
A Comparative Analysis of CPU and GPU-Based Cloud Platforms for CNN Binary

Classification

Taieba Tasnim

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, U.S.A.

Email: ttasnim6386@tuskegee.edu

Mohammad Rahman
Department of Computer Science

Tuskegee University

Tuskegee, Alabama, U.S.A.

Email: mrahman@tuskegee.edu

Fan Wu
Department of Computer Science

Tuskegee University

Tuskegee, Alabama, U.S.A.

Email: fwu@tuskegee.edu

Abstract—This study explores how Convolutional Neural

Network (CNN) model performs in binary classification tasks,

particularly on a cloud platform configured with Central

Processing Unit (CPU) and Graphics Processing Unit (GPU)

resources. We conducted simulations of the CNN model for

binary classification with different parameters to compare the

CPU and GPU performances. We analyzed evaluation matrices,

emphasizing both binary classification accuracy and training

time. This analysis aims to facilitate the selection of a

computational platform by considering both budgetary

constraints and specific requirements.

Keywords- CNN; CPU; GPU; Cloud.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have become the

workhorse for image recognition tasks. Their power lies in

extracting relevant features from images using pooling

layers. This allows the network to make accurate predictions.

To achieve this, CNNs are trained on extensive datasets,

where they learn to identify features and classify images

through backpropagation. This automated training is guided

by human decisions in configuring network architecture and

parameters, ensuring that the CNN can accurately predict

new image labels once trained.

An essential step in effectively utilizing CNNs is verifying

their performance on different computing platforms,

including CPUs and GPUs. Evaluating performance across

these platforms ensures reliability, cost-effectiveness, and

adaptability. This process involves understanding each

hardware type's strengths and weaknesses, optimizing

resource usage, ensuring compatibility, and guiding

hardware-specific improvements. It also identifies current

limitations and explores new technologies, shaping the future

of computer development. A comprehensive evaluation

considers metrics beyond processing time, including

throughput, latency, memory consumption, and energy

efficiency. Standardized benchmark suites like DeepBench,

MLPerf, and TensorFlow Benchmark facilitate this process

across different setups [1].

This work evaluates CPUs and GPUs for CNNs,

emphasizing hardware selection's impact on performance,

focusing on binary classification tasks within cloud-based

environments. CPUs excel at sequential tasks and offer high

clock speeds, making them suitable for smaller tasks and

natural language processing on resource-limited devices.

Conversely, GPUs' parallel architecture optimizes them for

larger, complex CNNs, excelling in high-throughput, low-

latency tasks ideal for image recognition. This study extends

beyond traditional performance metrics to analyze cloud

environments' performance, efficiency, and reproducibility.

It addresses challenges such as resource variability and

provides insights into how hardware selection impacts the

performance and cost-efficiency of cloud-based machine

learning. Cloud computing supports this by allowing scalable

solutions across diverse CPU and GPU configurations,

enhancing CNN deployments' flexibility and potential.

In this research, our main contributions are outlined as

follows:

▪ We provide a detailed empirical analysis comparing

the performance of CNN binary classification tasks on

CPU and GPU platforms in a cloud environment,

highlighting the differences in training efficiency and

execution speed.

▪ Our study offers insights into the computational

resource utilization of CNNs, identifying how

different parameter settings of batch size and epoch

impact the performance of CPU and GPU hardware

platforms in binary classification tasks.

▪ We demonstrate the trade-off between training

duration and the performance capabilities of both

CPU and GPU hardware.

The paper is structured as follows: Section II covers the

literature review, Section III outlines the methodology,

including data sourcing, experimental setup, and training

environment. Section IV discusses evaluation metrics,

Section V analyzes the experimental findings, and Section VI

concludes with a summary and future research suggestions.

II. LITERATURE REVIEW

CNNs are pivotal in deep learning, excelling in various
applications. This review highlights that GPUs, with their
parallel processing capabilities, outperform CPUs by 2 to 24
times in CNN tasks due to CPUs' sequential processing
limitations [2]. Several recent studies confirm that GPUs
outperform CPUs in CNN tasks, particularly for extensive
datasets, due to their superior parallel processing capabilities
[3] [4] [5]. However, selecting hardware involves more than
speed; power efficiency and cost are also critical factors.

198Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Süzen et al. [6] noted the importance of these considerations.
Oh et al. revealed that, in embedded systems, CPUs achieved
65% of a PC’s GPU performance while consuming only 2.6%
of the power, making CPUs effective for resource-limited
tasks [7]. To enhance efficiency, optimizing CNN models
through techniques like pruning and quantization can reduce
computational complexity. Blott et al. explored these
methods, showing they are adaptable across hardware and
improve performance [8]. Existing research also investigates
benchmarking the performance of CPUs and GPUs for other
machine learning tasks, such as Long Short-Term Memory
(LSTM) networks, providing a broader understanding of
hardware capabilities across different neural network
architectures [9]. Machine learning predicts CNN execution
time, power, and memory usage, especially on GPUs. Bouzidi
et al. presented a model to aid researchers in hardware
selection, further illustrating the practical applications of these
predictive insights [10].

III. METHODOLOGY

A. CNN Architecture Overview

In this study, we explored the architecture of a CNN as a
fundamental framework for image classification tasks, as
shown in Figure 1 [11]. This illustration outlines the CNN's
evolution, starting with the input layer, followed by
consecutive convolution and pooling layers for feature
extraction, and culminating with a series of fully connected
layers that lead to the final classification output. Such an
architecture is adept at recognizing and interpreting the
intricate patterns in our dataset, consisting of high-quality
images of dogs and cats.

B. Data Acquisition

This research leveraged data from two primary sources:
Kaggle and Google, renowned for their comprehensive
datasets, including the well-known dog and cat datasets.
Kaggle provided a dataset that consists primarily of high-
quality images of dogs and cats, complete with detailed
metadata and labels. This dataset is particularly useful for
studies involving CNNs due to its focus on these animals.

Additionally, we utilized Google to assemble a distinct
dataset encompassing a variety of dog and cat breeds. This
diverse collection was pivotal in training our machine-
learning models. We also curated multiple datasets from these
sources to evaluate the machine learning algorithms'
performance effectively.

C. Tools and Training Environment

For the experiment setup, we leveraged Google Colab, a

Jupyter notebook environment, to train our CNN model [12].

This environment offers excellent support from Keras,

allowing for network implementation and training on Google

Cloud's GPUs and CPUs [13] [14]. Google Colab enables

simultaneous multi-CPU and GPU usage and offers high

training speeds, allowing network pruning without losing

prediction accuracy. We trained the CNN model on CPU and

GPU, benefiting from Colab's easy switching between

runtime environments. We trained the same CNN model on

both CPU and GPU, enhancing GPU performance with minor

code adjustments while keeping the model's structure

unchanged. Google Colab's dynamic resource allocation can

cause inconsistent performance. Hardware specs and

software versions, like TensorFlow or PyTorch, may also

vary [1]. To ensure reproducibility, we ran several

experiments to reduce resource limits and make the results

more reliable.

D. Hardware and Software Integration

Google Colab provides a convenient way to import data

from Google Drive. We uploaded our dataset to Google Drive

and mounted it on the Colab environment. After completing

CPU training, we transitioned to GPU. We improved tensor

operations for parallel processing, managed memory better,

adjusted GPU settings for efficiency, and changed precision

settings for faster and more accurate results (Figure 2) [11].

Once adjustments were made, we resumed GPU training and

monitored epoch and batch durations. Despite longer setup

times due to model compilation, the enhancements

significantly reduced GPU training times compared to CPU,

proving the effectiveness of our optimizations.

IV. EVALUATION METRICS

In this study, we employed several evaluation metrics to

assess our model's performance on unseen data, particularly

in classification tasks. This section briefly describes these

metrics, which are paramount for ensuring the practical utility

of any binary classification model. The True Positive Rate

(TPR) is central to this evaluation.

 True Positive Rate (TPR) =
TP

TP+FN
 (1)

Here TP (True Positives) is the number of correctly

predicted positive instances, and FN (False Negatives) is the

Figure 1. Diagram of a Convolutional Neural Network Structure. Figure 2. Comparative Analysis of CPU and GPU System Architectures.

199Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

number of positive cases incorrectly predicted as negative.

TPR quantifies the proportion of correctly identified

positive instances. This metric is particularly crucial in

scenarios where class imbalances exist, offering insights into

the model's ability to discriminate between classes

accurately. Training times were monitored to evaluate model

efficiency across different hardware setups, highlighting

trade-offs between accuracy and speed.

V. RESULT AND DISCUSSION

To evaluate the performance of GPU and CPU, we

embarked on an experiment where the initial step involved

training a model using an 8000-image dataset of dogs and

cats. Employing various batch sizes (16, 32, 64, and 128) and

epochs (1, 2, 3, 4, and 5), we meticulously observed the

execution time, noting changes as we adjusted these

parameters. An epoch in this context refers to a complete pass

through the entire dataset by the learning algorithm. This

setup paved the way for a comparative analysis, using a

smaller, 1000-image dataset to test the machines.

Building on this groundwork, Figure 3 presents a bar graph

comparing True Positive Rates (TPR) for CPU and GPU

across five epochs. The TPR fluctuates with each epoch,

peaking at the fifth where the GPU slightly outperforms the

CPU. However, the difference in TPR performance between

CPU and GPU is often negligible, indicating that both

platforms can achieve similar accuracy.

The trend of improvement in correctly identifying positive

instances is due to effective model learning, fine-tuning, and

enhanced feature extraction with each epoch, with GPUs

offering a performance edge due to their superior parallel

processing capabilities.

Transitioning from TPR to training durations, Figure 4

compares the time taken by CPU and GPU across five epochs

with a fixed batch size of 128. The CPU's training times

notably increase at the fourth epoch before tapering off, while

the GPU shows consistent time expenditure. The GPU

generally outperforms the CPU, with nearly equal

performance at the third epoch.

Further dissecting the performance dynamics, Figure 5

compares TPR between CPUs and GPUs at varying batch

sizes during the fourth epoch. Surprisingly, the CPU

outperforms the GPU at a batch size 64 due to its efficiency

in managing moderately parallel tasks. This highlights the

CPU's strength in handling tasks more effectively than the

GPU, where operational overhead can detract from

performance. As the batch size increases to 128, the GPU

excels by handling larger volumes of parallel operations,

delivering peak performance, and surpassing the CPU,

showcasing its optimal design for high throughput

computing.

The narrative of efficiency continues in Figure 6, which

delineates the training durations for CPU and GPU across

different batch sizes during the fourth epoch. An interesting

trend is observed: while the CPU training time slightly

increases at the smallest batch size, it stabilizes as batch sizes

escalate, only to surge dramatically at the largest batch size

of 128. Conversely, the GPU shows a steady decrease in

training time, maintaining its efficiency edge across all tested

batch sizes.

Culminating our analysis, Figure 7 introduces a scatter plot

showing the relationship between training time and TPR for

models trained on CPUs and GPUs. The graph reveals a

trend: training time increases with improved accuracy, then

plateaus. It shows that GPUs consistently achieve similar

TPRs in shorter training times than CPUs, highlighting their

superior efficiency.

Figure 3. TPR by Epoch for CPU vs. GPU at Batch Size 128.

Figure 4. Training Time vs. Epoch for CPU and GPU at Batch sizes 128.

Figure 5. TPR Comparison by Batch Size for CPU and GPU at Epoch 4.

200Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 6. Training Time vs. Batch Size for CPU and GPU at Epoch 4.

Figure 7. TPR vs. Training Time for CPU and GPU.

VI. CONCLUSION

 Our investigation into the performance dynamics of GPUs
and CPUs for CNN applications yielded insightful findings.
Utilizing a dataset comprising 8,000 images of dogs and cats
for training and an additional 1,000 for testing, we
methodically analyzed the impact of various batch sizes and
epochs on the system's performance. Empirical data showed
GPUs consistently outperformed CPUs in training efficiency
and speed, achieving higher or comparable TPRs. GPUs
excelled with larger batch sizes, demonstrating superior
performance for extensive CNN tasks, offering significant
speed and accuracy advantages over CPUs.

Future research should include more hardware models, like
NVIDIA’s Tesla and RTX series, to better understand CPU
and GPU performance differences. This will help select
optimal hardware for CNN tasks and enhance our findings
with cost and performance analysis.

ACKNOWLEDGMENT

The work is partially supported by the National Science
Foundation (NSF) under NSF Awards #2019561, #2234911,
#2209637, and #2100134. The opinions, findings, and
recommendations in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] S. Verma et al., "Demystifying the MLPerf Training

Benchmark Suite," in 2020 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS),

2020, pp. 24-33.

[2] D. Strigl, K. Kofler, and S. Podlipnig, "Performance and

Scalability of GPU-Based Convolutional Neural Networks,"

in 2010 18th Euromicro Conference on Parallel, Distributed

and Network-based Processing, 2010, pp. 317-324.

[3] E. Buber and B. Diri, "Performance Analysis and CPU vs

GPU Comparison for Deep Learning," in 2018 6th

International Conference on Control Engineering &

Information Technology (CEIT), 2018, pp. 1-6.

[4] E. Cengil, A. Çinar, and Z. Güler, "A GPU-based

convolutional neural network approach for image

classification," in 2017 International Artificial Intelligence

and Data Processing Symposium (IDAP), 2017, pp. 1-6.

[5] M. U. Yaseen, A. Anjum, O. Rana, and R. Hill, "Cloud-based

scalable object detection and classification in video streams,"

Future Generation Computer Systems, vol. 80, pp. 286-298,

2018/03/01/ 2018.

[6] A. A. Süzen, B. Duman, and B. Şen, "Benchmark Analysis of

Jetson TX2, Jetson Nano and Raspberry PI using Deep-

CNN," in 2020 International Congress on Human-Computer

Interaction, Optimization and Robotic Applications (HORA),

2020, pp. 1-5.

[7] S. Oh, M. Kim, D. Kim, M. Jeong, and M. Lee, "Investigation

on performance and energy efficiency of CNN-based object

detection on embedded device," in 2017 4th International

Conference on Computer Applications and Information

Processing Technology (CAIPT), 2017, pp. 1-4.

[8] M. Blott et al., "Evaluation of Optimized CNNs on FPGA and

non-FPGA based Accelerators using a Novel Benchmarking

Approach," Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays, pp. 317-317, 2020.

[9] A. Saha, M. Rahman, and F. Wu, "Evaluating LSTM Time

Series Prediction Performance on Benchmark CPUs and

GPUs in Cloud Environments," 2024, pp. 321-322.

[10] H. Bouzidi, H. Ouarnoughi, S. Niar, and A. A. E. Cadi,

"Performance Modeling of Computer Vision-based CNN on

Edge GPUs," ACM Transactions on Embedded Computing

Systems, vol. 21, no. 5, pp. 1-33, 2022.

[11] V. H. Phung and E. J. Rhee, "A deep learning approach for

classification of cloud image patches on small datasets,"

Journal of information and communication convergence

engineering, vol. 16, no. 3, pp. 173-178, 2018.

[12] Google Colaboratory (2024).

https://colab.research.google.com. Last Accessed 10 Mar

2024.

[13] Keras (2024). https://keras.io. Last Accessed 10 Mar 2024.

[14] V. Sharma, G. K. Gupta, and M. Gupta, "Performance

Benchmarking of GPU and TPU on Google Colaboratory for

Convolutional Neural Network," in Applications of Artificial

Intelligence in Engineering, Singapore, 2021, pp. 639-646:

Springer Singapore.

201Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

