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Abstract— A number of multi-robot networks (operating both 

indoors and outdoors) such as security and surveillance 

systems, industrial manufacturing, mobile defense robotic 

systems, mobile distributed monitoring systems as well as other 

cooperative robotic network systems like robotic soccer 

require multiple robots to provide maximal coverage and 

connectivity while being able to rapidly adapt to changes in 

environmental and channel conditions. Variation in link 

quality in the transition region is often a major concern in 

wireless multi-robot sensor networks. The quality of the 

wireless link varies temporally as well as spatially. Traditional 

algorithms attempt at solving this issue through a combination 

of deployment schemes and power control, leading to various 

topology control mechanisms. In the case of mobile robot 

networks, it is possible to resolve this issue using the additional 

degree of freedom rendered by the mobility of the robots. In 

this paper we introduce a novel robot node deployment scheme 

and topology control mechanism that aims at maximizing 

coverage, connectivity while providing reliable communication 

under varying network conditions. The topology control is 

achieved by modeling the inverse signal loss, multi-path fading 

and other effects and combining them to control the topology 

of the network in an irregular hexagonal static/ mobile multi-

robot deployment scheme. Experimental data, together with 

simulation results demonstrate connectivity enhancement 
under signal loss with mobility based topology control. 

Keywords- Multi-robot Networks, Topology Control, Outage, 

Fading Models, Hexagon, Deployment, Rayleigh, Log-Normal, 

Dynamic Network Topology, Mobile, Sensors 

I.  INTRODUCTION 

fficient deployment of nodes in a multi-robot wireless 
sensor network is necessary to achieve good 
connectivity and reliability over time. A number of 

multi-robot networks such as security and surveillance 
systems, industrial manufacturing, mobile defense robotic 
systems, mobile distributed monitoring systems as well as 
other cooperative robotic network systems like robotic 
soccer require multiple robots to provide maximal coverage 
and connectivity while being able to rapidly adapt to 
changes in environmental and channel conditions. 
Numerous deployment strategies and topology control 
schemes have been developed for wireless sensor nodes 
over the last few years [23, 24, 25]. Schemes that involve 
both static and mobile nodes have been developed. These 
are directly applicable to mobile robot networks. Topology 
of multi-robot networks can also affected by the tasks 
assigned to the individual robots [27]. In addition, 
localization of mobile robots can be implicitly solved using 

the wireless sensor network framework [26]. Topological 
coverage management for mobile robots (especially with 
individual robots and cell divisions) [28] also contributes to 
the understanding of the problem of topology control for 
multi-robot networks. 

The main criteria on which deployment schemes are 
currently developed are connectivity and coverage. In this 
paper, we focus on topology control of a mobile robot node 
network for 3-connectivity with blanket coverage. 
Terminology and algorithms from the domain of wireless 
sensor networks have been borrowed to this end.  

The degradation of signal strength with the distance 
from the source node follows a logarithmic power law. The 
variation in the power level across time, in the case of a 
static wireless sensor network is largely dependent on 
changes in the environment parameters that determine the 
multipath fading effects. In the case of mobile networks, this 
also depends on other factors such as velocity of nodes, 
relative velocity of objects in the surrounding environment 
etc. The paper brings these effects into the modeling of the 
topology and hence the deployment scheme, thus improving 
the reliability and connectivity of the network. The base 
topology for the proposed deployment model is a hexagonal 
grid structure. The structure is designed by the superposition 
of static and mobile diamond topologies. Logarithmic 
models and various fading models have been combined for 
simulations. The metric for performance measurement is the 
„Outage probability‟ defined on the signal level falling 
below a threshold. 

The central theme of this paper revolves around the 
development of a dynamic topology that is not just efficient 
in terms of reliability, connectivity and coverage but also 
has the capacity to alter its state in the case of an event 
(critical/non-critical) to obtain a new optimal state. The 
dynamic nature of signal strength variability in mobile robot 
networks is largely due to environmental changes, as these 
networks are deployed in areas where there is high channel 
variability and over which the user has little control. One 
such example setting is the equatorial rain forest, where it 
rains heavily in the afternoons and is extremely hot and 
sunny in the mornings. As a result, the fading model (rain 
fading [21]) of the environment changes largely, from time 
to time. These effects assume great significance in the case 
of surveillance, monitoring and defense robot networks. The 
fading models are important as they contribute to significant 
changes in the power level of the signal received by the 
nodes over short periods of time. The variation in the 
received signal at any point in the network depends on a 
number of factors like reflections, scattering etc. causing 
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variations in the signal level in nano-sec to milli-sec range, a 
fraction of which is the time for measurement of the signal. 
Hence, it becomes necessary to adapt the network to the 
non-linearities in nature. One possible method would be to 
use power control. Another method would be to create a 
dynamic topology that adapts itself to changes in the 
environment. 

Besides these non-linearities, there are numerous other 
effects that result in variation in the signal level received at 
a point in the network [12]. These include the fact that (1) 
the world is not flat but curved, (2) radio transmission areas 
are not circular, i.e. radios are not isotropic, (3) different 
radios have different ranges, (4) bi-direction links are not 
perfectly symmetric, (5) the quality of a link varies with 
time, (6) signal strength varies with distance in a complex 
way, (7) there are considerable fading effects and variations 
in fading effects. The goal of this paper is to design a 
dynamic topology that would enable to overcome these 
issues thereby creating a reliably connected network. While 
it is not possible to model each of these parameters 
individually, it should be possible to capture the group 
behavior approximately by fitting probability distributions.   

 
Figure 1. Typical radio power level contours with color representing the 
signal quality (Source: University of Stuttgart, Midwest Radio Association 
and [12]). 

II. RELATED WORK 

Node Deployments can be largely classified as structured 
and randomized. Using power control various network 
topologies have been achieved (MFCN, COMPOW, CRTC) 
[3]. Lifetime oriented, connectivity oriented and hybrid 
development schemes have also been analyzed [4]. While 
most of the sensor placement schemes are deterministic, 
stochastic node placement schemes are also being 
developed. One important node placement scheme uses the 
Power-Law placement [2] in which the degree of the nodes 
follows a power law. In the case of mobile nodes, schemes 
such as DSSA [5] and Incremental Self-Deployment 
algorithm [6] have been developed. An approach using the 
concept of potential fields repelling each other and 
stationary objects has been used in sensor node deployments 
[7] and for multi-robot networks using virtual angle forces 
for bi-connection  in [29]. However, not all such approaches 
are feasible in an arbitrary environment. Few approaches 
utilize the power of mobile nodes in augmenting the quality 
of the network of static nodes. The theory developed in this 
paper corresponds to mobile nodes that have limited or 
constrained mobility (constraints could be task driven). The 
primary function of these nodes is to reposition themselves 
on the deployment grid in such a way that optimal link 
connectivity is obtained. Hexagonal node deployments have 

been expounded in [8, 9]. Efficiency of dynamic self-
organizing networks has been demonstrated in [10]. 

Considerable work has been done in communication 
theory on the study of non-linearities in nature affecting 
radio propagation. While considerable amount of the theory 
from wireless communication has been borrowed into 
studying the radio propagation mechanisms of mobile 
wireless sensor networks, there are several differences. 
These stem from the fact that the sensors in general do not 
possess directional antennas and also the range of radios 
used on sensor networks is of the order of a few tens of 
meters to the maximum. Hence it is not possible to apply 
models such as the Clarke‟s model directly without 
adaptation to wireless nodes.  The variation of power level 
with distance, time and position (due to fading effects) has 
been observed to fit a log-normal distribution (Fig. 1). This 
is especially true in the case of indoor environments [14]. 
Furthermore, the arrival time of the multipath has been 
found to be Poisson and the log-mean value of amplitude 
decreases with increasing excess delay. Also, the path loss 
varies linearly with the delay spread [15]. A possible model 
for simulating the power values at adjacent points uses a 
superposition of bivariate Gaussians. Also another 
simulation model for urban radio propagation was obtained 
by Suzuki, called the Suzuki Distribution [16]. In the case of 
nodes in motion, the relative velocity causes a Doppler shift 
in frequency. This could also cause fading effects. However, 
this effect is excluded from analysis in the model developed 
in this paper. Mobile node localization based on this 
Doppler shift frequency is studied in [13]. 

III. DYNAMIC TOPOLOGY DESIGN 

This paper concentrates on the developing a topology that 
captures the seven dynamic effects (referenced from [12]), 
which cause variation in the signal level received. The 
primary focus is on modeling the variation of the signal 
level with distance and in short intervals of time, 
characterized by fading models. These multipath effects also 
vary with the position of the receiver. Along with the other 
effects, the fading effects are captured implicitly and used to 
optimize node locations in the deployment scheme. The 
topology developed can be described in terms of the 
following structural topology features. 

A. Hexagonal Base Topology 

There are several advantages of using a hexagonal grid 
structure. Hexagonal structures offer the largest area 
coverage for a given number of points with the requirement 
of exact packing. Of all possible topologies, the least 
amount of energy is required for a random arrangement to 
be isomorphed into a hexagonal structure. Hence hexagonal 
topology is taken as the base topology for the network 
deployment scheme developed in this paper. Also, a 
hexagonal scheme covers the minimum overall perimeter 
for a given area, since it approximates a circle and at the 
same time allows for perfect packing. Hence links in a 
hexagonal network are closer to each other than in other 
schemes. This enables enhanced connectivity. Other 
advantages include: the lack of a blind spot, ease of 
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deployment, adaptability to cell based sleep scheduling, ease 
in control of power level, ability to turn off transfer nodes to 
enable power savings, lack of network congestion due to 
simplicity of structure and simplicity of routing mechanisms 
[9]. Further, hexagonal networks give optimal performance 
in terms of minimal requirement of number of nodes [8].  

B. Complementary Static-Mobile Nodes 

Topology control is traditionally established using power 
control. However, the combination of mobile and static 
nodes provides a very powerful alternate deployment 
scheme. While it may be useful to have the entire network 
to be composed of mobile robot nodes, there are several 
practical considerations (task constraints) which prevent 
such a possibility for a non-critical network. Based on task 
constraints and desired work space of each robot, it can be 
expected that the mobile nodes do not move over a long 
range or continuously. Instead these mobile nodes are to 
alter their position in the grid only at periodic intervals.  

C. Dynamic Hex Network 

While a mobile robot network with full degree of freedom 
in mobility is highly adaptable to various topology 
requirements, the optimization is computationally extremely 
intensive for continuous real-time change in requirements 
and can lead to sub-optimal solutions with respect to 
connectivity of the network graph. Hence, a dynamic hex 
network which is completely connected (on an average) is 
employed as the underlying topology. However, due to time 
variation of fading and other effects, it is possible that the 
network becomes disconnected. It is this probability that the 
algorithm developed in the paper tries to minimize. This is 
called the outage probability. In other words, the no-outage 
probability (i.e. 1 - outage probability) is to be maximized. 

Such a dynamic hex network formed by superimposing a 
diamond topology of static nodes on a diamond topology of 
mobile nodes is depicted in Fig. 3. Fig. 2 illustrates the 
constraints on the optimization of position of a mobile node. 
It can be seen that the position of a mobile node can vary 
within a triangular area bounded by the neighboring nodes. 
For simplicity, the position of the nodes is assumed to vary 
linearly from or to the neighboring nodes in this triangular 
region.  

 
Figure 2. Left: Hexagonal grid topology, Center: Each mobile node is 
connected to three other nodes in a triangular area of constrained motion. 
Right: Unique colors represent the link minimization criteria for each node. 
Clearly, the optimization of one node does not affect the other nodes.  

Such a topology preserves the static power relationships. 
Thus, it can be seen that each node can optimize its position 
dynamically, without regard to the other nodes. Typically 
the time interval for optimizing can be set based on the 
frequency of occurrence of the natural event. The 
optimization process can occur by decentralized processing. 

Also, all mobile nodes can reposition themselves 
simultaneously. Since the static nodes do not require to 
reposition themselves or identify the position of the mobile 
nodes, they can be devoid of memory and information about 
the network topology. On the other hand, the mobile nodes 
require knowledge of the position of the static nodes and 
also should be capable of localizing themselves so that they 
move and relocate to an optimal position. 

D. Non-Ideal Environment Modeling 

If the network is ideal, then all the links between the 
nodes will have equal weight, i.e., the radio range will be 
isotropic. For the ideal case the power topology is composed 
of regular hexagons when the deployment topology is made 
of regular hexagons (Fig. 3). 

 
Figure 3. Array of superimposed static (red) and mobile (yellow) diamond 
topologies forming the Hexagonal Dynamic Topology. It can be seen that 
the mobile and the static nodes fall on alternate layers. The blue segment 
represent ideal links 

 

In a practical scenario, the major large scale path loss in 
the signal received from a radio can be attributed to 
reflections, scattering and diffraction. The effect of these 
factors can be modeled individually. An alternate method 
would be to model the path loss in a single term as log-
normal. A Gaussian factor is included in the log-normal 
model to indicate the variation in the values of the received 
power at different points at the same distance from the 
transmitter [17]. 

𝑃𝐿 𝑑 = 𝑃𝐿 (𝑑0)          +  10𝑛𝑙𝑜𝑔
𝑑

𝑑0

+ 𝑋𝜎  

All the power values in the above equation are 
represented in terms of dB. 𝑃𝐿 𝑑  is the Path Loss at a 
distance 𝑑  from the transmitter. 𝑋𝜎  is the zero-mean 
Gaussian distributed random variable (in dB) with 𝜎 (also in 

dB) as variance. 𝑛 is the Path Loss exponent and 𝑃𝐿 (𝑑0)           
represents the average power level at a reference distance 𝑑0 
from the transmitter. The received power is related to the 
power loss as below. 

𝑃𝑟 𝑑 =  𝑃𝑡 𝑑 −  𝑃𝐿(𝑑) 
Here, 𝑃𝑟 𝑑  𝑎𝑛𝑑 𝑃𝑡 𝑑  are given dBm and PL (d) is 

given in dB.  The value of the path-loss exponent varies 
typically from 1 to 6 depending on the availability of a line 
of sight path. It is higher for the case of larger spaces or 
spaces with more obstructions and in places where there is 
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no line of sight. A good way to represent numerically the 
probability that the signal level will exceed a particular 
threshold is given by the Q function ( 𝑧  is the random 
variable representing the power level)[17]. 

𝑄 𝑧 =
1

 2𝜋
 exp(−

𝑥2

2

∞

𝑧

)𝑑𝑥 

=
1

2
(1 − erf  

𝑧

 2
 ) 

where 𝑄 𝑧 = 1 −𝑄(−𝑧) 
The probability that the received signal (in dB power 

units) will exceed a certain value 𝛾 can be calculated from 
the cumulative density function of the log-normal 
distribution as  

Pr 𝑃𝑟 𝑑 >  𝛾 = 𝑄(
𝛾 − 𝑃𝑟 𝑑 

              

𝜎
) 

Thus values from the Cumulative Distribution Function 
(CDF) of the function gives the probability that the signal 
power level is above a certain threshold. This is the metric 
used in this paper for the optimization. This metric is 
directly related to the outage probability (which uses the 
signal amplitude value instead of the power value) and 
hence increase in the probability of the above function is 
equivalent to increasing the no-outage probability. 

Propagation models for outdoor and indoor wireless 
communication include the Longley Rice Model, Durkin‟s 
Model, Okumura Model, Hata Model, Lee Model, Walfisch 
and Bertoni Model, Attenuation Factor Model and the 
Partition Losses Model [17]. Further, there are small scale 
fading and multipath effects causing variations in the 
received signal level. In the case at hand, the multipath 
fading occurs only due to rapid changes in the signal 
strength over a small travel distance and time dispersion 
caused by multipath propagation delays. The spatial 
variations can be essentially modeled as variations across 
time as the mobile robot has to change its position through 
time in order to reach its new position. Multipath 
propagation effects are largely due to the reflections of the 
signal by the environmental features resulting in multiple 
paths for the signal arrival at a point and these are delayed 
or phase shifted. This phenomenon is called Multipath time 
delay spread. Thus, fading due to shadowing and other 
location specific properties is called „Slow Fading‟, whereas 
that due to multipath forms „Fast Fading‟ (Fig. 4). Here two 
possible cases arise. One possibility is that the frequency 
response of the channel is constant or flat and the other 
possibility is that it varies with the frequency. 
Correspondingly we have Flat Fading and Frequency 
Selective Fading. Besides, small scale fading based on 
Doppler spread can also create fading effects. Again we 
have Fast and Slow fading corresponding to Doppler Spread 
based fading.  The only fading of concern in this paper is the 
flat fading based on the Multipath time delay spread. This is 
because the system feature response can be assumed to be 
flat and doesn‟t change with the frequency. Also, since the 
mobile robots are not required to measure power when in 
motion, Doppler effects are not of concern. The time range 
of concern is of the order of a few milliseconds. 

 
Figure. 4. Typical Path Loss with Power Law, Slow Fading added and Fast 
Fading added. 

 
While the power loss in the case of slow fading (flat) is 

represented conveniently by the log-normal distribution, the 
total power received (after the power loss) in the case of fast 
fading can be represented in the form of other statistical 
distributions [20, 22] such as the Rayleigh, Rician, 
Nakagami-m, Weibull, Lognormal, Suzuki, Gauss-Markov 
or HMM distributions. In this paper, the slow flat fading 
using log-normal distribution and fast flat fading using 
Rayleigh have been used. By fitting measured data, it is 
possible to calculate the parameters of the distributions. 
Once the parameters are calculated, it is relatively easy to 
calculate the integral of the Cumulative Distribution 
Function above a certain threshold. This gives the 
probability that the signal power was above a certain 
threshold.  

Rayleigh Distribution: 

𝑝 𝑟 =   
𝑟

𝜎2
exp  −

𝑟2

2𝜎2
   0 ≤ 𝑟 ≤ ∞ 

𝑝 𝑟 = 0  𝑟 < 0 

where 𝜎 is the RMS value of the received signal voltage and 
𝑟 is the envelope of the signal. 

Rician Distribution: 

𝑝 𝑟 =   
𝑟

𝜎2
exp −

𝑟2 + 𝐴2

2𝜎2
 𝐼0(

𝐴𝑟

𝜎2
)  𝐴 ≥ 0 𝑟 ≥ 0 

𝑝 𝑟 = 0  𝑟 < 0 

„A‟ refers to the mean component adding to the signal. 
Rayleigh distribution is used where most components are 
scattering or multipath components. Rician distribution is 
used when there is a strong Line of Sight (LoS) component. 

Another method of optimizing the position of the mobile 
robots would be to obtain the PRR (Packet Reception Rate) 
and use it as the metric for comparison. This is natural to 
use as it would take into account the modulation effects and 
hence the frequency selectiveness of the fading, irrespective 
of whether it is narrowband or wideband. However, since 
the PRR variation is very steep in the sigmoidal region (the 
transition region) it is difficult to use it as a metric. Further, 
the PRR depends on the digital modulation scheme 
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employed [18]. In order to simplify the working of the 
algorithm, the power levels are considered directly, yielding 
the outage probability. A further simplification would be to 
use the RSSI values directly instead of calculating the RF 
power levels in dB. This is acceptable as the relationship 
between the RSSI and the RF power levels is a linear shift, 
and this can be modeled by an equivalent shift in the log 
domain [19]. 

E. Algorithm 

Given the constraints on the mobile robot nodes, the 
following heuristic algorithm is proposed in order to 
optimize the positioning of the mobile node. 

Training Mode 

i) The hexagonal deployment of the mobile and static 
nodes is carried out. 

ii) An efficient hill climbing approach can be implemented 
to relocate the mobile node in each triangular cell at its 
optimal position. But, this is computationally demanding 
on the mobile node. An easier approach is to create 
power level bins and estimate the optimal position by a 
brute force approach. For the case of pure slow fading 
(log-normal shadowing), an estimate of the optimal 
position can be computed. 

iii) The mobile nodes walk through a triangular region 
bounded by the static nodes gathering data on the power 
levels from nearby nodes at preassigned bin locations. 

iv) A Maximum Likelihood Estimation (MLE) is performed 
on data obtained to estimate the distribution parameters. 

v) The outage probability is estimated from the distribution 
model.   

Redeployment Strategy 

i) An initial value of desired outage probability is chosen. 
ii) The mobile robots, based on the data collected during the 

training mode calculate the position where the no-outage 
probability from each static node is satisfied. 

iii) If the mobile node is successful in finding a bin/point, 
the value of the desired no-outage probability is 
increased and step ii repeated. 

iv) The process is terminated when the mobile node does 
not find a bin satisfying the no-outage probability 
criterion for all three nodes. 

v) The mobile node moves to the last successful position 
identified. 

IV. EXPERIMENTS, SIMULATIONS AND RESULTS 

Experiments were conducted to measure the power levels at 
various distances (power bins). The chosen distances were 
1m, 5m, 10m, 20m and 25m. The RSSI values obtained 
were used in the fitting of distributions. The setting of the 
experimental process was in a parking lot, an environment 
with both fast and slow fading effects. Multiple 
measurements in short time intervals yield the multipath 
fading components. In our testing, we simulate the 
environment for multiple mobile node using parameters 
obtained from the experimentation on a few nodes. 

Parameters of the distributions were obtained for Log-
Normal, Weibull and Rayleigh distributions. 

TABLE I 
Distance    RSSI in –dB for 25 positions 

1  38.1140  37.6980  37.5220  33.7150  31.9310 

 31.6930  31.6880  31.6250  31.3300  31.1170 
 30.6310  30.6100  30.5630  30.5120  30.5120 
 30.2220  29.9970  29.5960  29.2120  29.2100 

5  44.7210  44.6730  44.5830  44.3890  44.3600 
 44.1220  44.1000  43.6280  42.2310  41.7800 

 41.6220  41.2120  41.0000  40.9180  40.8820 
 40.5100  39.6210  39.2420  38.1510  37.2830 

10  46.2310  46.2060  45.2330  44.6670  44.5460 
 44.5410  44.5320  44.4440  44.4270  44.2120 
 44.1970  44.1660  43.2220  42.7700  42.4960 

 41.5350  41.5260  41.1230  41.1130  40.3230 
20  49.8330  49.6580  49.3610  49.3580  49.1380 

 49.1110  48.9440  48.1450  47.4750  47.3630 
 47.3450  47.2530  47.2330  47.1550  47.1230 
 47.0030  46.9430  46.7350  46.6330  46.3330 

25  50.1720  49.7220  49.5570  49.4880  49.2880 
 49.2220  48.9200  48.8480  48.5330  48.2580 

 47.3900  46.7520  46.2370  46.0020  45.7370 
 45.5870  45.4790  45.2570  45.2360  45.2290 

Table 1. Distance in meters and Average RSSI values in –dB for 25 
positions. 

 A  Linear Regression fit for the experimental data yielded 
values of n and 𝑋𝜎  (for the Log-Normal Fading model) as 
1.1419 and 4.085. Correspondingly, the following 
approximate parametric values were obtained for the log-
normal fading Param1 (𝜇)  = [3 2 1 0.6 0.5] over the r 
distance bins and Param2 (𝜎) = [1 0.7 0.5 0.25 0.2]. For 
Rayleigh, values obtained were (𝜎 ) = [25 12 8 2 1] and that 
for Weibull (𝜇)  = [30 10 4 2 1.5] and  𝜔 = [2 2 2 6 4] 

Figure. 5. Rayleigh distributions for different values of parameters in inset. 

The random variable „r‟ represents the values the 
distribution can take. It is directly related to the power 
values measured. In Fig. 5, the different curves indicate the 
Rayleigh distributions for different values of parameters. 
The parameters are obtained at different distances of the 
mobile node from the static node. The higher the distance, 
the larger is the value of the Rayleigh parameter. It is seen 
that curves corresponding to larger distances are flatter. 
Thus, it can be seen that towards larger values of r, the area 
under the curve beyond r (and hence the no-outage 
probability) is larger than for smaller parametric values or 
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shorter inter-node distances. Since this variation is non-
linear and differs from one static node to the other, it is 
possible to find an optimal position for the mobile node by 
brute force.  

 
Figure. 6. Graph showing connectivity pattern after the node repositioning 
(based on the connectivity of the original regular hexagonal topology) 

Using the heuristic node repositioning algorithm 
operating on the experimental data in Table 1, the overall 
average outage probability of the simulated network, using 
the Rayleigh distribution was increased from 0.60 to 0.80 
(assuming 15m as the initial hypothetical location of each 
mobile node from the other three static nodes). Since the 
network is designed to choose dynamically thresholds in 
order to increase the no-outage probability, the result is on 
expected lines. Also, in order to keep the algorithm fast, 
only few bins were used (5*5*5 bins one each at 25, 20, 10, 
5 and 1 meter from the static nodes). The thresholds were 
increased in coarse steps of 0.05. The results can be 
enhanced by proper choice of step size and distribution 
based on the environment at hand. 

V.  CONCLUSION AND FUTURE WORK 

In this paper, we have presented a novel mobility based 
topology control scheme for mobile robot networks. The 
method presented uses a combination of static and mobile 
nodes in an irregular hexagonal framework combined with 
dynamic topology management to enhance reliability and 
connectivity. Experiments and simulations demonstrate 
reduced outage probability.  

The current algorithm uses a brute force optimization 
approach. Investigation of alternate approaches to identify 
the optimal location form future work. While localization 
using the Log-Normal fading model is easy, it does not take 
into account the fast fading effects. These can be modeled 
using Rayleigh or Rician fading, but with increased 
computational requirements. One way of achieving this 
would be to use a recursively updating procedure to find the 
optimal location. It could be designed such that at each step 
of the process, the node improves its positioning and the 
process converges in a limited number of steps. Further, the 
radio model and effects of the modulation scheme can be 
included in the modeling as well. However, in this case, it is 
necessary to alter the fading model as well. This is because, 
if the implementation is not narrowband but instead uses a 

wideband channel, then the effects of frequency selective 
fading come into play. Alternate schemes that enable a 
mobile node to find the optimal position by moving towards 
it will necessitate changes to the fading model by 
introducing effects of Doppler spread. Also, a PRR based 
measure will be the most suitable for optimization. Future 
work will involve incorporating the above in the modeling.  
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