
A Greedy Approach for Controller Placement in Software-Defined Networks for
Multiple Controllers

Stavroula Lalou
Department of Digital Systems

University of Piraeus
Piraeus, Greece
slalou@unipi.gr

Georgios Spathoulas
Dept. of Inform. Sec. and Comm. Techn.

NTNU
Gjøvik, Norway

georgios.spathoulas@ntnu.no

Sokratis Katsikas
Dept. of Inform. Sec. and Comm. Techn.

NTNU
Gjøvik, Norway

sokratis.katsikas@ntnu.no

Abstract—The Controller Placement Problem (CPP) addresses
the strategic positioning of Software Defined Networking (SDN)
controllers within a network, crucial for efficient network man-
agement. It impacts network performance in latency, reliability,
scalability, and resource usage. SDN architecture, separating con-
trol and data planes, enhances scalability and programmability
compared to traditional architectures. Determining the optimal
number and placement of controllers is a key challenge, with
network latency being a primary performance factor. This study
proposes a heuristic greedy algorithm to minimize end-to-end
latency and reduce maximum latency between controllers and
switches, aiming to mitigate controller queuing delay. Ultimately,
deploying controllers in SDN-wide networks seeks to minimize
maximum latency between controllers and switches.

Keywords-Software Defined Networks, multiple controllers, con-
toller placement, latency.

I. INTRODUCTION

The rise of Software-Defined Networking (SDN) has been
prompted by the escalating demands for new networks and the
expansion of Internet coverage. As contemporary requirements
surpass the limitations of traditional networks, SDN emerges
as a promising paradigm. It addresses these challenges by
separating the control and data planes, enabling the pro-
grammability of network configuration. The pivotal factor
influencing SDN deployment and applications is the strate-
gic placement of controllers. Within the SDN architecture,
the use of single or multiple controllers is instrumental in
achieving programmable, flexible, and scalable configurations.
In the current SDN landscape, the employment of multiple
controllers has become imperative. Recent developments have
introduced various solutions aimed at enhancing scalability
and optimizing controller placement selection. This study
delves into the CPP by leveraging objective optimization with
proposed algorithms.

Interaction time between the controller and the switch is an
important parameter in locating the controllers. The proposed
approach is a greedy algorithm for controller placement in a
network. The algorithm aims to minimize the total cost of
connecting nodes to controllers.

SDN is a network architecture that separates the control
plane from the data plane. The control plane is responsible
for making decisions and configuring the network, while the
data plane is responsible for forwarding network traffic.

Multiple controllers are often used in SDN networks to
distribute the control plane workload and improve network
scalability. However, in a multi-controller SDN network, addi-
tional delays can be introduced due to communication between
controllers.

Transmission delay between controllers can cause delays
in network decision making, leading to reduced network per-
formance and efficiency. In a multi-controller SDN network,
each controller must have up-to-date information about the
network topology and state, which is communicated through
inter-controller messaging. Excessive transmission delay be-
tween controllers and switches can lead to increased packet
delay, jitter, and even packet loss, leading to reduced network
performance and efficiency.

The study aims to contribute to the understanding of rel-
evant open problems in the realm of controller placement.
By utilizing objective optimization algorithms, the research
seeks to propose effective solutions that address the challenges
associated with placing controllers optimally in SDN environ-
ments. As the field of SDN continues to evolve, identifying
and addressing these challenges becomes crucial for the ad-
vancement and sustainability of programmable and scalable
network configurations.

The contributions of this paper are:
• An effective solution that addresses the challenges asso-

ciated with placing controllers optimally in SDN envi-
ronments with multiple controllers.

• An implementation with greedy algorithm that finds the
location that is closest to the most switches that do
not have assigned controllers. The algorithm places a
controller in that location, assigns each switch within the
controller’s coverage to that controller and calculates the
latency between each switch and its assigned controller.

• A heuristic greedy algorithm designed to address the
Controller Placement Problem. It aims to minimize end-
to-end latency and reduce maximum latency between
controllers and switches. By proposing a specific algo-
rithmic approach, the study contributes to the practical
implementation of controller placement strategies within
SDN environments.

The remaining of the paper is structured as follows: In
Section II, we briefly review necessary background knowledge
on CPP in SDN and CPP approaches. In Section III, we discuss

49Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

related work. In Section IV, we present our heuristic approach
for latency. In Section V, we present the experimental setup
that we used for evaluating the performance of the proposal
and we discuss the results. Finally, Section VI summarizes our
conclusions.

II. BACKGROUND

A. The Controller Placement Problem (CPP)

The CPP [1] in Software-Defined Networking (SDN) in-
volves strategically deploying controllers within the network,
impacting various performance metrics like availability, fault
tolerance, and convergence time. SDN, with its separated
control and data planes, offers solutions to network chal-
lenges, making CPP a critical factor for optimizing network
performance. Early research by Heller et al. [1] framed CPP
as a facility placement problem, highlighting its complexity.
Subsequent studies focused on minimizing propagation delay
by determining optimal controller locations and quantities.
Techniques like K-center and Multiobjective Optimization
Controller Placement (MOCP) [8] address different aspects
such as network reliability, load balance, and latency. CPP
requires careful planning considering factors like network
topology, latency, and controller placement to ensure optimal
performance and resilience. Our approach offers a heuristic
implementation of CPP, aiming to minimize the number of
controllers while addressing latency concerns, ultimately en-
hancing network responsiveness and robustness in the face of
failures.

B. General formulation of CPP

The primary network components for an SDN-enabled
network are switches, controllers, and the links that join them.
Therefore, the network is often modeled as an undirected graph

G = (SEC) (1)

where S represents the set of switches and E is the set of
physical links among those switches or controllers, and C be
the controllers to be placed in the network. The switches and
the controllers are represented as follows: S = s1, s2, s3, ...
sn, where n denotes the number of switches in the network,
and C = c1, c2, c3, ... ck, where k denotes the number of
controllers located in the network. Here, Pi = p1, p2, p3,
... pk is one possible placement of the k controllers. The
relationship between switches and controllers is represented
by the condition that the set of controllers C is a subset of
the set of switches S, denoted by C ⊆ S. This indicates
that controllers are located within the network’s switches. The
shortest path between a switch s ∈ S and a controller c ∈ C
indicates the minimum number of links (or hops) required to
reach the controller from the switch [2].

C. Multiple controller placement problem

The challenge of deploying multiple controllers arises from
the limitations of a single centralized controller, which strug-
gles to keep pace with the growing demands of expanding
networks and applications. Relying on a solitary controller

creates a potential single-point bottleneck and failure risk, as
it shoulders the entirety of control activities. Consequently,
any network failure could severely impact overall network
performance. Thus, the adoption of a multi-controller approach
emerges as a viable solution for large-scale Software-Defined
Networking (SDN), particularly concerning the scalability of
the control plane. The inadequacy of deploying a single
controller for managing extensive networks, advocating in-
stead for the deployment of multiple controllers. However,
effectively placing multiple controllers remains a complex
task. To optimize network scalability and minimize latency,
particularly in larger networks, leveraging multiple controllers
to manage control plane traffic is deemed most effective.
Two prevalent architectures for multi-controller setups are
flat architecture and hierarchical architecture [20]. Deploying
multiple controllers in a large-scale SDN environment aims
to reduce latency, distribute controller workload, and optimize
various network performance indicators related to controller
placement. Consequently, an SDN controller can oversee mul-
tiple Network Operating Systems (NOS) [19]. While a single
controller suffices for small networks like those in data centers,
the adoption of multi-controller deployment is increasingly
favored to bolster the scalability and stability of Wide Area
Networks (WANs). Dhar et al. [21] underscore the necessity
of deploying multiple controllers to maintain scalability and
reliability in large SDN setups.

III. RELATED WORK

Latency holds significant importance in Software-Defined
Networking (SDN) due to the frequent interaction between
switches and controllers. Existing solutions for the CPP
typically prioritize minimizing both propagation delay and
controller processing delay. Regarding propagation delay, CPP
resembles the facility location problem.

Heller et al. [1] were pioneers in CPP research, aiming
to minimize worst-case delay while proving its NP-Hard
complexity. Since then, numerous researchers have proposed
diverse CPP solutions, extending optimization objectives from
original switch-controller delay to inter-controller delay, con-
troller capacity, and cost considerations.

Zhu et al. [3] focus on minimizing propagation delay
between switches and controllers, formulating CPP as a control
plane delay minimization problem and introducing a new
algorithm based on clustering and Dijkstra’s algorithm. For
controllers with limited capacities, Yao et al. [5] define a
capacitated CPP and develop an efficient algorithm for op-
timizing propagation delay.

In another study [6], the authors address controller place-
ment under dynamic network traffic by integrating the con-
troller module placement algorithm with a dynamic flow man-
agement algorithm, albeit suitable for small-scale networks
only.

Tanha et al. [7] concentrate on CPP within Software Defined
Wide Area Network (SDWAN), introducing a clique-based
approach from graph theory for polynomial-time solution
derivation. In subsequent works [2], [8] CPP is formulated

50Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

considering switch-to-controller delay, controller-to-controller
delay, load balancing, and link utilization rate as objectives.

Wang et al. [9] identify that a critical difficulty in SDN is
selecting suitable locations for controllers to reduce the latency
between controllers and switches. The CPP described a few
of the performance factors that were taken into consideration,
including control plane overhead, latency, load imbalance,
cost, and connection. They use the controller-to-node latency
(propagation, queuing, and processing delay) as a crucial
performance parameter.

Mamushiane et al. [10] extended and used a facility location
approach known as Partition Around Medoids (PAM) with
propagation latency to determine the optimum places to put
SDN controllers. They suggested using the Silhouette and Gap
Statistics algorithms to decide how many controllers to deploy
in a wide-area network.

Rasol et al. [11] assess the Joint Latency and Reliability-
aware Controller Placement (LRCP) optimization model. With
the help of alternate backup channels, LRCP gives network
administrators a variety of options for balancing the reliability
and latency trade-offs between controllers and switches. This
study suggests the Control Plan Latency (CPL) metric, the
sum of average switch-to-controller latency and the average
inter-controller latency, in order to evaluate the controller
placements offered by LRCP and determine how effective they
are in an actual controller deployment.

In each link failure state, Fan et al. [13] further take into
account the number of control path reroutings and the worst-
case latency between the controller and the switch. To solve
the problem, they offer a heuristic approach based on particle
swarm optimization. The suggested algorithm’s usefulness
is demonstrated by the numerical results. Additionally, it
demonstrates that in the majority of link failure conditions,
the suggested technique may ensure the latency and reliability
of the control layer.

Fan et al. [14] present the Resilient Controller Placement
(RCP) algorithm. The objective of this approach is to to
minimize the average latency between all switches and the
appropriate controllers in the event of a single broken link.
The latency of each path is made up of the latency of the
primary path plus the average of any potential backup paths
that might be available in the event of a single link failure.

Chen et al. [14] present that the network is separated into
many sub-networks, and the essential performance metric is
the latency between the controller and switch.

Liao et al. [17] can be used to determine the latency model
in this study or a reliable CPP, Singh et al [22]. suggest a
Varna Based Optimization (VBO) to guarantee that it reduces
the overall average latency. Their results demonstrate that the
proposed VBO algorithm outperforms other effective heuris-
tic algorithms for the Reliability-aware CPP (RCPP), such
the Particle Swarm Optimization PSO. PSO and Teachning
Learning-Based Optimization (TLBO) and their experimental
results show that TLBO performs better than PSO for publicly
accessible topologies.

In [18], reducing network latency between controllers and
switches is crucial for SDN performance. The study introduces
a Controller Node Partitioning Algorithm (CNPA) to minimize
end-to-end latency. By partitioning the network and deploying
controllers strategically, the aim is to decrease latency between
controllers and switches in SDN-enabled wide-area networks.

IV. OUR PROPOSAL

Our research focuses on latency which is one of the most
often used performance indicators. Transmission, propagation,
queuing, and processing delay make up the total latency. We
evaluate latency between switch to controller latency (also
known as controller-node latency) and controller-controller
latency.

The proposed algorithm is a greedy algorithm for placing
controllers near switches to minimize the latency between
controllers and nodes. The algorithm calculates the latency
between each controller and its assigned nodes. The latency
is calculated as the Euclidean distance between the controller
and node, plus the transmission delay. The algorithm assigns
each node to the controller with the lowest latency.

The algorithm starts by initializing a costs, where each
element costs[i][j] represents the cost of connecting switch
i to controller j. The costs are calculated by computing the
Euclidean distance between the switch and the controller.
The algorithm then initializes an assigned array, where each
element assigned[i] is a list of nodes assigned to controller i.
The unassigned nodes are stored in a list called unassigned.
The algorithm then enters a loop, where it repeatedly selects
an unassigned node and assigns it to the closest available
controller. The closest controller is determined by finding the
controller with the smallest cost to the node’s switch. If no
controller is available, the node is skipped. The algorithm
continues until all nodes have been assigned to a controller.
The final result is a list of lists, where each inner list contains
the nodes assigned to a specific controller.

A. Implementation

We use the controller-node latency and controller-controller
(propagation, queuing, and processing delay) as a crucial
performance parameter. We have implemented a heuristic
approach based on greedy algorithm. The basic idea of this
approach is to obtain the minimum number of controllers
which minimizes inter nodes distances to obtain acceptable
latency from nodes to their assigned controller and also
between controllers. Greedy algorithm uses the Euclidean
distance between nodes and controllers as the cost function to
determine the best immediate solution. In the context of the
controller placement problem, the greedy algorithm calculates
the Euclidean distance between each unassigned node and each
available controller, and assigns the node to the controller with
the smallest distance. Then, the distance between switches and
controllers is calculated and the nodes are allocated to the
closest controller.

If the controller does not have the capacity to handle
the node, the algorithm searches for the following nearest

51Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

controller and carry out the same operation. This process
will continue until an controller found and allocate rest of
the node to the controller. The greedy solution provide by
the algorithm fails when no controller can accommodate the
required capacity, that case is considered as the worse case.

A greedy heuristic algorithm is a type of algorithm that
makes the locally optimal choice at each stage with the hope of
finding a global optimum. It is a simple and fast algorithm. In
the context of the CPP in multiple software-defined network-
ing, a greedy heuristic algorithm can be used to find a solution
that minimizes the latency between controllers and switches.
The algorithm would iteratively place controllers in locations
that minimize the maximum distance to any switch, without
considering the effect on future decisions. This approach is
simple and fast, but it may not always find the optimal
solution, and it may lead to higher latency between some
controllers and switches. Here are the steps of the proposed
approach for the CPP in SDN:

• Initialize a list of available locations for controllers.
• While there are still switches without assigned con-

trollers:
a. Find the location that is closest to the most switches
that do not have assigned controllers.
b. Place a controller in that location.
c. Assign each switch within the controller’s coverage to
that controller.

• Calculate the latency between each switch and its as-
signed controller.

In our approach, switches is a list of (x, y) coordinates
representing the locations of the switches, controllers is a
list of (x, y) coordinates representing the locations of the
controllers, and nodes is a list of nodes to be assigned to
controllers. Each node has a switch attribute indicating which
switch it is connected to.

The greedy controller placement function first calculates the
Euclidean distance between each switch and controller and
stores the distances. It then initializes a list assigned to keep
track of which nodes have been assigned to which controllers.

The function then permutes the list of unassigned nodes and
assigns each node to the controller with the lowest cost. The
function returns the assigned list, which indicates which nodes
have been assigned to which controllers.

This algorithm initializes a list of available locations for
controllers, and then enters a while loop as long as there are
still switches without assigned controllers. In each iteration, it
finds the location that is closest to the most switches that do
not have assigned controllers, places a controller in that loca-
tion, and assigns each switch within the controller’s coverage
to that controller. It also calculates the latency between each
switch and its assigned controller.

The algorithm uses a vector of Location structs to represent
the available locations for controllers. Each Location struct
contains the index of the location, the distance to the nearest
unassigned switch, and a vector of unassigned switches that
are within the controller’s coverage.

The algorithm sorts the locations based on their distance and
the number of unassigned switches within their coverage. It
then iterates over the sorted locations and assigns a controller
to each location that has not been assigned yet.

The algorithm returns a vector of Controller structs, where
each Controller struct contains the index of the controller and
the number of assigned switches.

The switch distances list represents the distances from
each switch to a central location, and the controller coverage
variable represents the coverage radius of each controller. The
function returns a list of controller locations and a modified
switch distances list that contains the latency between each
switch and its assigned controller.

The function works by iterative placing controllers in the
location that is closest to the most unassigned switches, and
then assigning all switches within the controller’s coverage
to that controller. The function continues to place controllers
until all switches have been assigned to a controller.

V. PERFORMANCE EVALUATION

A. Experimental Setup

A simulation has been conducted to assess the performance
of the proposed scheme. The system on which the simula-
tion was executed was based on a Virtual Machine (VM)
with Ubuntu 22.04 OS, 16 GB of memory and OpenFlow
Switches. We emulate the performance using Mininet and Ryu
controller [22] component-based software defined networking
framework.

We evaluated the performance of our system in terms of
latency and transmission delay. These factors are crucial in
Software-Defined Networking (SDN) due to the frequent com-
munication between switches and controllers. The Controller
Placement Problem in SDN often focuses on minimizing both
transmission delay and controller processing delay. Transmis-
sion delay in CPP is similar to the facility location problem,
where the goal is to find the best location to place the
controllers to reduce the distance between the switches and
the controllers. This is an important factor in ensuring efficient
communication and reducing latency in SDN networks.

B. Results

We have created a network of 6 controllers and 8 nodes
(switches). We calculated the latency between controllers to
nodes and between controllers.

Controller- Node latency is the time it takes for a message to
travel from a controller to a node in a network. Transmission
delay, also known as latency, is the time it takes for a message
to be transmitted over the physical link between the controller
and the node. Figure 1 depicts the latency between each
controller and its assigned nodes. The latency is calculated
in seconds. The total transmission latency between controllers
to nodes is 10.067 seconds, it is the sum of all the latencies
between each controller and its assigned nodes as described in
Table I. The transmission delay between controllers is 1.414
seconds and is lower than the controller-controller latencies.
The transmission latency as shown in Figure 1 includes the

52Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

time it takes for the switch to receive the data from the sender,
process it, and send it to the receiver.

The latency between two controllers is calculated as the
Euclidean distance between the two controllers and the trans-
mission delay because the signal has to travel from one
controller to the other, and then back to the first controller. It
is depicted in Figure 2. The transmission delay is also counted
for the round-trip time. The Euclidean distance between two
controllers increases as the controllers are placed further apart,
so the latency between two controllers will also increase as
they are placed further apart.

The nodes are placed at positions (3, 3), (4, 4), (3, 4), (3,
5), (4, 3), (4, 4), (5, 3), and (5, 4). The Euclidean distance
between between Controller 1 and Node 1 is math.sqrt((0 -
3) ** 2 + (5 - 3) ** 2) = 3.61 units, so the latency between
Controller 1 and Node 1 is 3.61.

Figure 1. Controllers to Node Latency.

Controllers are placed at positions (0, 5), (10, 5), (20, 5),
(30, 5), (40, 5), and (50, 5). The Euclidean distance between
two adjacent controllers is 10 units, so the latency between
two adjacent controllers is 10 + 2 * transmission delay.

Figure 2. Controller to Controller Latency.

In our implementation, we use a nested loop to iterate
over each node and controller, and find the minimum latency
between the node and the controller. We then sum up these
minimum latencies to get the total transmission delay. The

controller with the minimum latency is assigned to the node.
Finally, the total transmission delay is calculated by summing
up the minimum latencies between each node and its assigned
controller.

Table I shows the latency between each controller and the
nodes assigned to it. The first controller has a latency of 0.21
seconds for the first node and 0.42 seconds for the second
node.

TABLE I
CONTROLLER-NODE TRANSMISSION DELAY IN SECONDS

Controllers Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Controller 1 0.21 0.42 0.44 0.42 0.43 0.44 0.46 0.43
Controller 2 0.48 0.21 0.33 0.33 0.30 0.33 0.36 0.34
Controller 3 0.59 0.43 0.21 0.22 0.22 0.21 0.22 0.22
Controller 4 0.57 0.46 0.32 0.21 0.21 0.22 0.22 0.21
Controller 5 0.53 0.41 0.32 0.33 0.21 0.22 0.22 0.21
Controller 6 0.63 0.48 0.36 0.35 0.34 0.21 0.22 0.21

Table II calculates the average controller latency. The delay
is calculated as the sum of the transmission delays. According
to the results, in an SDN network with multiple controllers,
the latency numbers are low.

TABLE II
AVERAGE TRANSMISSION DELAY PER CONTROLLER

Controllers Average Transmission Delay per Controller
Average Latency

Controller 1 0.122 Seconds
Controller 2 0.118 Seconds
Controller 3 0.133 Seconds
Controller 4 0.132 Seconds
Controller 5 0.124 Seconds
Controller 6 0.115 Seconds

Figure 3. Transmission Delay per Controller.

The latency numbers represent the time it takes for a
controller to send a message to another controller. The latency
numbers are calculated as the average of the time it takes for
the sender to send the message and the time it takes for the
receiver to receive the message.

The Controller-Controller latencies show the latency be-
tween each pair of controllers. The latencies are relatively
small and the switch is able to transmit data quickly between
them. The controller-controller latencies represented in Figure
2 are the time it takes for the switch to process the data.

53Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

These latencies are lower than the total transmission latencies
because the switch only needs to process the data once, not
for each controller sending a message to another controller.

Transmission delay per controller is illustrated in Figure 3.
The transmission delay per controller is obtaining by dividing
the total transmission delay by the number of controllers. The
transmission delay per controller is calculated by taking the
average of the latencies for each controller, which can be done
by summing up the latencies for each controller and dividing
by the number of nodes.

The total transmission latency between controllers and
nodes is higher than the controller-controller latencies because
the switch needs to perform additional processing tasks. It
includes the time it takes for the switch to receive the data
from the sender, process it, and send it to the receiver.

VI. CONCLUSION

The idea of CPP in SDN is to adapt the facility location
problem concepts to find the best location to place the con-
trollers in the network, in order to reduce the transmission
delay and improve the overall performance of the network.
This implementation presents a greedy algorithm designed
to optimize controller placement within a network, with the
aim of minimizing latency between controllers to nodes and
controllers to controllers and transmission delay.

Experimental results demonstrate the efficiency of the im-
plementation, achieving near-optimal solutions within the CPP
framework. The observed latencies between controllers and
nodes, as well as between controllers themselves, remain low,
affirming the success of the controller placement strategy. Fur-
thermore, our proposal minimizes transmission delay between
controllers, which is critical to ensuring high network perfor-
mance and efficiency. According to our results, our proposal
ensures high network performance, scalability, and efficiency
by minimizing transmission delay between controllers and
between controllers and switches.

Future work could investigate the impact of different net-
work topologies on controller placement. This could provide
insights into the algorithm’s performance in different network
configurations.

ACKNOWLEDGMENT

This work has been partly supported by the University of
Piraeus Research Center.

REFERENCES

[1] B. Heller, R. Sherwood and N. McKeown, ”The controller placement
problem”, Proc. of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN ’12, ACM, New York, USA, pp. 7–12,
2012, doi:http://doi.acm.org/10.1145/2342441.2342444.

[2] G. Schütz and J. A. Martins, ”A comprehensive approach for optimizing
controller placement in Software-Defined Networks”, pp. 199, 2020, doi:
https://doi.org/10.1016/j.comcom.2020.05.008.

[3] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, ”A K-means-based
network partition algorithm for controller placement in software defined
network”, IEEE International Conference on Communications, Kuala
Lumpur, pp. 1–6, 2016.

[4] L. Zhu, R. Chai and Q. Chen, ”Control plane delay minimization based
SDN controller placement scheme”, Proc. 9th International Conference
on Wireless Communications and Signal Processing (WCSP), Nanjing,
pp. 1–6, 2017.

[5] G. Yao, J. Bi, Y. Li and L. Guo, ”On the capacitated controller placement
problem in software defined networks”, IEEE Commun. Lett. 18, pp.
1339–1342, 2014.

[6] M. T . I. ul Huque, W. Si, G. Jourjon and V. Gramoli, ”Large-scale
dynamic controller placement”, IEEE Trans. Netw. Serv. Manag. 14,
pp. 63–76, 2017.

[7] M. Tanha, D. Sajjadi, R. Ruby and J. Pan, ”Capacity-aware and delay-
guaranteed resilient controller placement for software-defined WANs”,
IEEE Trans. Netw. Serv. Manag. 15, pp. 991–1005, 2018.

[8] B. Zhang, X. Wang and M. Huang, ”Multi-objective optimization
controller placement problem in internet-oriented software defined net-
work”, Comput. Commun. 123, pp. 24–35, 2018.

[9] G. Wang, Y. Zhao, J. Huang, and Y. Wu, ”An effective approach to
controller placement in software defined wide area networks,” IEEE
Trans. Netw. Serv. Manag., pp. 344-355, 2017.

[10] L. Mamushiane, J. Mwangama and A. A. Lysko, ”Controller placement
optimization for Software Defined Wide Area Networks (SDWAN)”, pp.
45-66, 2021.

[11] K. A. Rasol and J. Domingo-Pascual, ”Evaluation of joint controller
placement for latency and reliability-aware control plane”, Eighth In-
ternational Conference on Software Defined Systems (SDS) IEEE, pp.
1-7, 2021.

[12] E. Borcoci, R. Badea, S. Georgica Obreja, and M. Vochin, ”On multi-
controller placement optimization in software defined networking-based
wans”, (ICN 2015), pp. 273, 2015.

[13] Z. Fan et al., ”A multi-controller placement strategy based on delay
and reliability optimization in SDN”. Proc. 28th Wireless and Optical
Communications Conference (WOCC), IEEE, 2019.

[14] Y. Fan et al., ”Latency-aware reliable controller placements in SDNs”,
Proc. Communications and Networking: 11th EAI International Con-
ference, (ChinaCom 2016 Chongqing), pp. 152-162, China, September
24–26, 2016.

[15] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, ”Pareto-optimal resilient controller placement in sdn-based core
networks”, Teletraffic Congress (ITC), 25th International IEEE, pp. 1–9,
2013.

[16] W. Chen, C. Chen, X. Jiang and L. Liu, ”Multi-controller placement
towards SDN based on Louvain heuristic algorithm”, IEEE Access,
2018.

[17] J. Liao, H. Sun, J. Wang, Q. Qi, K .Li and T. Li ”Density cluster
based approach for controller placement problem in large-scale software
defined networkings”, 2017.

[18] G. Wang, Y. Zhao, J. Huang and Y. Wu, ”An effective approach to
controller placement in software defined wide area networks”, IEEE
Trans Netw Serv Manag, pp. 344-355, 2017.

[19] T. Hu, Z. Guo, P. Yi, T. Baker and J. Lan, ”Multi-controller based
software-defined networking: a survey”, IEEE Access, 2018.

[20] M. Dhar, A. Debnath, B. K. Bhattacharyya, M. K. Debbarma and S.
Debbarma, ”A comprehensive study of different objectives and solutions
of controller placement problem in software-defined networks”, Trans.
Emerg. Telecommun. Technol., pp. 33, 2022.

[21] ”Ryu omponent-based software”, [Online]. Available from: ”https://ryu-
sdn.org/”, (Retrieved May 2024).

[22] K. Singh, Saurabh, S. Srivastava,”Varna-based Optimization: A New
Method for Solving Global Optimization”, International Journal of
Intelligent Systems and Applications, pp. 1-15, 2018.

54Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

