
Introduction of Self Optimization Features in a Selfbenchmarking Architecture

El Hachemi Bendahmane⋆‡ and Bruno Dillenseger⋆
⋆France Telecom RD, Orange Labs

Grenoble, France
Email: {Elhachemi.bendahmane,bruno.dillenseger}@orange-ftgroup.com

Patrice Moreaux‡
‡LISTIC, University of Savoie

Annecy, France
Email: patrice.moreaux@univ-savoie.fr

Abstract—Benchmarking client-server systems involve
complex, distributed technical infrastructures, whose man-
agement deserves an autonomic approach. It also relies
on observation, analysis and feedback steps that closely
matches the autonomic control loop principle. While previous
work have shown how to introduce autonomic load testing
features through self-regulated load injection, this paper
sketches the path to full self-benchmarking, introducing
self-optimization features to get meaningful results. Our
contribution is twofold: completion of a component-based
architecture, combining several autonomic control loops,to
fully support self-benchmarking, and an original constraints
programming-based optimization algorithm. The relevance
of this work in progress is partially evaluated through first
experimental results.

Keywords-benchmarking; autonomic computing; self-
optimization; constraint satisfaction problem.

I. I NTRODUCTION

A. Introduction to Benchmarking

From a general point of view, the goal of bench-
marking practices is to compare alternative elements or
processes through a performance rating based on well
defined metrics. In the field of Information Technologies
and Networks, benchmarks aims at guiding the selection of
different implementations and configurations of software
and hardware from a performance viewpoint. For instance,
one may be interested in comparing the performance of
a number of Java Virtual Machines (JVM), databases,
application servers, etc. Benchmarks are basically spec-
ifications, edited by organizations like the Standard Per-
formance Evaluation Corporation [1] or the Transaction
Processing Performance Council [2]. Some benchmarks,
like RUBiS [3][4] in the field of web application servers,
also publish a reference implementation.

Benchmarking a client-server system typically takes:

• a reference application that uses the scoped alterna-
tive elements;

• a workload specification defining the flow of requests
submitted to the reference application;

• a set of performance metrics of interest (e.g., appli-
cation response times or computing resources usage).

For example, RUBiS provides an on-line auction web
application, implemented with different design patterns,
that can be run on a variety of JVMs, applications servers
and databases. RUBiS also provides an HTTP traffic
injection utility that defines a special mix of different
HTTP requests. By measuring the performance of this

application with different elements, the tester can com-
pare performance of these alternatives and make the best
technological choices.

B. Benchmarking and Optimization

One of the key issues with benchmarking is to get
meaningful, actually comparable measures. As a conse-
quence, all alternatives must be tuned, or, in other words,
optimally parametrized to reach their best performance.
Then, the benchmark is used to rate and compare possible
parametrizations and find the optimal set of parameters
values for the whole set of involved elements.

To go on with the RUBiS example, JVMs, applications
servers and databases all have specific parameters whose
settings may (or may not) influence the overall application
performance. Let us mention heap size, garbage collection
policy, size of thread pools, size of database connection
pools, size of caches, etc. For example, [5] provides a
tuning guide for Java EE applications, giving the main
parameters of interest for performance. Of course, optimal
settings of one alternative are likely to depend on the
application. They also depend on the other elements’
settings in the whole system.

To conclude, benchmarking activities typically relies on
looping on the following steps:

• setting the system elements’ parameters values to
improve the system performance (tuning),

• benchmarking the system to rate the performance of
this new parametrization.

Our idea is to develop an autonomic computing ap-
proach to benchmarking [6]. The full vision encompasses
both the benchmarking step and the tuning step. This
combination comes with two major interests: automation
of benchmarking campaigns, and pre-optimization of a
system before its actual production use.

C. Self-Regulated Load Injection

For the autonomic benchmarking step, we reuse previ-
ous work featuring Self-Regulated Load Injection (SRLI),
as published in [7]. SRLI consists in an autonomous
exploration of the system performance under a growing
load injection. SRLI is based on a control loop enabling
a smart workload increase according to the evolution of
relevant metrics. SRLI stops as soon as some given sat-
uration criteria, such as service response time or server’s
CPU usage, passes given thresholds.

37

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

As common load injection tools, SRLI defines the work-
load level in terms of number of active virtual users. One
virtual user represents an elementary sequence of requests
and think times, typically representing a real user session.
Starting from a single virtual user, SRLI adds virtual users
until reaching a saturation threshold. Finally, SRLI delivers
a number of metrics such as average response time or
server throughput. But the most relevant metric for our
optimization purpose is the maximum number of virtual
users that could be run before reaching saturation. As a
matter of fact, it meters the maximum server’s capacity
under given operating and quality of service constraints.

On the software architecture side, SRLI is built as
a component-based system, according to the Fractal
model [8]. It springs from research work aiming at provid-
ing a component-based framework for building autonomic
systems [9], as well as from the CLIF component-based
load testing framework [10].

D. Introducing self-optimization

This paper is mainly dedicated to self-optimization
aspects. It also sketches its integration with SRLI to
provide the full self-benchmarking vision, keeping the
component-based architectural design. Our approach to
self-optimization is based on a classical generate and
evaluate process: choose a set of parameter values and
apply them to the system under test, and then, evaluate
the performance resulting from these new settings, with
SRLI. This actually introduces a new control loop that we
call the optimization loop.

This approach must cope with a number of issues:

• gracefully handle multiple autonomic control loops;
• possible constraints between parameters’ values;
• the huge combinatorial effect between the possible

values of all the parameters;
• duration of each SRLI run, which is typically several

minutes for our sample web application;
• automation of parameter values change.

E. A constraint solving approach

Besides this optimization control loop principle, the
peculiarity of this work is to represent the optimization
problem as a Constraint Satisfaction Problem (CSP) [11].
CSP is a convenient support for representing parameters’
possible values and possible constraints between param-
eters. It is also a convenient way of generating valid
parametrizations and submit them to SRLI’s evaluation.

F. Paper outline

This paper is organized as follows: section II shows how
we introduce the optimization control loop and combine
it with SRLI. In Section III, we detail the algorithmic
aspects of our self-optimization approach, including tools,
strategies and heuristics. Section IV presents our first
experimental results with a Java EE application use case.
Finally, we conclude in Section V, and give some open
questions and perspectives.

II. I NTRODUCING SELF-OPTIMIZATION

A. A component-based approach

Autonomic computing [12] springs from the observa-
tion that today’s Information Technologies and Networks
(IT&N) systems have reached such a complexity level, that
their management reaches the limits of human capabilities.
In a way, autonomic computing consists in using part of
the IT&N power to handle its highly complex manage-
ment. Now, a trap would be to fight complexity by adding
even more complexity.

As mentioned in section I, SRLI has been designed
according to a general component-based approach to
building autonomic systems [9]. This approach advocates
for a strong architectural requirement, to cope with this
possible paradox of autonomic computing. The challenge
is to limit and overcome the complexity of autonomic
features, and keep a full control on them. The approach
consists in having a uniform component-based system
representation. Autonomic control loops are themselves
built as components, which provides a comprehensive and
self-aware architecture.

B. Architecture of Self-Regulated Load Injection

The initial idea behind SRLI is to consider that bench-
marking activities are relevant use cases for this architec-
tural approach to building autonomic systems, because of
the high complexity level of load testing infrastructures.
SRLI’s goal is to automatically and quickly find the
performance limits of an arbitrary system. [7] shows its
practical use for testing a multi-tier Java EE application,
and finding its performance limits in less than 10 minutes.

SRLI’s top level components are:

• load injectors, in charge of generating workload on
the tested system, and measuring requests response
times and throughput;

• probes, responsible for monitoring usage of comput-
ing resources (processor, memory, network. . .);

• onesupervisor, giving a central access point to con-
trol and monitor all probes and load injectors;

• one load controller, adjusting the injected workload,
in terms of number of virtual users, according to
performance measures;

• onesaturation controllerchecking whether saturation
criteria are met or not.

SRLI combines two control loops:

1) the load injection control loop, adjusting the number
of virtual users according to the response times
and throughput observations. It involves the load
injectors, the supervisor, and the load controller;

2) the saturation control loop, in charge of stopping
the load injection control loop when some saturation
thresholds are reached. It involves the probes, the
supervisor, and the saturation controller.

Both loops have explicit control on each other: loop 1 first
launches loop 2, and then loop 2 stops loop 1. Loop 1 is
launched by external control e.g., by a user, to restart the
process on a new system configuration.

38

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Figure 1. Global self-optimization architecture with three control loops

Figure 2. Sequence diagram of full autonomic benchmarking

C. Introducing our self-optimization components

Our self-optimization control loop is built from the
following components:

• an optimizer component in charge of generating a
new parametrization according to the performance
metrics values it has gathered during the previous
SRLI completions;

• configurator components in charge of applying the
new parameters’ values to the benchmarked system.

Section III gives details about an optimizer compo-
nent based on constraint solving paradigm. Configurator
components must typically stop the system under test,
apply the new parametrization, and restart the system.
Parameters may be set through some management pro-
tocols, such as SNMP [13] or JMX [14], or by updating
configuration files. Figure 1 shows the global architecture
combining SRLI and self-optimization components. The
logical sequence between the three control loops’ activities
is depicted by figure 2.

D. Focus on control loops coordination

This global self-benchmarking approach is a use case
for multiple control loops coordination. There exists three
main schemes:

• explicit control between control loops, as it is cur-
rently implemented in SRLI: control loops are aware
of each other;

• hierarchical control i.e., low-level control loops don’t
know each other but are controlled by a higher level
control loop;

• implicit control i.e., control loops don’t know each
other but communicate through their environment.

In this work in progress, we currently use the straight-
forward explicit control scheme. However, we are inter-
ested in exploring the implicit control approach, in order
to be able to combine some, but not necessary all, of these
three control loops, possibly with other control loops. As
a noteworthy example, we may be interested in keeping
saturation detection and self-optimization, while replacing
our massive load injection by a thin load injector checking
quality of service. This way, we could reuse some of our
components to support self-optimization in a production
environment instead of a benchmarking environment.

III. A LGORITHMIC ASPECTS OFSELF OPTIMIZATION -
A FIRST ATTEMPT

In this section we explain how we find the values of the
parameters required to configure the system under test to
get the best behavior for a given metricm.

A. Coping with the complexity of system tuning

As mentioned in the introduction, there are a lot of
parameters to set for tuning a system like an application
running on a Java EE server. To manage these parameters,
we can define two sets of parameters classes. The first set
is related to thesoftware level, that is in what part of
the hardware/software stack is located the parameter. We
can distinguish four classes: OS and hardware parameters,
JVM parameters (memory, size of the heap,. . .), Java EE
or other server parameters (if this applies), Application
parameters. Another set of parameters is related to the
technical level, that is when (with regard to the running
state) we can/must change the value of the parameter.
We have defined three classes: before deployment of the
application, before starting the application server (if this
applies), when the application runs. Note that, to modify
the value of a parameter, several technical means may be
used such as files and JMX interactions.

Another classification of the parameters relies on the
metric m. To devise efficient algorithms, it is necessary
to establish howm varies with each parameterpi, for
fixed values of the other parameters. Let us denote by
p̄ = (p1, . . . , pn) ∈ D =

∏n

i=1
Di the vector of

parameters we control for tuning the system. Based on
our previous works on self-benchmarking, we assume that
the functionf(p̄) = m(p̄) is concave onD. So, if we
denote byfi the “projection” functions off on Di, that
is: fi(pi) = f(p̄) for a given(n − 1)tuple of parameters
pj(j 6= i), we know thatfi has a unique maximum
(at pm ∈ Di). This specific property of the metricm
allows us to devise an adapted algorithm. The second
classification of the parameters gives the relative impact
of each parameter with regard tom. These information
are provided by human experts and from models of the
system studied if they are available.

The above classes of parameters allows us to restrict the
set of parameters ton parametersp1, p2, . . . , pn, each one
with a domainDi = [mini, . . . ,maxi]. Note that we can

39

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

restrict eachDi to a finite set of integers. In our example
(see Section IV), we have found at least 400 parameters
that we can control. From these, we selected 15 significant
parameters and in this paper, we present first results with
two parameters.

B. Finding the best parameters

The problem is then to find popt =
argmaxp̄∈D{m(p̄)}. The main difficulty to find popt

is that the computation ofm(p̄), which corresponds to
a self-benchmarking experiment takes several minutes.
Hence, we have to devise an algorithm requiring as few
as possible such computations.

To reduce the number of calls tom, we first use the
context of Constraint Satisfaction Programming (CSP)
(see [11] for a presentation of CSP). The main interests of
CSP for our problem is the ability to define parameters,
their domains and their constraints in a declarative way
and to check at runtime if a given parameter tuple is an
admissible solution or not. Among the available solver
tools, we have chosen the Choco [15] open source library.
Choco provides several Java libraries to define the CSP
and to verify the constraints. Obviously, Choco embeds
also a customizable solver, but in this paper we did not use
it, but in contrast we use our specific traversal algorithm
in the domainD.

Algorithm 1 is based on a kind of binary search method.
For each parameterpi, we define a granularitygi which
corresponds to the minimal distance we require between
two values ofpi. Then, we define the norm of a vectorp̄
as ||p̄|| =

∑n

i=1
|pi

gi
|, so that we can compute the relative

variation of p̄ betweenp̄c and p̄p as var(p̄) =
||p̄c−p̄p||

||p̄p||
.

We also set the precisionx of the search and the maximal
number kmax of the main iteration. Each iteration of
the algorithm computes the vectorp̄optc , starting from its
first component, and updating successively itsn com-
ponents. For a given componenti, the function findbest
computes the value ofpi which maximizesm(p̄|i, x) =
m((p1, . . . , pi−1, x, pi+1, . . . , pn)) findbest selects the val-
ues to be used to compute the metricm in a “dichotomous
way”, with the idea that, based on previous computations
of m, we can skip some new computations. This approach
gave interesting results during our first experiments (see
Section IV).

IV. F IRST RESULTS WITH AJAVA EE APPLICATION

SERVER

A. Use case: JOnAS 5

JOnAS [16] is an open source, Java EE 5 certified,
application server provided by the OW2 consortium.
JOnAS is based on an OSGi framework, which provides
mechanisms to dynamically change bundles’ configuration
(start, stop, reconfigure, etc.). All JOnAS components are
packaged as bundles and the full JOnAS profile comes
with more than 250 bundles. Therefore most Java EE-
certified JOnAS services (persistence, EJB, resources . . .)
are available as OSGi services to all OSGi bundles de-
ployed on JOnAS.

Algorithm 1 Compute the optimal parameters

Define the initial value of̄poptc

p̄optp = (1 + 2y)p̄optc

k = 1
while (var(popt) > y) and (k ≤ kmax) do

for i = 1 to n do
(p,m) = findbest(i, p̄optc ,mini,maxi)
poptc,i = p

end for
k = k + 1

end while
return p̄optc

Function (int, double) findbest(i, p̄,min,max)
while (max−min ≥ gi) do
mid = (min+max)/2
computemi,min = m(p̄|i,min)
computemi,mid = m(p̄|i,mid)
if mi,min > mi,mid then

return findbest(i, p̄,min,mid)
else

computemi,max = m(p̄|i,max)
if mi,mid < mi,max then

return findbest(i, p̄,mid,max)
else
v1 = findbest(i, p̄,min,mid)
computemi,v1 = m(p̄|i, v1)
if mi,v1 < mi,mid then
v2 = findbest(i, p̄,mid,max)
computemi,v2 = m(p̄|i, v2)
if mi,v1 > mi,v2 then

return (v1,mi,v1)
else

return (v2,mi,v2)
end if

else
return (v1,mi,v1)

end if
end if

end if
end while
return (mid,mi,mid)

JOnAS administration is performed through Java
JMX [14], either with graphical tools such as JOnAS’ web
console (JonasAdmin) or common Java’s jconsole utility,
or with a command line tool like MBeanCmd provided by
the JASMINe open source project [17].

For our experiment, we need to stress a benchmark
application. We have chosen to deploy the simple e-
commerce web application MyStore 2.0.2 on JOnAS. This
sample application is available from the JASMINe project
repository. This is a very simple application that does not
use a database.

40

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

B. Tuning points

Parameters may be set in configuration files or through
JMX if they are available as MBean attributes. In the first
case, changing a parameter value requires to modify a
configuration file, and most probably restart JOnAS or at
least one of its services. In the latter case, a simple JMX
call to JOnAS’ embedded JMX server allows for changing
a parameter value.

JOnAS 5 comes with 25 services and 48 configuration
files, resulting in one hundred parameters. A parameter
definition may set a simple type value such as an integer or
a Boolean, or a complex value such as a policy definition
(cache management, garbage collector . . .). In the case
of a policy change, the system behavior may completely
differ. So, the algorithm described in section III should
be fully applied, consecutively for each policy setting.
As a matter of fact, the concavity assumption can’t hold
with such parameter types. Note that Boolean values may
be regarded either as integer values or policy definition,
for they have only 2 possible values that must be both
evaluated anyway.

A tuning point is a parameter which impacts “heavily”
the server performance. Of course, there is no formal
definition of “heavily”. However, some studies (see for
instance [5]) in the performance testing and optimization
field show that we can grab quickly 80% of performance
improvement tuning the JVM heap, the thread pools, the
connection pools and the caches. The remaining 20%
can be obtained tuning the EJB pools, the JMS and pre-
compiling JSPs. So, based on experts’ works, we can
define a set of main tuning parameters.

For our experiments with MyStore, we have considered
the two following tuning points:

• the size of the thread pool of the HTTP connec-
tor. It is controlled by its maximal value, noted
maxThreads.

• the size of the Application Cache. It is also controlled
by its maximal value, notedcacheMaxSize.

To determine the value range of parameter
maxThreads, we did an initial experiment with
the default value 200. We monitored the MBean attribute
currentThreadsCount to observe the actual number
of server’s active threads. From the observed values, we
decided to setmaxThreads’s range to 20 – 200. We
chose a granularity of 20 threads, as a trade-off between
optimization accuracy and expected experimental time. If
we applied an exhaustive exploration of this range with
values obtained with the same dichotomous principle as
described in section III, we would get 9 possible values.

We applied the same protocol to determine
CacheMaxSize’s range. By default it is initialized
to 10240KB. In fact, since MyStore does not use so much
the cache (only a few images of reduced size are cached),
we expect this value could be substantially lower. We
monitored the MBean attributecacheSize and found
out that range 10 – 100 would be relevant. We chose a
10KB granularity. There again, an exhaustive exploration

Table I
EXPERIMENTS RESULTS

k i (p1,p2) m duration max-min results

1 1 (10,20) 177 7min25s ok
1 1 (55,20) 144 5mn15s ok
1 1 (32,20) 169 5mn30s ok
1 1 (21,20) 133 5mn20s no p

opt1

1
= 10

1 2 (10,110) 131 5mn45s ok
1 2 (10,65) 120 5mn0s ok
1 2 (10,42) 177 7mn25s ok p

opt1

2
= 42

2 1 (55,42) 159 5mn55s ok
2 1 (32,42) 184 8mn31s ok
2 1 (21,42) 144 5mn25s no p

opt2

1
= 32

2 2 (32,110) 151 6mn25s ok
2 2 (32,65) 144 5mn46s ok
2 2 (32,42) 184 8mn31s no p

opt2

2
= 42

of this range with values obtained with our dichotomous
principle would give 9 possible values.

Note that, even if it took some time to evaluate the
boundaries of the parameters, this step allowed us to
reduce the size of the couple space to be searched for
optimal values.

C. Experiments and results

We use SRLI to generate an increasing load on My-
Store. Each virtual user runs a simple scenario resulting
from a real user session capture, enriched with random
think times. SRLI’s stopping criteria are defined as fol-
lows:

• the SUT’s CPU usage must be less than 70%,
• the SUT’s JVM heap memory usage must be less

than 95%,
• the SUT’s RAM usage must be less than 80%.

From a technical viewpoint, the experiment infrastruc-
ture uses three computers on a Gbit/s Ethernet network:

• the SUT runs on a server with two 2.8 GHz Xeon
processors and 2 GB of RAM. CPU, JVM, network
and memory probes are deployed on this server;

• load injection is run on one server with a quad-core
2.0 GHz Xeon processor and 8 GB of RAM;

• the supervisor and controller components (see fig-
ure 1) are run on a common PC, whose properties do
not matter for the test.

Table I shows the results obtained.k and i denote
respectively the number of the main (while) iteration in
Algorithm 1 and the index (the number of the parameter)
in the for loop; (p1, p2) gives the values of the two
parameters.m reports the number of virtual users, while
duration is the time required to getm. “ok” (resp. “no”) in
the max-min column indicates if the granularity was (resp.
was not) reached during the test for the given parameter
couple. We note that our algorithm provides interesting
savings due to the reduced number of tests with respect
to the number of couples; we actually reduce the number
of saturation tests from 81 to 12. This reduction springs
from the concavity assumption.

41

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

V. CONCLUSION AND FUTURE WORK

Benchmarking requires tested systems to be optimized,
to get meaningful results. This paper presents a global
vision of autonomic benchmarking addressing this issue.
This vision combines an autonomous system for mea-
suring the maximum capacity of a system, given some
operating and user experience constraints, with a self-
optimization feature. We describe the global architecture,
based on three component-based autonomic control loops,
which explicitly coordinate with each other.

Then, the paper focuses on work in progress on self-
optimization. The basic principle is to generate valid
settings of parameters for the tested system, apply these
settings, and to get a performance rating from the auto-
nomic load testing loop. To practically enable this idea,
we address a number of issues:

• representing domains of parameters’ values, includ-
ing possible constraints between one another. We
propose to use Constraint Satisfaction Programming.

• limiting the huge combinatorial effect between pa-
rameters values (algorithmic complexity) and the load
testing time. Assuming that the metric, as a function
of all parameters, has no local maximum value, our
algorithm drastically limits complexity.

Our first experimental results on a sample Java EE web
application are promising. We actually needed to bench-
mark only 12 out of 81 valid settings, each benchmark
duration being limited to an average 7min30s. Hence the
global campaign lasted less than 2 hours instead of about
10 hours and 40 minutes (taking parameters setting time
and system restart duration).

Our future work will be dedicated to complete our
optimization algorithm implementation, and to actually
integrate benchmarking and optimization, to get a fully
autonomous system. We will build the global architecture
with an implicit coordination between control loops, to get
loosely coupled controller components.

ACKNOWLEDGMENT

We thank the Choco team and the JOnAS team for their
valuable support. This research is supported by the French
ANRT and Agence Nationale de la Recherche with the
ANR-08-SEGI-017.

REFERENCES

[1] “Standard performance evaluation corporation,”
http://www.spec.org/, checked on 18th March 2011.

[2] “Transaction processing performance council,”
http://www.tpc.org, checked on 18th March 2011.

[3] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel, “Performance comparison of middleware
architectures for generating dynamic web content,” in
Proceedings of the ACM/IFIP/USENIX 2003 International
Conference on Middleware, ser. Middleware ’03. Springer-
Verlag New York, Inc., 2003, pp. 242–261.

[4] “RUBiS - Rice University Bidding System,”
http://rubis.ow2.org/. Checked on 18th March 2011,
Nov 2009.

[5] S. Haines,Pro Java EE 5, Performance Management and
Optimization. Apress, 2006.

[6] F. Boyer, C. Taton, J. Philippe, and B. Dillenseger,
“Selfware self-optimization: algorithms, architecture
and design principles,” Selfware Deliverable SP2-L2,
http://sardes.inrialpes.fr/˜boyer/selfware/documents/SP2-
L2-Auto-Optimisation.pdf, Tech. Rep., june 2008, checked
on 7th April 2011.

[7] A. Harbaoui, N. Salmi, B. Dillenseger, and J. Vincent, “In-
troducing queuing network-based performance awareness
in autonomic systems,” inProc. 2010 Sixth International
Conference on Autonomic and Autonomous Systems, ser.
ICAS ’10. IEEE Computer Society, 2010, pp. 7–12.

[8] G. S. Blair, T. Coupaye, and J.-B. Stefani, “Component-
based architecture: the fractal initiative,”Annales des
Télécommunications, vol. 64, no. 1-2, pp. 1–4, 2009.

[9] ANR Selfware project, “Selfware: Lessons
learned to build autonomic systems,”
http://sardes.inrialpes.fr/˜boyer/selfware/documents/SP1-
L3-Architecture.pdf. Checked on 7th April 2011, 2008.

[10] B. Dillenseger, “Clif, a framework based on frac-
tal for flexible, distributed load testing,”Annales des
Télécommunications, vol. 64, no. 1-2, pp. 101–120, 2009.

[11] F. Rossi, P. van Beek, and T. Walsh,Handbook of Con-
straint Programming (Foundations of Artificial Intelli-
gence). New York, NY, USA: Elsevier Science Inc., 2006.

[12] J. O.Kephart and D. M.Chess, “The vision of autonomic
computing,” IBM Thomas J.Watson Research Center, jan-
uary 2003.

[13] IETF, “A simple network management protocol (rfc 1157),”
http://www.ietf.org/rfc/rfc1157.txt. Checked on 18th March
2011, May 1990.

[14] J. C. Process, “Java management extensions (jsr 3),”
http://www.jcp.org/en/jsr/detail?id=3. Checked on 18th
March 2011, November 2006.

[15] H. Cambazard, N. Jussien, F. Laburthe, and G. Rochart.,
“The choco constraint solver.” inINFORMS Annual meet-
ing, Pittsburgh, PA, USA, Pittsburgh, PA, USA, November
2006.

[16] OW2.org Consortium, “JOnAS Java open application
server,” http://jonas.ow2.org. Checked on 7th April 2011.

[17] OW2 Consortium, “JASMINe, the smart tool for your SOA
platform management,” http://jasmine.ow2.org. Checked on
7th April 2011.

42

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

