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Abstract—Cooperative positioning has appeared as a promis-
ing strategy to improve the accuracy of vehicle positioning
systems, particularly in urban environments where traditional
static base stations are used. This paper proposes an approach
for selecting vehicles to serve as dynamic reference stations to
improve positioning using Artificial Intelligence, which enables
the reduction of costs associated with correction services. By
leveraging the presence of nearby vehicles, our method aims
to improve the precision of positioning in challenging envi-
ronments like urban canyons. To achieve this goal, we utilize
simulation data to create a comprehensive dataset, capturing
various environmental conditions and vehicle dynamics. We then
employ machine learning techniques to use this dataset and
identify optimal vehicles that can serve as reference stations for
improving the positioning accuracy of other vehicles in real-time.
By continuously learning and adapting to changing conditions,
our approach offers a flexible and robust solution for cooperative
positioning in dynamic urban settings.

Keywords-Cooperative Positioning; Machine Learning; Localiza-
tion; GNSS.

I. INTRODUCTION

The navigation systems are an essential component of
intelligent vehicles and are being used in Advanced Driver
Assistance Systems (ADAS) applications [1]. In current era of
developing autonomous systems, the combination of Coopera-
tive Positioning (CP) and Machine Learning (ML) methodolo-
gies represents an excellent pathway towards attaining accurate
vehicle positioning.

CP is identified as a potentially effective approach to
enhance the precision of location estimation. In contrast to
conventional positioning systems that depend exclusively on
data from individual sensors, CP utilize the combined capa-
bilities of numerous sensors to create a cooperative scenario
where information from various sources is effortlessly merged
and integrated [2].

Improving the position accuracy for each vehicle in a non-
cooperative environment can be achieved using static base
stations serving as references. Assuming these stations are
positioned within the same area as the Global Positioning
System (GPS) receiver, it can be assumed they are affected
by the same error sources, considering similar atmospheric
conditions. However, this may not bring benefits in terms of
infrastructure cost and implementation, as it requires a large
number of scattered static reference stations, for example, in a
city [3]. Additionally, independent positioning using low-cost
GPS receivers may result in low positioning accuracy, in some

scenarios in the order of tens of meters, which is unacceptable
for vehicles requiring high accuracy in their position while in
motion. However, vehicles that rely just on dynamic reference
stations, especially if they use only egocentric positioning, can
not achieve high precision in positioning. The advantage of
relative positioning lies in the use of distance measurements
obtained through Global Navigation Satellite System (GNSS)
signals, which offer higher precision. The purpose of CP is
to mitigate errors associated with multipath and Non-Line-Of-
Sight (NLOS). Thus, vehicles in the same area can contribute
with measurements to enhance positioning, reducing the re-
liance on a large number of static reference base stations.
Furthermore, it may enable even a vehicle using a low cost
GPS system to increase the accuracy in the estimated position
through measurements from others [4].

Assigning responsibility to vehicles to be used or viewed as
dynamic reference stations requires consideration of several
aspects to facilitate decision-making. Factors such as the
vehicle’s operating area, susceptibility to multipath effects, rel-
evance of measurement errors (e.g., pseudorange errors), and
shared data with other vehicles (e.g., common satellites) must
be taken into account [5]. This is important as it enables the
subsequent application of error correction services algorithms,
such as differential positioning or Real-Time Kinematic (RTK)
[6]. However, obtaining real-time errors for decision-making
regarding whether a vehicle can be considered a reference
station is challenging. Therefore, the use of simulators can
facilitate the validation of this concept and the creation of
a dataset incorporating measurements obtained by a receiver.
This dataset can serve as a training basis for Artificial Intelli-
gence (AI) algorithms to develop a model capable of assessing,
in real-time, the likelihood of a vehicle being considered a
dynamic reference station on a scale from 0 to 1, without the
need to directly examine factors such as pseudorange errors.

Creating datasets to address the mentioned challenge can
be difficult using real-world technology. To establish the CP
topic, it is necessary to utilize multiple vehicles with reference
systems that can serve as ground truth. However, these systems
are often expensive, such as the iTrace [7], which can cost
thousands. Therefore, switching to simulators enables the
translation of real-world scenarios into a simulation envi-
ronment, facilitating the acquisition of data in a convenient
manner. The software utilized for data generation in this work
includes the Car Learning to Act (CARLA) [8] and GPSsoft
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Satellite Navigation toolbox from MATLAB [9].
This paper contributes to improve individual positioning for

vehicles in challenging scenarios, such as urban canyons, by
exploring GNSS, other signals from infrastructure and vehicles
in cooperation.

The paper is organized as follows. Section 2 describes
fundamental knowledge regarding GNSS, CP, and ML, ex-
plicitly discussing their features. Sections 3 and 4 describes
the metodology regarding the pipeline implemented to reach
the results, which are described in Section 5. Finally, the
respective conclusions and the work plan for the future are
presented in Section 6.

II. FUNDAMENTALS

A. Cooperative Positioning

Intelligent Transport Systems (ITS) have potential to ad-
dress challenges that still exist today, such as road accidents
or incidents. The CP is part of these ITS because improving the
individual positioning of each vehicle, it makes it possible to
share this information with vehicle control system for decision
making purposes [10].

CP methods rely on the exchange of position data between
multiple stationary or mobile nodes to improve the accu-
racy of positioning [11]. Several traditional CP systems have
been created with the intention of improving the precision
of GPS positioning. Nonetheless, for these systems to work
autonomously the GPS signal coverage must be adequate.
Furthermore, CP methods have directed their attention towards
enhancing positioning in regions with limited signal visibility.
As a result, it was decided to utilize multi source sensor fusion
to mitigate the limitations of each individual source. In regions
characterized by suboptimal GPS accuracy, the utilization of
Inertial Measurement Unit (IMU) sensor, Radio Detection And
Ranging (Radar) or Light Detection and Ranging (LiDAR)
data may facilitate a more precise car position [12].

Nevertheless, CP is not devoid of challenges and limitations.
One significant challenge lies in ensuring seamless communi-
cation between vehicles, particularly in scenarios with high
traffic or intermittent network connectivity. Additionally, the
effectiveness of CP may be hindered by factors such as
obstructions, signal interference, and varying environmental
conditions, which can impact the reliability of positional data
exchange [13].

B. Factors contributing to GNSS errors

Pseudoranges are utilized to determine positions on the
Earth’s surface, necessitating a minimum of four satellites
for calculation. A fourth satellite is required to adjust for
receiver clock errors [15]. Pseudorange, considered a pseudo-
distance between the satellite and the receiver, is obtained
through the ”time of flight” of radio signals. Measurement
values for pseudo-range can be affected by various error
sources during signal transmission from the satellite to the
receiver. Minor timing errors can result in several meters of
deviation in the measured pseudo-range. For instance, an error
of ten nanoseconds in satellite time measurement introduces

Figure 1. Multipath interference and NLOS reception situation [30].

three meters of error in the pseudorange measurement. Several
sources of GNSS errors are:

• Ionospheric and tropospheric errors
• Satellite clock errors
• Receiver clock errors
• Ephemeris data errors
• Receiver noise
• Multipath error
• Dilution of Precision (DOP)

Multipath errors represent the most common source of GNSS
error [14]. They arise from interference and the reception of
satellite signals beyond direct line of sight. Multipath is a
phenomenon of propagation of radio signals. The reception of
multipath signals occurs when there is more than one replica
of the signal reaching the receiver, for example, the line-of-
sight signal plus a reflected copy. The reception of only a
reflected signal is known as NLOS, which is more problematic
than multipath. Figure 1 shows how the buildings can cause
distortion in data transmitted by a satellite.

C. Correction Services

In the preceding subsection, we explored various sources of
error that can impact GNSS positioning accuracy. Mitigating
these errors is essential for improving performance, achieved
through corrections applied to raw GNSS observations.

In literature, two primary approaches to error handling
are identified: Observation Space Representation (OSR) and
State Space Representation (SSR) [16]. OSR-based systems
utilize GNSS observations (pseudo-range and/or carrier-phase)
from a reference station, optionally incorporating corrections
from a network of Continuously Operating Reference Sta-
tions (CORS). Errors in OSR are typically aggregated as
a single sum, varying in accuracy depending on available
measurements and infrastructure [17]. In contrast, SSR-based
systems adopt a distinct strategy for error management. Here,
physical errors affecting GNSS observations are decorrelated,
modeled, and represented flexibly. SSR enables users to correct
their positions using observations from a single receiver and
network corrections.

Actually, several correction services are available for both
OSR and SSR approaches. Notable OSR services include Dif-
ferential GNSS (DGNSS), Real-Time Kinematic (RTK), and
Network-RTK. For SSR, available services include Satellite-
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Based Augmentation Systems (SBAS), Precise Point Position-
ing (PPP), and International GNSS Service (IGS) products.

The primary function of reference stations is to enhance
positioning. These stations are commonly positioned at well-
known reference points, elevated locations with minimal signal
obstruction, or high vantage points. In this paper, like in [3]
we propose the concept of dynamic reference stations, where
receivers installed on certain vehicles can serve as references
for others needing to enhance their positioning accuracy. By
sharing raw measurements, such as pseudoranges in an OSR-
based approach like Differential GNSS (DGNSS), it becomes
feasible to improve positioning accuracy. This is because errors
associated with atmospheric conditions are consistent within
the same geographical area, and additionally, errors associated
with satellite orbits and clocks are cancelled. These methods
are advantageous when used with phase measurements, which
have higher precision than using only pseudoranges.

D. Machine Learning

A comprehensive overview on ML applications using GNSS
data may be found in [18]. These investigations highlight the
use of machine learning in GNSS. The three most common
algorithms used are neural networks, decision trees, and Sup-
port Vector Machines (SVM). We decided use three different
approaches for this study: Long Short-Term Memory (LSTM),
Convolutional Neural Networks (CNN), and Random Forest
(RF).

1) LSTM: Neural Networks are part of a larger category
that includes Recurrent Neural Networks (RNNs). RNNs are
specialized for dealing with sequential or time series data and
their distinguishing feature is the ability to retain memory from
previous inputs to influence current inputs as well as outputs.

For addressing the issue of vanishing gradients and manag-
ing long-term dependencies effectively, LSTM was introduced.
Cells in the hidden layers of LSTM networks have three
gates, an input gate, an output gate and a forget gate. These
gates open or close based on input and the last hidden state
encouraging selective retention or deletion of information
respectively by an LSTM. LSTMs have been proven effective
in capturing long-term dependencies as shown by [19] [20]
and [21] among others due to this selectiveness in retaining
information over a long period of time.

2) CNN: CNNs are known as Convnets and are specialized
in analyzing visual data by detecting and recognizing patterns
through convolutions. They can be adapted to process various
signal data types although originally used for image analysis
[22].

Every layer of a CNN is an improvement over the one
before it and finds intricate designs. The process begins with
convolution operations that use filters to detect desired features
in the inputs [23].

CNN architecture usually include three kinds of layers:
convolutional, pooling and fully connected [24]. Convolution
layers are responsible for most computations as they traverse
the input images using filters to detect features. After convo-

lution layers, there are pooling layers which decrease spatial
dimensions while retaining important information.

3) Random Forest: The RF algorithms are a versatile
ensemble learning method applicable in both classification and
regression. It holds the view that by aggregating the forecasts
of many decision trees created while training, more accurate
and consistent results can be observed than with any single
tree alone [25].

During Training, RF builds an ensemble of decision trees.
A random selection from the features plus a fraction of the
training data are used to construct each decision tree. In a
decision-tree framework, which is binary comprising nodes
and branches, each internal node represents a value derived as
a result of applying a feature whereas class labels or numeric
values are contained in leaf nodes signifying classification
or regression respectively. This will help mitigate overfitting
problems and improve generalization.

As for RF voting system classification uses it to sum its
predictions while averaging works for regression at the end
of every training process for individual decision trees. For
classification purposes, this is seen as majority voting rule
in which if there is an odd number of votes within class
labels then they should be considered during final outcome
determination. However, ties imply no preference toward any
label but only balanced outcome distribution between involved
classes. Although this is the mean squared error criterion, the
mean predictor outperforms individual regressors as it provides
a more stable prediction [26].

III. METODOLOGY: CREATING THE DATASET AND INPUT
DATA

The simulated data is obtained from the CARLA simulator
in conjunction with Matlab’s SatNav Toolbox framework.
Figure 2 illustrates the organization of data from the simulator
side. CARLA is responsible for simulating the environment
and vehicles’ motion, thus allowing to generate reference
data (exact position of the vehicles) with other sensors, such
as the IMU and odometer (travelled distance). CARLA also
has a GNSS virtual sensor that can be configured to output
latitude, longitude and altitude whose configurable parameters
are the sensor bias and standard deviation. Since the CARLA’s
GNSS sensor model does not account for error sources such
as thermal noise, multipath, atmospheric delays, we used the
the SatNav Toolbox for Matlab instead. This tool takes into
account the error sources, mentioned previously, to generate
raw GNSS measurements (pseudoranges and carrier phases).
In order to represent the same 3D space in SatNav and
CARLA the satellites’ positions generated by SatNav had to
be converted from SatNav’s coordinate system to CARLA’s
coordinate system, such that they correspond to the same
position in both simulators.

A 20 minute simulation was run to generate synthetic
data from 6 vehicles moving in Town03 from the CARLA
simulator. Data was generated at a sample rate of 20 Hz.
The following data were obtained: vehicle’s true position;
vehicle’s received pseudoranges and carrier phases; ground
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Figure 2. Organization of GNSS data.

truth pseudoranges (for the GPS constellation, 24 satellites)
for each vehicle; and satellites’ positions. Other sensors’ data
were also generated for vehicles, e.g., IMU and odometer, but
were not used for the purpose of this paper.

Figure 3 is a schematic which represents the steps that were
taken to get to the dataset. To make it clear how we handled
the data, we added red boxes 1, 2, and 3. First, the dataset’s
features were chosen, and they can be seen in box number 2.
These are the pseudoranges, number of visible satellites, the
number of common satellites and the Geometric Dilution Of
Precision (GDOP).

A module called ”Reading error data” was added to the
labelling process to read data related to pseudorange and
position errors. The MinMaxScaler method, Equation 1, is
used to normalise the error values in Box 3. GDOP could
be used, but since most of the vehicles are in the same area,
the geometry of the satellites is almost the same, so it wasn’t
thought to be very useful. Instead, it was decided to add
it as a feature and not use it during the labelling process.
After normalisation, the inverse of the value that was found
is used as a score, and it is saved in the dataset file with
the other features. The Signal to Noise Ratio (SNR) could be
used if possible. But its simulation complexity indicates that it
needs to be handled carefully and cannot be obtained directly.
Besides that, SNR is not generated by SatNav toolbox.

normalizedValue =
X −Xmin

Xmax −Xmin
(1)

The score is a number between 0 and 1 which indicates how
well the vehicle is positioned and can be used as a dynamic
reference station. The value should be close to 1 if the vehicle
is to be used as a reference and vice-versa. Equation 2 is used
to compute the score.

Score = 1−
∑

(normPseudorangeEr × 0.5 + normPositionEr × 0.5)
(2)

The developed labeling algorithm starts reading the csv files
that contains all information regarding GNSS and vehicle data.
The data is divided into two parts: error data (pseudo range
errors, position errors) and features (nº of visible satellites,
common satellites between vehicles, GDOP). All error values

Figure 3. Data Pre-processing architecture, 1-Initial data, 2-selected features,
3-normalization and score calculation.

are normalized and a score for each vehicle can be obtained.
The final step is related to dataset format where a group of
features corresponds to a score value.

Table I presents a data distribution that demonstrates the
amount of data associated with scores. It is clear that there is
a difference between the lowest and highest scores. This could
present a challenge for the final results as the dataset is not
completely balanced. It can be said that a model’s performance
and reliability get better when the output provides a high score.

TABLE I
DATASET DISTRIBUTION, COUNTING THE NUMBER OF DATA RELATED TO

SCORES.

Label(target) Count
score <0.6 12847

0.6 ≥ score < 0.8 62508
score >0.8 68603

IV. MODEL TRAINING: EXPLORING LSTM, CNN AND RF

The dataset from the previous phase was trained using
LSTM, CNN and RF algorithms. The dataset is not directly
applicable to an AI model. Both data and neural network
models must be prepared. Python and PyTorch framework
library were utilised to create the models. Missing values are
difficult to handle because they can affect the final result. The
24 satellites in the GPS constellation are included in created
dataset, but they are not all visible at once. Missing values
were replaced by -1 in order to solve the issue. The dataset
had been divided using 60%, 20% and 20% of the data for the
training, validation and test phases, respectively. This type of
division is frequently applied to training data and is essential
to prevent overfitting or even imbalanced data related issues
in the future.

A. LSTM

LSTM algorithm requires a diferent data organization. Once,
this algorithm is based on series data it’s necessary to organize
the entire dataset in samples. Each sample contains a certain
number of time steps which represents a sequence of data. This
characteristic allows to identify not only vehicles that can be
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utilized as dynamic stations, but also detect an environment
scenario like entering or leaving urban canyons or other
challenging environments. This can provide a more complex
solution to the challenge that this paper is trying to solve.

Considering 6 timesteps per sample, a total of 3427 sam-
ples were obtained. The data shape array is represented by:
(number of samples, timesteps, number of features, number of
vehicles) and numerically by: (3427, 6, 4, 6). However, LSTM
does not support 4D arrays as input. To handle this problem, it
was necessary to reshape the array to 3D throught multiplying
the number of features by number of vehicles resulting in a
shape array of (3427, 6, 24).

In model implementation, it was decided to create two
simple models. The difference between them is related to the
number of internal layers, and the idea is to check the results
considering the model complexity.

Model 1 is initialized with an LSTM layer, two linear layers
and a Retified Linear Unit (ReLU) activation function. The
LSTM layer takes as input the size of the input data and
the size of the hidden layer. The first linear layer transforms
the output of the LSTM layer to an intermediate output and
the second linear layer transforms this intermediate output to
the final output size. ReLU activation function introduces non
linearity into the model [27].

During forward propagation the model initializes two ten-
sors with zeros, representing the initial hidden state and cell
state of the LSTM layer. These tensors are moved to the GPU
for faster computation. The model’s output is six values, which
represents the score for each vehicle.

The model is trained using the Adam optimizer with a
learning rate of 0.001. The training process is set to run for
1000 epochs and the batch size is set to 32. The size of the
hidden layer is set to 50.

B. CNN and Random Forest

We implemented a CNN as a regression model to predict
the score (target). The CNN model was chosen to prove the
effectiveness in capturing spatial patterns in data, which was
expected to be beneficial for our purpose. We tried to use
different configurations of the model by changing the number
of convolutional layers. The idea of this was to investigate
how the complexity of the model affects the performance. A
more complex model with more layers can potentially learn
more patterns in the data, but it also runs the risk of overfitting
to the training data. On the other hand, a simple model might
not capture all the relevant patterns, but it is less likely to take
overfitting.

The model was trained using the Adam optimizer with a
learning rate of 0.001. The Mean Squared Error (MSE) was
utilized in loss function during training, which measures the
average squared difference between the predicted and actual
values.

Regarding our Random Forest Regressor, we initialized it
with 100. Following the training phase, we used the trained
model to predict scores for our test data.

V. RESULTS AND ANALYSES

This section provides the results obtained using different
AI models. The performance of these models was assessed
through the training phases described in the previous section.
The algorithms were trained under the following computa-
tional conditions:

• Processor: AMD Ryzen Threadripper PRO 5995WX 64-
Cores

• GPU: NVIDIA RTX 4090
Processor capabilities like parallel processing, memory and

cache efficiency accelerates the training tasks. Utilizing Py-
Torch enhances performance, underscoring the importance of
processor choice in efficient tensor processing.

The results are presented using metrics commonly utilized
in regression problems [28], such as MSE and R square (R2).
Some plots are presented to compare the output of the model
with the respective true value. These plots were obtained
through test dataset.

From the perspective of the main topic associated with this
paper, we are evaluating how well we can develop a model
that allows us to assign a score to each vehicle in a given
area in real-time. This score will determine whether or not
the vehicle can be seen as a dynamic reference station to help
another vehicle improve its position.

A. LSTM

As previously mentioned, two models were developed. The
features utilized in these models are represented as follows:
the number of visible satellites is denoted as f1, the common
satellites as f2, the pseudoranges as f3 and the GDOP as f4.

TABLE II
LSTM RESULTS

Model ID Features Parameters MSE R2 Score
LSTM1.1 f1 12488 0.0002 0.9615
LSTM1.2 f1, f2, f3, f4 12488 0.0109 0.9011
LSTM2.1 f1 17078 0.0037 0.9120
LSTM2.2 f1, f3 17078 0.0021 0.9610

Table II presents the performance of two models. Among
the models evaluated, the first model, LSTM1.1, exhibits the
lowest MSE and the highest R2 Score. This suggests that
LSTM1.1 outperforms the other models. The feature ”number
of visible satellites,” employed in this model, appears to be
more effective in predicting the target variable compared to
the additional features utilized in other models. LSTM1.1
compared to LSTM2.1, only uses a single internal LSTM
layer. This could indicate that, given the data at hand, simpler
models may yield better results.

B. CNN

Table III presents different models changing the number
of convolutional layers: model c1 has two layers, model c2
has three layers, model c3 has 4 layers and model c4 has 10
convolutional layers.
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TABLE III
CNN RESULTS

Model Features MSE R2 Score
c1 f1, f2, f3, f4 0.000557 0.984
c2 f1, f2, f3, f4 0.000397 0.988
c3 f1, f2, f3, f4 0.000351 0.989
c4 f1, f2, f3, f4 0.000272 0.992

The features utilized remained consistent across all tests.
The results obtained were generally good, however, the model
c4 achieved the highest results. This model, in comparison
to the others, incorporates a higher number of convolutional
layers.

The superior performance of model c4 may suggest that
the additional convolutional layers helped the model to better
learn from the data and make more accurate predictions.

C. Random Forest

TABLE IV
RANDOM FOREST MODEL PERFORMANCE METRICS

Model Features Parameters MSE R2 Score
RF1 f1, f4 4515040 0.0017 0.9730
RF2 f1, f3, f4 20731525 0.0001 0.9993
RF3 f1, f2, f3, f4 19715917 0.0001 0.9992
RF4 f2, f3, f4 19716091 0.0001 0.9992
RF5 f1, f2, f3 19716415 0.0001 0.9992
RF6 f1, f3, f4 19859980 0.0001 0.9956

Table IV demonstrates that the Random Forest algorithm
achieved satisfactory results. Given its ease of implementation
and speed in producing results, it can be considered a viable
option for this dataset. The performance of the Random Forest
model across all evaluation metrics strongly suggests it as a
good algorithm to use with GNSS data.

D. Model results vs Groundtruth

Figure 4 presents the outcomes for the three distinct algo-
rithms utilized: LSTM, CNN, and Random Forest. The vertical
axis represents predicted values, while the horizontal axis
corresponds to ground truth values. These results are derived
from 20% of the total dataset, previously designated as the
test dataset.

Most values fit what would be expected, with notable perfor-
mance observed in the results generated by the Random Forest
algorithm. However, the LSTM achieved some anomalous
results regarding certain score values. This may be attributed
to the dataset nature and its application in time series based
algorithm.

VI. CONCLUSION AND FUTURE WORK

The main focus of this work is to determine possible vehi-
cles to be dynamic reference station and as well as to improve
an estimated position with precision using AI algorithms such
as LSTM, CNN and RF.

The algorithms utilized have demonstrated the potential
to achive promising results using GNSS data. However, this

Figure 4. Inference results. a) LSTM, b) CNN regressor, c) Random Forest.

approach still has some limitations and there is space to
improve the methodology. The main limitations are related to
dataset requirements for AI model applications, because using
incomplete data to train algorithms can result in inaccurate
results. GNSS data and missing data for non visible satellites
presents a significant challenge to be addressed. Additionally,
the number of vehicles may change over time.

Solutions to these challenges are related to obtaining more
data using a longer simutation, acquiring data for all 24 satel-
lites and alternative algorithms capable of handling varying
input data sizes. These algorithms could be transformers and
Graph Convolutional Networks (GCNs) [29].

The labeling method applied in this study was a direct
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approach considering only evaluation of the provided data.
However, it is intended that in the future an alternative labeling
method will be implemented, that may involve, for example,
the application of a method based on GNSS error corrections.
By leveraging data from simulations, it is possible to com-
pare the performance of error correction methods against the
available ground truth and create a dataset where labeling is
obtained using a similar scoring idea, but inversely reflecting
the positioning error after applying GNSS corrections. This
proposed approach, although more complex, aims to enhance
the robustness of the labeling process.
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