effective than other methods. This tool tended
to produce segments of prolonged duration that captured a
variety of calls and classified them based on the most promi-
nent pattern in the spectrogram. Consequently, this often led
to clusters representing insect stridulations due to their high-
intensity frequencies. Moreover, the presence of clusters with

vocalizations from multiple species complicated the process
of selecting a representative cluster for each species. While
Kaleidoscope Pro provides a manual interface for cluster-to-
species association, the task can be complex and prone to
inaccuracies when sifting through a vast number of clusters,
particularly when some contain a significant amount of noise.

Finally, the approach proposed by Guerrero et al. [10],
capable of concurrently detecting species across different
frequency bands, showcased F1-scores exceeding 0.75 for all
taxonomic groups and species, ultrasound range included. A
notable advantage of their fuzzy clustering model is calculating
the membership degree of the segments to their assigned
clusters. This capability enables further data processing by
setting a segment membership threshold. This threshold helps
to minimize the number of false positives in the final detec-
tions, thereby enhancing the accuracy of species detection.
This method also allows for a graphical cluster-to-species
association using the acoustic pattern and the sound of the
cluster segments. However, similar to Kaleidoscope Pro, this
task can be time-consuming if there are a large number of
clusters.

B. Clustering interpretation

Implementing the methodology described in Section II-C,
our endeavor in clustering interpretation sought to streamline
the automatization of associations between species-specific
vocalizations and corresponding sonotypes. Within the scope
of the audible spectrum study conducted, the LAMDA 3pi
algorithm generated 130 clusters, 6 of them successfully
associated with 5 out of the 11 species accentuated in Section
III-A. This subset of species encompasses three avian species:
Cryptorellus soi, Dendroplex picus, and Nyctidromus albicol-
lis, along with two anurans: Dendropsophus microcephalus
and Leptodactylus fuscus. Vocalizations for these species were
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Figure 2. Clustering association results displaying the relationship between sonotypes and species-specific calls. Scatter plots show the minimum frequency
(FminVoc) and maximum frequency (FmaxVoc) features for sonotypes (blue dots) and manual call segments (red dots) for select bird and anuran species.
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extracted from public datasets, with avian calls being curated
from xeno-canto [25] and anuran calls sourced from Am-
phibiaWeb [26]. This alternative provides valuable support for
experts by minimizing the requirement for extensive labeled
data to train models.

Figure 2 presents a visual representation of two pivotal
acoustic features for the automatic association of species. Each
blue and green dot in this figure represents an acoustic segment
automatically generated utilizing Guerrero et al. [10] proposed
framework. Conversely, the red dots depict manually extracted
segments from public databases, showcasing the intersection
and validation of automated clustering against recognized
species-specific acoustic signatures.

In the case of anuran species Dendropsophus micro-
cephalus, it was observed that more than one cluster could
be associated with a single species (sonotype 13 and 48). This
represents an advantage, as it allows for the description of
the variability in the species’ calls across multiple clusters,
thereby revealing distinct vocal patterns. Such granularity in
clustering could prove beneficial for future analyses, offering
insights into the diverse calls produced by species.

Due to the need for more information on species present
in the study location in public databases, we were able to
automatically associate just 5 of 11 audible species that we
know are present on the site. Labels for the other species
identification were just used for cluster association validation.

IV. CONCLUSION AND FUTURE WORK

This work provides pivotal insights for researchers seeking
to select the most fitting tools for biodiversity exploration
via acoustic monitoring and automatic call recognition. Our
comparative study assessed the performance of various com-
putational intelligence methods, focusing on both machine and
deep learning techniques across different taxonomic groups us-
ing audio recordings from an agricultural ecosystem. Evaluat-
ing these methods with the F1-Score metric, we uncovered the
critical need to adapt the choice of methodology to the specific
requirements of targeted species. This adaptation is crucial, as
we observed significant variances in effectiveness across birds,
amphibians, and mammals, each presenting unique challenges
that demand specific analytical solutions. Additionally, our
findings highlight the importance of comprehensive input
preparation for model training (labels, audio formats, among
others) and understanding the specifications and requirements
of each tool to maximize the advantages of passive acoustic
monitoring and automatic detection in biodiversity studies. We
also present an approach to cluster interpretation and species
association using minimal data, making clustering a promising
alternative for grouping patterns and labeling them without
extensive expert intervention when labeled data is scarce.

Our results underscore the importance of selecting method-
ologies based on the specific biological question, whether
it involves identifying calls from a particular species or
detecting multiple species within an ecosystem. Supervised
learning methods, particularly CNNs, are highly effective
when sufficient labeled data is available and when the focus

is on specific species identification. In contrast, unsupervised
methods provide valuable alternatives in data-scarce environ-
ments, especially when the goal is to identify the biophonic
components of the landscape. Furthermore, the significance of
streamlining parameter configuration and adopting strategies
that enhance the reproducibility of results was emphasized.
For instance, leveraging Koogu to train classifiers from Raven-
exported selection tables facilitates the sharing and replication
of experimental data among collaborators, potentially enhanc-
ing model accuracy through retraining with Koogu-generated
results, in a similar way as the methodology presented by
Guerrero et al. [10].

By comparing machine learning and deep learning ap-
proaches, we pinpointed machine learning’s superior capability
in understanding and interpreting the features pivotal to the
success of the learning model. This insight was particularly
evident in our analysis with the LAMDA 3pi clustering algo-
rithm, where features extracted from species calls, commonly
utilized by experts for manual identification, aided signifi-
cantly in cluster interpretation through membership degree
information. This methodology not only deepens our compre-
hension of clustering results but also illustrates its applicability
in other scientific domains facing similar challenges of unde-
fined cluster numbers and a scarcity of labeled examples for
supervised learning.

While we successfully established automatic species-to-
cluster associations based on frequency attributes such as
minimum and maximum frequencies, bandwidth, and peak
frequency, the overlap of these features among different
species poses a challenge in discrimination. To overcome
this, employing additional information, such as unique sig-
nal features identifying vocalization differences within the
same frequency ranges, may prove effective. This approach
can significantly improve species differentiation, showing the
importance of selecting and fine-tuning features critical to
accurately identifying and conserving biodiversity.

Future research should focus on advancing supervised meth-
ods to reduce dependence on large amounts of labeled data
by using novel computational frameworks, such as few-shot
learning. Additionally, addressing the challenge of model
parameter setting is crucial in practical applications. From an
unsupervised perspective and related to clustering interpreta-
tion, future research should explore the clustering variability
observed within species calls, where multiple clusters can be
associated with a single species. This approach allows for
the analysis of call patterns, their features, and the specific
circumstances under which they are produced, providing a
deeper understanding of species dynamics. Integrating acoustic
data with other ecological datasets, such as habitat character-
istics and climate data, can provide a deeper understanding of
ecosystem health and dynamics, leading to more robust tools
for biodiversity monitoring and conservation
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and Ecopetrol under contract FOGR09.
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