
Using a Network of Untrusted Computers for Secure Computing

Michal Malý
Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics, Comenius University
Bratislava, Slovak Republic

Email: maly@ii.fmph.uniba.sk

Abstract—This paper defines a new problem in distributed
computing: How to securely compute one’s own problem using
a network of untrusted computers? A theoretic solution of the
problem is also presented. All secret input data and a secret
result are known only by the initiator of the computation. Other
computers are used only to carry out the computation using
their computer time and memory. The communication can be
eavesdropped, and any of untrusted computers can arbitrarily
tamper the computation, assuming that no cooperation between
untrusted computers occurs. This problem is different from a
well-known multiparty distributed computation problem. Here,
only one party has all the secret data. The computation is
carried out on untrusted computers. An untrusted computer
has access to only a small part of secret. Provided no or only
a few untrusted computers are cooperating, the secret – input
data, and the result of the computation – is not revealed.

Keywords- cloud computing; security; distributed computing.

I. INTRODUCTION

Suppose a company wants to solve a confidential com-
putational task, but they do not own enough computers to
carry out the computation on their own computers. They
could rent some computer time from another company to
carry out the computation on their computers, but they are
afraid that the company would misuse the confidential data
and the result of the computation.

However, they can rent some computer time from many
companies. They believe that those concurring companies
would not cooperate together. The computation could be
distributed among many untrusted units, assuming that the
attack is not synchronized among multiple untrusted parties.

The problem is to execute the computation on untrusted
computers so each of the computers has access to only a
small part of the computation, i.e., either only to every j-th
tape position or to every j-th written symbol for a chosen j.
This means, if a confidential document is stored on the tape,
an attacker can read it only discontinuously, e.g., only one bit
from every ASCII character. This suffices to keep the content
confidential. Current methods in distributed computing do
not provide any guaranteed protection of this form.

The structure of the paper is as follows. We investigate
alternatives which provide at most practical difficulty or
provide only protection of stored data. Also related problems
in multi-party computation and mobile cryptography are

presented. A framework of computers simulating a Turing
machine by message passing is presented, first dealing
with passive interception and then handling active messages
tampering.

II. ALTERNATIVES

A. Hiding computation problem

The company could attempt to hide the computation in
some way of obfuscating it enough, to prevent anyone from
reading the result easily. The company can for instance
run a virtual machine inside the provider’s computer. If
virtualization is done by proprietary software, it can be
challenging to analyze all data structures by the potential
attacker to figure out what computation is done inside
the virtual machine. However, this is only “obfuscation”
and should not be considered to be a good practice. A
close analysis or some background info can in principle
remove the obfuscation layer, uncovering the secrets. The
protection should come from a logical impossibility rather
than practical or technical difficulty.

B. Hiding data problem

On the other side, if the company’s problem would be
only storing a vast amount of data, they could simply rent
some storage and keep their data in encrypted form there. As
long as the act of decrypting is carried on trusted computers,
no information leak can occur.

III. RELATED WORK

A. Use of distractive units

A method for distributed computation using distractive
computational units was patented by Google [2]. The com-
putation is partitioned into computational units and a number
of distractive units is generated. All units are forwarded to
providers. The results are collected and evaluated in order
to obtain the final result. It is supposed, that the distractive
units can substantially inhibit the reconstruction of the secret
data.

57

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

B. Secure multi-party computation

A related important problem in cryptography, first intro-
duced in [13], is to enable two or more parties to publicly
compute a shared function from secret inputs provided by the
parties, guarantying the secrecy of inputs and the correctness
of the result. The notorious example are two millionaires,
who wish to know, which of them is richer, without revealing
the exact wealth. Effective protocols providing protection
against active adversaries were proposed by [4] [5] [7] and
for multiple parties assuming some level of honesty in [1].

C. Volunteer computing

Computer owners readily donate their computer time to
interesting projects, such as prime search [6], search for
extraterrestrial intelligence [11], and simulations of protein
folding [12]. These projects require dealing with an occa-
sional volunteer computers malfunction, intentional fraudu-
lence in order to gain extra credit, or sabotage. The tech-
niques include majority voting and more advanced “spot-
checking” [9].

In volunteer computing, each participant has access to the
data, which he obtained, and partial result of the compu-
tation, which was carried out on his computer. In “public”
projects, there is no need to keep it in secret. On the contrary,
the result is often shown to the user in order to attract
more volunteers, or even a prize is awarded for successful
computation.

However, in such conditions, certainly no military com-
puting project could be carried out on volunteer computers.

D. Mobile cryptography

In [8], a homomorphic encryption scheme was proposed
to enable secure computation on a mobile agent residing
on a potentially untrusted hardware. Unfortunately, only
encrypted computation of polynomial functions is known.

IV. PROBLEM SPECIFICATION

Let us suppose the company can gain (rent) any rea-
sonable number of computers, each from another party
(e.g., in a volunteer project). Let us suppose the parties
are not cooperating: Although each untrusted computer is
under somebody else’s control, nobody has control over two
different computers. The goal is to execute a computation on
private data, so only the originator of the computation has
access to data and to the result of the computation. Each
untrusted computer will have access only to a arbitrarily
small part of the secret.

A. Premises

The network is considered fast enough and the number
of network messages used to accomplish the computation is
allowed to be linear with the time of computation.

V. METHOD

The possibility of such computation will be demonstrated
using a classical Turing machine model to formalize the
computation. The process of computation will rely on stan-
dard cryptography mechanisms:
• To ensure confidentiality of transferred messages, the

originator generates a digital signature for himself and
for each host to encrypt and sign messages.

• To prevent tracing of messages, the mechanism of
anonymous routing called “onion routing” [3] and im-
plemented in TOR [10] is used. The originator and each
hosts connects to the TOR network, and only originator
knows the role of each host.

The process will be accomplished in two steps. First, I will
suppose nobody is actively tampering the computation, only
passive eavesdropping is allowed. Assuming this I prove that
only an arbitrary small part of computation is revealed to
each untrusted side.

The second step involves the mechanism of majority vot-
ing, which at each step of the computation, that a malicious
message will be detected and the attacker will be revealed.

VI. DESCRIPTION

The framework uses a network of computers passing
messages between them. The network as a whole will
do the computation. To make the computation secret, the
computation is split to small parts. No computer in the
network can gain a large amount of information at one time.
The order of computers participating in the computation is
devised so as no host can intercept successive parts of the
computation.

To describe the computation, we will use the Turing
machine. Every movement of the head will be a small,
atomic part of the computation. One part consists from
messages which are passed between respective computers.
After executing this part, the computation moves one step
ahead, and another sequence of messages is passed between
another set of computers.

Theorem 1: Let us have a Turing machine A =
(K,Σ,Γ, δ, q0, F), where |K| = k, and t be the time, i.e.,
the t-th step of the computation. Let n > 1 be a natural
number. Let w be the input word. Then it is possible to
execute the computation of the machine A on the word w
using a network of k∗n+n independent untrusted computers,
so that if nobody is tampering the computation:

1) if A(w) stops after T steps, then the execution in the
networks stops after T iterations, gives the same result,
and the number of messages in the network is 5∗T +
c ∗ k ∗ n where c is some constant.

2) i-th computer can only have access to (n ∗ j + i)-th
position on the tape during the whole computation for
any j and 0 ≤ i < n and (n+ r ∗ k + s)-th computer
can only have access to the symbols read or written to

58

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

the tape in (n ∗ j+ r)-th step of network computation
where 0 ≤ r < n, 0 ≤ s < k and any j.

Proof: The setup is as follows: The host computers are
split into two groups. First group of n computers will rep-
resent the tape; second group of k ∗ n computers represents
the head of the machine. Computers in first group will form
a cycle, so i-th computer represents every (n ∗ j + i)-th
position on the tape for any j and for 0 ≤ i < n.

Computers in the second group will represent the head,
i.e., the finite-state automaton. To accomplish this, let us take
k computers, associate each of k states of the automaton
to one of k computers, and program the computer so it
knows the values of delta function for its associated state.
Now we have this distributed automaton, which is able to
act as a head of the machine. But if the delta function is
constructed so the automaton remains in one state for a long
time, one computer would be able to intercept a long part
of the computation.

To avoid this, we make n copies of this automaton, and re-
wire the outputs of delta function to point to the respective
state, but not in the same copy as the current computer
(state), but in the following copy of the automaton. The
computers in the last copy of the automaton will point to
the computers in the first copy, so the copies form a cycle
(in some sense). Now we connect the head to the tape. We
describe one transaction, which represents one movement of
the head. The transaction consists of the following messages
(see Fig. 1):

1) The originator obtains addresses of the network com-
puters.

2) The originator generates number identification for
each computer (according to the numbering in this
proof).

3) The originator generates digital keys for each of
computers and uploads them.

4) Each of the computers joins TOR network and com-
municate its address within TOR network to the orig-
inator.

5) The originator discloses number identification, public
key, and TOR address of each computer to every
computer.

6) The originator uploads an computing protocol appli-
cation on each computer.

7) The originator fills out input data on tape.
8) The originator starts the execution.
9) The network computation iterates, each iteration is

composed of an atomic transaction between 3 com-
puters, see below.

10) When the computation stops in one of final states, the
computer representing the state sends message to the
initiator.

11) The initiator is now able to retrieve the content on the
tape.

The transaction (see Figure 1) runs between 3 computers:
The computer representing the current state of the automa-
ton, the computer representing current tape position and the
computer representing the new tape position.

Suppose we are in the t-th step of computation and Turing
machine state is the s-th state (0 ≤ s < k) and tape is in
position p. Let r, r′ be remainders of t, t+ 1 divided by n.

First, the current-state computer ((n+ r ∗ k+ s)-th) asks
for the symbol on the tape. It receives an answer from
the current-tape-position computer (p modulo n). Let this
symbol be x. According to the delta function it decides what
is the new state (s′), what symbol is to be written on the tape
(y), and where to move the head (direction d ∈ {−1, 0, 1}),
i.e., δ(qs, x) = (qs′ , y, d). Therefore it sends a message
with new symbol y and the movement direction d to the
current-tape-position computer, which will remember the
new symbol, and will send a message to the computer which
represents the new tape position ((p + d) modulo n). This
message will authorize the current state to announce the new
state ((n+r′ ∗k+s′)-th computer) to the new-tape-position
computer. Which computer will be the new-state computer
is derived from the delta function and from the number of
copy of the automaton, in which belongs the current-state
computer. The new-state computer is chosen to represent the
new state s′, but in the next copy r′ of the automaton. This
new-state computer is thus authorized to read the symbol
from the new position.

VII. BYZANTINE COMPUTING

How can we assure nobody is actively modifying the
computation? We could use more computers, to check them
each other. In principle we run the same computation on
more computers and detect if the outcome (the messages
sent) differs (majority voting).

Suppose at most one computer is violating the protocol,
and we want to detect this violation and report the violator.
If more computers will be cheating, the result is undefined.

The setup is as follows. Every computer is tripled (create
a copy of it, assign the copies the same role, only the public
key and TOR address is different). Messages previously
sent to the computer are now sent parallel to each of its
copies. Now each computer waits until it receives messages
from all copies of its predecessors. It compares the received
messages. If they are different, it reports to the originator and
sends received messages. Messages are signed, so the report
cannot be faked. According to this report from all three
copies, the central computer can determine who violated the
protocol.

A timeout can be defined to enable detection of sabotage
by not sending messages. After receiving the first message,
the computer waits until all messages arrive. A missing
message is reported after the time-out to the originator.

The number of computers allowed to violate the protocol
(v) can be extended in a similar manner using 2v + 1

59

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

a0

a1

a2

a3

a4

4

q3

2

a5

a6

a7

q0

q2

1

3

5

q4

q1

Figure 1. Example of an atomic transaction. The states ay represent the tape, the states qx represent the automaton. For simplicity we show only one
copy of automaton. Black arrows are the possible transitions between states, blue arrows are messages. Messages: #1 What is on the tape? #2 Symbol
’x’. #3 Write ’y’ and move head left. #4 we are moving left and q3 is the old state. #5 The new state is q4 (but from the next copy of automaton).

independent copies.

VIII. APPLICATIONS

Perpetually growing business of computer outsourcing or
modern trends such as web applications can release us from
owning and maintaining hardware. The presented method
allows us to not resign on security issues. The method can
be used even in intra-company applications: The company
could have a number of not-so-trusted administrators. The
system based on this computational model could save the
company from the possibility of disclosing the secrets to
them. A military, or other confidential research could be
realized on a number of volunteer computers.

IX. CONCLUSION AND FUTURE WORK

We have presented a method to run a computation on a
number of computers, where no computer has a complete
access to the computation and the result of the computation
is not revealed. In fact, the part of the computation revealed
to a single computer can be made arbitrarily small.

The classical Turing machine model is not flexible enough
to reflect current hardware possibilities, and was used to
demonstrate the theoretical possibility of the problem solu-
tion. Another, more refined model based on RAM (random
access machine), using individual computers as separate
registers, will be investigated in future work.

Even using the Turing machine model, some bad-designed
programs can reveal the whole secret, when the head is
accessing the tape too many times. This can be possibly
solved by re-designing the program. The number of mes-
sages is huge, and similarly the number of used computers
is relatively high. However, the method demonstrates the
theoretical possibility of trusted computing on untrusted
computers.

REFERENCES

[1] David Chaum, Claude Crépeau, and Ivan Damgard. Multi-
party unconditionally secure protocols. In Proceedings of the
twentieth annual ACM symposium on Theory of computing,
STOC ’88, pages 11–19, New York, NY, USA, 1988. ACM.

[2] S.N. Gerard. Distributed computation in untrusted computing
environments using distractive computational units, Febru-
ary 9 2010. US Patent 7,661,137.

[3] D. Goldschlag, M. Reed, and P. Syverson. Hiding routing
information. In Information Hiding, pages 137–150. Springer,
1996.

[4] Stanisaw Jarecki and Vitaly Shmatikov. Efficient two-party
secure computation on committed inputs. In Moni Naor,
editor, Advances in Cryptology - EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 97–114.
Springer Berlin / Heidelberg, 2007.

60

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

[5] Yehuda Lindell and Benny Pinkas. An efficient protocol for
secure two-party computation in the presence of malicious
adversaries. In Moni Naor, editor, Advances in Cryptology
- EUROCRYPT 2007, volume 4515 of Lecture Notes in
Computer Science, pages 52–78. Springer Berlin / Heidelberg,
2007.

[6] Mersenne Research, Inc. Great Internet Mersenne Prime
Search. Available at: http://www.mersenne.org, 1996–2011.
Last access: May-11-2011.

[7] Jesper Nielsen and Claudio Orlandi. Lego for two-party
secure computation. In Omer Reingold, editor, Theory of
Cryptography, volume 5444 of Lecture Notes in Computer
Science, pages 368–386. Springer Berlin / Heidelberg, 2009.

[8] T. Sander and C. Tschudin. Protecting mobile agents against
malicious hosts. Mobile agents and security, pages 44–60,
1998.

[9] L.F.G. Sarmenta. Sabotage-tolerance mechanisms for vol-
unteer computing systems* 1. Future Generation Computer
Systems, 18(4):561–572, 2002.

[10] The Tor Project, Inc. Tor: anonymity online. Available at:
https://www.torproject.org, 2002–2011. Last access: May-11-
2011.

[11] University of California. Seti@home. Available at: http://
setiathome.berkeley.edu, 2011. Last access: May-11-2011.

[12] Vijay Pande and Stanford University. Folding@home. Avail-
able at: http://folding.stanford.edu/, 2000–2011. Last access:
May-11-2011.

[13] Andrew C. Yao. Protocols for secure computations. In
Foundations of Computer Science, 1982. SFCS ’08. 23rd
Annual Symposium on, pages 160 –164, nov. 1982.

61

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

