
Surface Defect Detection System for AI Vision-Based Press Formed Products 

Dong Hyun Kim, Seung Ho Lee, and Jong Deok Kim* 

Department of Computer Science and Engineering 

Pusan National University 

Pusan, South Korea 

e-mail: {dhkim1106, issyong, kimjd}@pusan.ac.kr 

 

 
Abstract— The appearance of a product is the first thing 

consumers evaluate for defects, making surface inspection 

crucial. Among these exterior products, surface inspection of 

press-formed products is still done manually by visual 

inspection, prompting exploration of solutions for surface 

inspection automation through machine learning systems to 

adapt to various on-site changes. For machine learning-based 

surface defect detection models, there is often insufficient defect 

data for training, and a small amount of defect data makes it 

difficult to improve the learning performance. Particularly, as 

manufacturing processes stabilize, defect occurrences decrease, 

making it time-consuming to collect desired defect training data. 

This paper proposes a method for training models for defect 

detection by using only normal product data to train the defect 

detection model. It identifies defects on the product surface by 

generating defect data from normal data input, calculating the 

difference between normal data through restoration, and 

identifying defects on the product surface through connection 

and separation. 

Keywords-AI; Surface Detection; Press Formed Product; 

Anomaly detection. 

I.  INTRODUCTION 

With the advent of the Fourth Industrial Revolution, the 
manufacturing industry is hastening its transition to smart 
factories, which integrate Information and Communications 
Technology (ICT) into traditional manufacturing processes. In 
this process, technologies for process automation and quality 
inspection automation are rapidly growing. However, surface 
defect inspection of products in press processing processes 
still relies on visual inspection by workers, who directly 
examine defects or damages on the product surface with their 
eyes. Such visual inspections are influenced by factors, such 
as ambient lighting, worker fatigue, and inspection 
proficiency. In particular, in high-speed press lines, due to 
short cycle times and mass production systems, there is a high 
probability of mass consecutive defects if surface defects 
occur. In such cases, it is crucial to prevent foreign matter 
ingress in mold areas and to rapidly detect surface defects to 
prevent mass consecutive defects. If undetected defective 
products are delivered to customers, a full inspection for 
product defects must be conducted, leading to increased costs. 

This study proposes a method for acquiring surface 
anomaly data of products using stainless steel, which exhibits 
intense light reflection, and suggests a surface anomaly 
detection method for press processed products based on 
unsupervised learning using normal data for cases where 

anomaly data is insufficient. Through this, we aim to confirm 
the potential for replacing conventional visual inspections, 
quantifying surface inspections, and contributing to 
productivity and quality enhancement through continuous 
defect prevention. 

This study aims to answer the following research 
questions: 

1. How can machine learning models be effectively 
trained for surface defect detection with limited defect 
data? 

2. What the are potential limitations of using only 
normal product data for defect detection? 

This paper focuses on a subset of open issues, including 
the scarcity of defect data in stable manufacturing processes 
and the time-consuming nature of collecting sufficient defect 
data for model training. Potential limitations of our approach 
include the accuracy of defect generation from normal data 
and the reliability of defect identification in varying on-site 
conditions. 

The structure of the paper is as follows: In Section 2, we 
discuss related work and the background of surface defect 
detection. Section 3 outlines the design and implementation of 
our proposed method. Section 4 presents the results and 
analysis. In Section 5, we conclude with lessons learned and 
future work directions. 

II. RELATED WORK 

This section reviews the existing literature and methods 
related to surface defect detection in manufacturing processes. 
It covers the target products and production processes, the 
type of defects encountered, and the current methods used for 
surface inspection. Additionally, it discusses unsupervised 
learning based on normal images for anomaly detection, 
highlighting recent advancements and methodologies. 

A. Target Products and Production Processes, and Types 

of Defects  

The Decor Frame, as shown in Figure 1, is attached inside 
the drum of a washing machine to act as a filter membrane, 
filtering out laundry residues. It is a product produced through 
press processing, using stainless steel material. The 
manufacturing process consists of two stages: after material 
input, the first stage involves drawing, trimming, and piercing 
processes using a 200-ton servo press, while the second stage 
involves bending the joints using a 150-ton servo press. 
Subsequently, after inspection, the products are packaged. 
During the inspection process, surface defect inspection is 
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conducted by workers through visual inspection. Figure 2 
depicts the raw materials and products by process. 

 

 
Figure 1. Target product (Décor Frame). 

 

 
Figure 2. Raw material and products by process. 

 
In the manufacturing process, various types of defects 

occur in each process. In the first process, defects, such as 
burrs, necking, sleeves, and fractures occur, while in the 
second process, chip and hook defects occur. The monthly 
average defect rate is 2.86%, with process defects accounting 
for 2.65%. Among them, chip defects on the product surface 
account for 1.89% of the process defect rate, representing 
71%. This indicates a very high frequency of chip defects. 
These chip defects occur when foreign substances in the air or 
vinyl and chips generated during cutting in the first process 
adhere to the molds of the first or second process. Among 
these, the defect types to be detected through surface 
inspection are necking, sleeves, fractures, and chips. Figure 3 
illustrates the types of defects by process and the types of 
defects targeted for surface inspection [1]-[2]. 

 
Figure 3. Defect Types by Process and Surface Inspection Defect Types. 

 
This analysis highlights the importance of detecting and 

addressing these common defects early in the production 
process, manufacturers can reduce waste, lower costs, and 
improve customer satisfaction. 

B. Surface Inspection Method 

In the manufacturing process, the product surface 
inspection system utilizes a rule-based system based on 
machine vision. It is primarily used for visual inspection, 
defect detection, part position determination and 
measurement, product identification, alignment, tracking, and 
also for detecting surface defects. The advantage of this rule-
based technology is its ability to quickly confirm and make 
decisions based on given rules. However, it can be considered 
rigid as it is programmed to only do what is specified by the 
rules. There are limitations in accommodating the diverse 

problems of the manufacturing field that constantly change 
since the rules are not self-added, changed, or updated [3]. 

In contrast, a Machine Learning System aims to emulate 
human-like behavior by learning new rules autonomously and 
discarding outdated ones, rather than relying on fixed rules. 
While rule-based systems can easily be applied in controlled 
environments, such as manufacturing lines, many undefined 
tasks occur in real work environments. To address the 
practical problems of these dynamically changing 
manufacturing environments, transitioning to machine 
learning should be considered. In particular, Deep Learning 
plays an increasingly significant role as it can intelligently 
predict and make decisions through image recognition [4]-[7]. 

C. Unsupervised Learning Based on Normal Image 

Unsupervised learning based on normal data is used when 
collecting defective training data is difficult or labeling of 
training data is challenging. Among them, there is DRÆM, 
which particularly deals with pixel-level anomaly detection as 
an image anomaly detection method. This method is based on 
reconstruction and segmentation, consisting of anomaly 
generation through perturbed noise, and is structured by 
combining a reconstruction network and a discriminative 
network [8]-[10]. As shown in Figure 4, the structure and steps 
of reconstruction-based anomaly detection are detailed. 

 
Figure 4. The structure and steps of reconstruction-based anomaly 

detection. 

 
Examining the structure, in the first step, instead of using 

defective images as training data, defective images are 
generated using a Perlin noise generator (as illustrated in 
Figure 4). The Perlin noise generator creates anomaly shapes, 
which are combined with various shapes of different original 
images, and then synthesized with normal original images to 
generate defective images. 

In the second step, the generated defective images are 
passed through the reconstructive sub-network to train them 
to be restored to the original images with defects removed. 
Here, the reconstruction loss, which is the difference between 
the original images and the restored images with defects 
removed through the reconstructive sub-network, is calculated 
to evaluate how closely the original images have been restored 
during the reconstruction training. 

In the third step, the generated defective images through 
Perlin noise and the restored images through the 
reconstructive sub-network are combined (Concatenated) and 
passed through the discriminative sub-network to separate the 
anomaly mask images of the anomaly shapes. In other words, 
segmentation learning is performed with the goal of obtaining 
the anomaly mask images corresponding to the anomaly 
shapes applied to the original images. The segmented anomaly 
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mask images are then compared to the noise area images 
generated by the Perlin noise generator through focal loss 
calculation to assess the performance of the discriminative 
network. Figure 5 depicts the entire process of the 
reconstruction-based anomaly detection methodology [11]- 
[16]. 

 

 
Figure 5. The entire process of reconstruction-based anomaly detection 

methodology. 

 
This reconstruction-based anomaly detection method 

shows promise for detecting subtle anomalies in images, 
making it a valuable tool for improving quality control in 
manufacturing processes. 

III. DESIGN AND IMPLEMENTATION 

This section describes the methodology and 
implementation steps taken to develop the surface defect 
detection system. It includes the setup of the environment for 
collecting learning data, the configuration of machine vision 
components, and the application of unsupervised learning 
techniques based on normal images. Each subsection provides 
detailed explanations of the processes involved, including 
data collection, anomaly generation, and network training for 
effective surface defect detection.  

A. Collect Learning Data 

We have set up the environment to acquire product images 
for training. We configured the image capture conditions 
through lighting, including cameras and lenses, to ensure that 
the defective areas of surface defective products are 
distinguishable in the captured product images. Machine 
vision comprises cameras, lenses, lighting, and a 
controller/system package. However, in this paper, we used 
dome & coaxial type lighting. By processing the acquired 

images with contrast enhancement, we were able to measure 
surface attribute information, such as inclination, roughness, 
and reflectivity, enabling us to obtain images capable of 
discriminating surface defects, such as chips, scratches, and 
stains. The changes in surface properties due to lighting are 
illustrated in Figure 6. 

 

 
 

Figure 6. Changes in surface properties due to lighting. 

 
In this paper, it was decided to collect attribute images of 

vertical and horizontal surfaces according to the inclination of 
illumination. To collect a total of four images per product, two 
images per product part, we set up an image data collection 
environment in the manufacturing site. 

 

 
Figure 7. Training data indicating defective areas. 

 
As the tilt of the illumination changes, the results of 

capturing product images show that surface defects, such as 
indentation are more clearly distinguished in either the INH 
(lighting directions in horizontal) or INV (vertical part when 
light is horizontally or vertically projected. Figure 7 represents 
the defects in the images. 

B. Unsupervised learing based on normal images 

Unsupervised learning based on normal images utilizes 
the reconstruction-based anomaly detection methodology. It 
generates defective images from normal images and trains 
these generated defective images separately using a 
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reconstructive sub-network and a discriminative sub-network. 
The reconstructive sub-network is trained to pass the defective 
images, which are synthesized with noise, through to obtain 
the original images. Meanwhile, the discriminative sub-
network is trained to detect the noisy regions. The 
configuration diagram of the reconstruction-based anomaly 
detection system is shown in Figure 8. 

 

 
Figure 8. The configuration diagram of the reconstruction-based anomaly 

detection system. 

The sequence of the unsupervised learning process 
consists of three steps: anomaly data generation, 
reconstructive network calculation, and discriminative 
network calculation. This process involves training based on 
normal product data in the initial state when sufficient 
defective product data is not available. 

Anomaly generation involves inserting noise to generate 
defective product images. First, when a normal product image 
is input, Perlin noise, which has the same size as the normal 
product image, is generated. The Perlin noise image 
undergoes binarization based on a threshold to create a noise 
area image. Here, the noise area image is created such that if 
the value of a pixel in the Perlin noise image exceeds the 
threshold (0.5), it is set to 1; otherwise, it is set to 0. Multiple 
noise data are added to the noise area image, and then 
combined with the normal product image. The parts of the 
noise area image that are set to 1 represent noise data, while 
those set to 0 represent the normal product image, resulting in 
the generation of synthesized defective product images. 

The reconstructive sub-network restores defective product 
images to normal product images. Defective product images 
synthesized during anomaly generation are passed through the 
reconstructive sub-network, which outputs defect-removed 
images of the same size as the defective product images. 
These defect-removed images remove the defective parts from 
the synthesized defective product images, restoring them to 
normal product images. The difference (Lrec) between the 
defect-removed images and the original normal product 
images is calculated. A smaller difference indicates that the 
reconstructive sub-network has effectively removed defects, 
producing defect-removed images similar to the original 
normal product images. 

The discriminative sub-network extracts defective areas 
by comparing the difference between the synthesized 
defective product images and the defect-removed images. In 
the anomaly generation process, the synthesized defective 
product images and the defect-removed images are combined 
(concat) and inputted into the discriminative sub-network, 
producing defect area images of the same size as the product 

images. These defect area images calculate the difference 
(Lfocal) with the noise area images. A smaller difference 
indicates that the discriminative sub-network can identify the 
difference between the defective product images and the 
defect-removed images, thereby extracting defective areas. A 
sample implementation image of the discriminative sub-
network is shown in Figure 9. 

 

 
Figure 9. Sample implementation image of the discriminative sub-network. 

 
The differences calculated in both networks, Lrec and Lfocal, 

respectively modify the weights of the reconstructive network 
and the discriminative network. Figure 10 illustrates the 
process of unsupervised learning based on normal data. 

 

 
Figure 10. The process of unsupervised learning based on normal data. 

 

IV. PERFORMANCE ANALYSIS 

Performance evaluation of the learning model can be done 
by directly inspecting the data due to the small number of 
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defective images and classifying the cases. Judging product 
defects means segmenting the scratch areas in the result 
images of the discriminative network. We will describe 
normal detection cases and false detection cases and analyze 
the results. 

A. Good segmentation case 

 
Figure 11. Good segmentation case. 

 
Figure 11 depicts a good segmentation case. The left side 

of Figure 11 shows the original surface image of the defective 
data, with the defect indicated by a black spot in the center of 
the image. The right side of Figure 11 shows the result image 
after passing through the discriminative network, where only 
the defective area of the product is segmented in white. 
However, the result image is not entirely black in the areas 
excluding the defective region. This indicates that the 
reconstruction network did not properly restore the image in 
areas with curvature when generating the scratch-removed 
image. 

B. Bad sementation case 

 
Figure 12. Bad segmentation case. 

 
Figure 12 represents a case where the defective area of the 

original image and the curved surface area are not well 
distinguished. In Figure 12, the curved portion at the top is not 
properly restored. The presence of a large white area 
indicating differences in the curved portion suggests that there 
is significant disparity between the scratch-removed image 
and the original image in the curved area. In other words, the 
reconstruction network fails to generate the scratch-removed 
image accurately. This phenomenon particularly occurs 
frequently in vertical inspections at the top portion, speculated 
to be due to less color variation compared to horizontal 
inspections. 

 
Figure 13. Result of performance evaluation (Accuracy, Precision, Recall, 

F1-score). 

 
The number of image data used for the final performance 

evaluation is 200 for each of the top (S1) and bottom (S2) 
regions, with lighting directions in horizontal (INH) and 
vertical (INV) inspection methods. Figure 13 illustrates the 
performance evaluation for each image. In the top region (S1), 
an accuracy of 75% for INH and 63% for INV was observed, 
while in the bottom region (S2), an accuracy of 70.5% for INH 
and 87% for INV was achieved. The accuracy, precision, 
recall, and F1-score for the learning results are as shown in 
Figure 13. 
 

V. CONCLUSION AND FUTURE WORK  

The press processing process is a method of transforming 
metal materials in the form of coils or plates into desired 
products using presses and molds. With the proliferation of 
smart factories, the press processing process has actively 
utilized Information and Communication Technology (ICT) 
not only to monitor abnormal conditions of equipment 
through facilities and various sensors but also to enhance 
productivity. Moreover, activities aimed at automating the 
surface defect detection of appearance products for quality 
improvement have consistently taken place. It is predicted that 
surface defect detection technology through computer vision 
and machine learning will rapidly advance in the future. 

This paper proposed and validated a surface defect 
detection method for press-processed products using stainless 
steel materials with intense light reflection. The method 
utilized unsupervised learning based on normal data to detect 
surface defects in products with insufficient abnormal data. 
The performance of the model was evaluated using accuracy, 
precision, recall, and F1-score metrics based on a confusion 
matrix, achieving a meaningful level of performance. 

Throughout the study, several lessons were learned, 
including the effectiveness of the unsupervised learning 
approach using normal data, particularly in environments with 
insufficient defect data. However, challenges, such as the 
variability in lighting conditions and the difficulty in 
generating realistic defect images from normal data were 
encountered. The reconstruction network occasionally failed 
to accurately restore images in areas with high curvature, 
leading to false positives. 

Future work will focus on addressing these limitations by 
enhancing the defect generation process to create more 
realistic defect images that better represent actual defect 
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conditions, potentially using advanced noise generation 
techniques and integrating domain knowledge about common 
defect patterns. Additionally, improving the robustness of the 
detection model under varying lighting conditions through 
adaptive lighting systems or image normalization techniques 
will be prioritized. Exploring the integration of additional 
sensor data, such as thermal or ultrasonic sensors, could 
provide more comprehensive defect detection capabilities. 
Furthermore, expanding the dataset to include a wider variety 
of defect types and conditions will help to further validate and 
improve the model’s performance, making the defect 
detection system more reliable and applicable in diverse 
industrial settings. 
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