
A Framework for Certifying Autonomic Computing Systems

Haffiz Shuaib, Richard J Anthony and Mariusz Pelc
School of Computing and Mathematical Sciences

The University of Greenwich
Park Row, Greenwich, London SE10 9LS, UK

Email: {H.Shuaib,R.J.Anthony,M.Pelc}@gre.ac.uk

Abstract—The growing cost associated with managing increasingly
complex Information Technology (IT) infrastructure has brought about
a new field of research – Autonomic Computing (AC). AC systems seek
to mimic the management capabilities of biological systems notably,
the Autonomous Nervous System (ANS), to bend the curve associated
with management cost, while also allowing these managed systems to
evolve and adapt, regardless of the operational context and deployment
environment. The AC field attempts to bring together a number of
disparate research fields in order to achieve its objectives. For this to
be possible, a way to coherently link the imports of these dissimilar
fields is required, if these systems are to be understood, and by
extension trusted. To that end, this project’s focus is on the proposal
of mechanisms that will allow for proper certification of autonomic
computing systems. This, if successful, will provide a consistent trust
measure for these systems. Particularly, in this position paper the
intelligent machine design architecture is extended and used as a basis
for defining autonomic computing systems. Metrics contained in the
International Standard Organization (ISO) 9126-1998 specification, are
appropriated to AC systems. Based on all of the above, a foundation
for achieving certification for AC systems is laid.

Keywords-Autonomic Computing, Architectures, Frameworks.

I. INTRODUCTION

A true Autonomic Computing (AC) system is one that is able
to automate the management decision-making process and reflect
on the quality of the decisions made. This it must do regardless of
the environmental context and within the goals set by the human
operator. The ultimate aim of autonomic computing systems is to
allow complex Information Technology (IT) infrastructure evolve
into more complex systems to handle more difficult tasks, without
significantly increasing the cost of management.

The ability to self-configure, self-optimize, self-protect and self-
heal, have been identified as the four cardinal characteristics of AC
systems [1]. As with most critical or increasingly complex systems,
an AC system should and must be certified on the basis of its
expected characteristics before it goes live, as these systems have
implications from the financial to the space exploration industries.
Achieving this system certification task is made more challenging
still, given that the AC field itself draws from a disparate number
of well established fields, including artificial intelligence, telecom-
munications research, mathematics, software/hardware engineering,
statistics etc. each with its own view of how a system is to be
defined.

No attempt has been made towards the certification of autonomic
computing systems thus far; therefore, the primary objective of this
project is the provision of a technical and visible support structure
for the relevant components of these disparate fields, to facilitate the
certification process of AC systems. It is hoped that the final result
of this project will provide a basis; for assessing autonomic systems

with similar functionalities, for assessing the current capability of
the system and its suitability to the problem, to assess the impact
of a certified component on a system and to resolve legal liability,
if the autonomic computing systems were to fail.

The rest of this paper is organized as follows; the operational
mechanisms of AC system are expected to mimic those of the
biological Autonomic Nervous System (ANS), relevant aspects of
the ANS are discussed in the next section. The state of the art as it
relates to AC system architecture is discussed in Section III. Also
presented in this section, is a proposed extension of the Intelligent
Machine Design as a basis for AC system architecture. In Section
IV, the challenges associated with the certification of AC systems
are discussed. Further discussed are suggested metrics by which,
compliant AC systems can be measured. Section V contains the
conclusion and future work.

II. AUTONOMIC NERVOUS SYSTEM

The Autonomous nervous system (ANS) in part inspires the
Autonomic Computing (AC) field; as a result, it is pertinent that it
is discussed briefly in this paper. This discussion will be restricted
to those components of the ANS that are believed to be relevant
to AC systems.

The ANS relies on three major components to achieve its inde-
pendent management objectives; Neurons, synapses, inter-neuron
communication protocols and excitatory and inhibitory mechanism
that modulate the output or response of the ANS for a given
input signal. The Neurons are the processing units and the basic
building blocks of the ANS. These neurons are connected to
one another by directional links called synapses. Information is
conveyed through the synapses in the form of Ions, which, have
a similar external structure but may differ in internal chemical
composition. The excitatory and inhibitory mechanism modulates
the output or response of the ANS for a given input signal. In
effect, regardless of the magnitude of the input signal, the output
response can be graded to meet an overall objective.

A few salient concepts from the ANS that apply to ACs are as
follows: A standard communication channel, similar to the ANS
synapse that can carry information to and from the AC’s processing
entities or the AC’s equivalent of neurons. This is especially
important, as these entities may be spread over several physical
locations or even spread over a number of disparate hardware and
software platforms. Recall, that the synapses convey information in
the form of ions, which, internally may differ in terms of chemical
composition. A dynamic description language is required in this
regard. As will be shown later in this work, a policy definition
language based on the Extensible Markup Language (XML) is

122

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

appropriate for this. A means to have an all or nothing response
or a graded response based on the input information from the
sensory mechanism(s) and acquired knowledge of the systems is
also required. A means to marshal resources to areas most in need
in an emergent scenario and back to a steady state is also desirable.
These concepts when implemented technically must be portable
and platform agnostic.

III. A REFERENCE ARCHITECTURE FOR AN AUTONOMIC

COMPUTING ELEMENT

An architectural standard is central to the process of the certifi-
cation of a system. Any architecture that represents an autonomic
computing system must not be narrowly defined such that it
precludes the ability for the system to evolve or cater for new
use cases. As noted in [2] and [3], the lack of an open standard is
a challenge in the autonomic computing field. In this section, the
most prevalent of all autonomic architectures i.e., IBM’s MAPE
architecture is discussed. Drawbacks relating to this architecture
are also discussed, and a certifiable alternative architecture with
similar functionalities is presented.

Before proceeding to the next sub-section a few definitions are
in order;

Definition 1: Autonomic Manager: This component indepen-
dently makes decisions that are then effected on a managed
component.

Definition 2: Autonomic Element: This consists of both the
management (autonomic manager) and managed components.

Definition 3: Goal: This is the overall objective of the auto-
nomic system. For instance, the overall goal of a vehicle might be
to get from a point A to a Point B. How this is achieved is left to
low-level functionalities.

Definition 4: Rule: A rule is a Boolean statement that evaluates
to true or false, with an action taken or not taken based on the
outcome [4].

Definition 5: Policy: Finally, a policy is made up of a number
of rules. The primary objective of policies is to achieve the overall
system goal in the most efficient way possible [4].

A. IBM’s Autonomic Architecture

The well known IBM MAPE (Monitor, Analyze, Plan, Execute)
AC architecture consists of four main components which, form a
loop, as shown in Figure 1.The first of these components is the
Monitor. Its main duty is to monitor the surrounding environment,
including system resources. The output of this Monitor is used
for making decisions at later stages of the loop. The second
component i.e., the Analyze component, uses a number of algo-
rithms to anticipate problems and possibly proffer solutions to these
problems. The Planning component uses the information available
to the autonomic system to choose which, policies to execute.
The Execution component, which, is the fourth component, effects
the most appropriate policy/policies chosen by the system. This
executed policy may cause a change in the physical environment
e.g., moving the arm of a robot, or simply pass instructions
or information to another element, possibly an autonomic one.
The input to the MAPE architecture comes from the sensory
mechanism, while the effector mechanisms carry out the dictates
of the machine.

An architectural blueprint for autonomic computing
Page 11

An architectural blueprint for autonomic computing
Page 12

As illustrated in Figure 2, autonomic managers, in the same manner as

manageability endpoints, provide sensor and effector interfaces for other

autonomic managers and other components in the distributed infrastructure

to use. Using sensor and effector interfaces for the distributed infrastructure

components enables these components to be composed together in a manner

that is transparent to the managed resources. For example, an orchestrating

autonomic manager can use the sensor and effector interfaces of resource

autonomic managers to accomplish its management functions, as illustrated

previously in Figure 1. This composition is discussed further in Chapter 3,

“Self-Managing Resources” section.

Even though an autonomic manager is capable of automating the monitor,

analyze, plan, and execute parts of the loop, IT professionals might delegate

only portions of the potential automated functions to the autonomic manager.

In Figure 2, four profiles (monitoring, analyzing, planning, and executing)

are shown. An administrator might delegate only the monitoring function to

the autonomic manager, choosing to have the autonomic manager provide

data and recommended actions that the administrator can process. As a

result, the autonomic manager would surface notifications to a common

console for the situations that it recognizes, rather than automating the

analysis, planning, and execution functions associated with those actions.

Other delegation choices could allow additional parts of the control loop to

be automated.

Highlights

A
ut

om
at

io
n

Policy

Monitoring Analyzing Planning Executing

M

A

E

P

M

A

E

P

M

A

E

P

M

A

E

P

Analyze Plan

ExecuteMonitor

Knowledge

Symptom

Request for
Change

Change
Plan

Autonomic
Manager

Sensor Effector

Sensor Effector

Figure 2. Functional details of an autonomic manager

Figure 1. IBM Autonomic MAPE Architecture [1]

The functionality associated with any one of these component
can be delegated wholly to the human manager or the autonomic
system. The level of dependence on the machine or the human
operator is calibrated using a metric called the Autonomic Maturity
Index (AMI).

IBM defines five indices in this regard [1]. They are as follows;
• Manual (Level 1): At this level, the human operator is com-

pletely responsible for all functional components of the MAPE
architecture.

• Instrument and monitor (Level 2): Here, the autonomic system
is responsible for the collection of information (Monitoring).
This collected/aggregated information is analyzed by the hu-
man operator and guides future actions of the operator.

• Analysis (Level 3): In this level, information is collected and
analyzed by the system. This analyzed data is passed to the
human administrator for further actions.

• Closed loop (Level 4): This works in the same way as the
Analysis level, only this time the system’s dependence on
the human is minimized i.e., the system is allowed to action
certain policies.

• Closed loop with business processes (Level 5): At this level,
the input of the administrator is restricted to creating and
altering business policies and objectives. The system will
operate independently using these objectives and policies as
a guide.

In the early days of the AMI i.e., 2003, it was believed that
most computing systems resided at the Basic level [5]. However,
research prototypes conforming to higher levels are said to exist
currently [6].

There is no consensus on whether the IBM MAPE architecture
is a concrete architecture or a malleable concept. For instance, [7]
defines the architecture as canon and then goes on to implement
it to the letter. [8] and [9] both assume MAPE to be a concrete
architecture that can be tweaked. For example, [8] collapses the
four main components of the MAPE architecture into two groups.
The Monitor/Analyze components are placed into one group, with
this group given the responsibility of handling issues like fault
diagnoses and anomaly detection. The Plan/Execute group deals
with issues relating to resource-allocation and configuration. [9],
in a similar manner to [8] breaks the architecture into two main
groups, but this time the Monitor/Analyze components handle
tasks that are reactive, while the Plan/Execute components are
responsible for proactive adaptation. [10] adopts a slightly different

123

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

approach to modifying the architecture. The authors of [10] divide
the architecture into a global and local sub-architecture, with the
Analyze/Planning and Monitor/Execute components implemented
in the global and local sub-architectures, respectively.

As a concept, the IBM architecture is said to require concrete
expressions for it to be applicable to the framework discussed
in [11]. The MOSES framework [12] which, seeks to manage
quality of service expectations in a volatile environment also falls
under the concept school of thought. It maps each component of
the MAPE architecture to its own architecture. [13] proposes to
make the MAPE architecture real or concrete by generalizing the
model for large-scale data processing infrastructures. In [14], the
MAPE architecture is seen as a concept that can be applied to an
architecture, not as an architecture itself.

Beyond the concept/concrete architecture argument, some re-
searchers have stated that the MAPE architecture is flawed, or
at least insufficient to describe autonomic systems. For example,
[15] consider the architecture concrete, but too narrowly defined to
apply to some autonomic systems e.g., multi-agent systems. [16]
points out that the loop in the MAPE architecture is vulnerable
to failure, which, in turn can precipitate the collapse of the
management system all together. A solution to this problem might
be a situation where an outer loop monitors the internal loop as
was done in [8]. However, this begs the question, is another outer,
outer loop needed to also monitor the outer loop and so on and
so forth? Rather than using external and rigid feedback loops to
make the MAPE loop more resilient, the authors of [16] propose
the addition and the removal of loops on the fly. Their solution
is inspired by biological emergent systems described in [17]. [18]
also adds a partial outer loop to the MAPE architecture to allow
the system to evolve.

Regardless of its wide applicability, the divergent views associ-
ated with the IBM MAPE architecture makes it ill-suited for the
certification of autonomic systems.

The IBM’s AMI, while critical to the certification process,
is said to be narrowly defined and technically vague [5]. This
makes it difficult to align an autonomic system with these maturity
indices [19]. Obviously, these concerns do not help the certification
process. An attempt is made in the next section to address the
above. It is pertinent to mention here that several other forms of
accessing the level of autonomicity have also been proposed in
the past, notably those in [20]. Here, the level of autonomicity is
defined by who makes the decisions and how these decisions are
executed [21]. From a certification perspective, the position of a
system on the autonomic maturity index should be defined by who
makes the decisions and the quality of the decisions themselves.
Both metrics will engender a certain level of trust in the system.

B. An Alternative Architecture

The appeal of the Intelligent Machine Design (IMD) architecture
[22] to autonomic computing systems is that it is closely related
to the way intelligent biological systems work. Indeed, this ar-
chitecture has been suggested as a generic framework on which,
autonomic systems can be built upon [23]. While this architecture
is mentioned in some autonomic computing literature, nothing
concrete from a technical perspective has been achieved relative
to IBM’s architecture (See Figure 2). In this section, an attempt
is made to imbue this architecture with the self-management

REFLECTION

ROUTINE

REACTION

From

Sensor

To

Effecter

Management

Information

Base

Self-Configuration

Self-Protection

Self-Healing

Self-Optimization

In
c
re
a
s
in
g
 R
e
s
p
o
n
s
e
 S
p
e
e
d

In
c
re
a
s
in
g
 I
n
te
ll
ig
e
n
c
e

Figure 2. An Autonomic Computing expression of the IMD

autonomic properties and further relate it to a proposed AMI.
Before going into the technical details, a quick overview of the
make up of the architecture is presented.

The architecture supposes that an intelligent machine is made up
of three distinct layers, i.e., Reaction, Routine and the Reflection
level. Each layer can be characterized by the following attributes;
the amount of resources consumed, their ability to activate/inhibit
the functionality of a connected layer and their ability to be
activated or inhibited by another layer. Attributes that deal with
the preoccupation of each level are also added later in this section.

The lowest layer, the Reaction layer, is connected to the sensors
and effectors. When it receives a sensory stimulus, it responds
relatively faster than the other two layers. The primary reason
for this is that its internal mechanisms are simple, direct and
hardwired i.e., it has an automatic response to incoming signals.
A simple IF-ELSE statement suffices here. In autonomic comput-
ing parlance, the human operator does much of the learning or
monitoring/analysis. The Reaction layer takes precedence over all
other layers and can trigger higher layer processing. This layer can
also be inhibited/activated by the Routine layer. It consumes the
least amount of resources. It might also have a lmited access to
the working memory or the management information base (MIB).

The Routine (mid-level) layer is more learned and skilled when
compared to the Reaction layer. It is expected to have access to
the working memory (or MIB), which, contains a number of policy
definitions that can be executed based on context, knowledge and
self-awareness. As a result, it is comparatively slower than the
Reaction level. Its activities can be activated or inhibited by the
Reflection layer. Its input comes from both the sensory mechanism
and the Reflection layer. Its output goes to the effector mechanism
and the Reflection layer. When the Routine level is unable to find
a suitable policy for an immediate objective, it hands control over
to the human administrator or the Reflection layer.

While the Routine level’s primary objective is to deal with
expected situations whether learned or hardwired, the Reflection
level, which, is the highest level, helps the machine deal with
deviations from the norm. The Reflection level is able to deal with
abnormal situations, using a combination of learning technologies
(e.g., Artificial Neural Networks, genetic algorithms), partial rea-
soning algorithms (e.g., Fuzzy Logic, Bayesian reasoning), the ma-
chine’s knowledge base, context and self-awareness. Technically,
the Reflection Layer’s ultimate aim, as it relates to autonomic

124

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

computing systems, is to create and validate new policies at runtime
that will be used at the Routine level. If the system is able to
adapt to an unexpected situation as a result of the new policy, then
the policy is stored in the working memory (or MIB). This new
policy can be called upon if the situation is encountered in the
future. Thus, making a formerly abnormal situation a routine one.
The process of ’reasoning’ out a new policy makes the Reflection
layer the largest consumer of computing resources. This also means
it has the slowest response time of all three layers. The Routine
layer is the input source and output destination for the Reflection
layer. The Reflection layer can inhibit/activate the processes of
the Routine layer through new policy definitions. Higher layers
are able to excite or inhibit the activities of the lower layers in a
manner similar to how the ANS is modulated by knowledge or the
conscious mind. Notice from Figure 2 that all layers will be able to
implement the four cardinal self-management properties. Also, in
the same way in which, the ANS communicates between neurons
using ions irrespective of their chemical composition, autonomic
computing elements implementing the architecture shown in Figure
2 should also be able to communicate with one another using a
standard mechanism. In addition, the old and new policies must
use a standard definition language to ensure consistency across the
board. The policy framework defined in RFC 3060/3460 is the
vehicle by which, the above is to be achieved.

C. The Alternative Architecture and the AMI

The architecture shown in Figure 2 can be associated with the
AMI. To do this, an attempt is made to expressly define what each
Maturity Index means from a technical perspective, and further
relate each index to the layers of the machine. The Five maturity
indices are thus interpreted as;

• Maturity Index 1: Here, only one policy action is executed
in response to all input signals and encountered contexts.
Complex operations are referred to the human operator or to
the immediate higher level. This maturity index corresponds
to the Reaction level.

• Maturity Index 2: This index corresponds to the Routine
level. If the Routine level is unable to find a suitable policy
from a policy repository or if there is a policy ambiguity, it
relies on the human administrator to provide a new solution
or resolve the policy conflict.

• Maturity Index 3: This is similar to Maturity Index 2, only
that this time, the Routine layer consults the Reflection layer
to solve its policy problems.

• Maturity Index 4: This index corresponds to the Reflection
layer. The Reflection layer of a Machine in this index will
attempt to solve the policy problem of the Routine layer, and
monitor the implementation of this new policy. If the policy
fails in its objective or if a new policy cannot be created, the
human administrator is required to intervene.

• Maturity Index 5: This is similar to index 4, but rather
than defer to the human administrator, if a suitable policy
is not found or created, the algorithm within the Reflection
layer will continually attempt to create a new policy or
resolve the policy conflict. This index should be used to
define autonomic machines that will be unable to get in touch
with the human manager, a craft in deep space for example.
Another possible example for this index is a scenario where

the human intervention cannot be timely enough due to the
complexities in the system.

In effect, the autonomic maturity level 1 corresponds to the
Reaction layer, levels 2 and 3 correspond to the Routine layer, 4 and
5 correspond to the Reflection layer. The position of an autonomic
computing system on the defined maturity indices above provides
a possible basis for verifying the source of the decision making
process and the quality of the decisions made. For instance, if a
system in question specifies a Maturity Index of 2, the certification
process would know that the ’court of last instance’ is the human
administrator. The certification process would now seek to verify
the qualification of skilled personnel for the system to be awarded
an index of 2. If the system seeks to be tagged with an index of
5 i.e., the decision making process is handled ultimately by the
machine itself, the algorithm implemented in the Reflection layer
must be shown to be robust enough to handle this task. Recall,
that it was said that the source and quality of the decisions made
is central to the trust placed on the system, and as a result relevant
to the certification process (See the last paragraph of Section III-A).

IV. VERIFYING, VALIDATING AND CERTIFYING AUTONOMIC

COMPUTING SYSTEMS

The ultimate goal of this project is to define formal mechanisms,
where possible, by which, autonomic systems can be certified.
The road to certification, of course, is a long one that entails
building, verifying and validating the system(s) in question. Before
discussing the challenges associated with certifying autonomic
systems, it is pertinent to define what is meant by validation,
verification and certification. According to the IEEE standard
glossary for Software Engineering terms [24], the Validation pro-
cess seeks assurances that the system has been built as per the
initial requirements set out. In other words, is the end-product
fit for the purpose for which, it is built. The purpose of the
Verification process is to ensure that the system performs correctly
and consistently in terms of the input and output. Certification
is defined as a written guarantee, a formal demonstration or the
process of confirming that an offered component complies with
specified requirements, and will work as expected in a defined
environment. Clearly, certification encompasses the verification and
validation processes.

The validation and verification techniques used for many large-
scale software projects will suffice for some aspects of the au-
tonomic systems, still other areas will require new constructs.
For instance, classical testing techniques such as dynamic, static
testing, formal methods will be well suited to levels 1 and 2 of the
Autonomic maturity index defined in Section III-C. Nevertheless,
these techniques are unsuitable for levels 3-5. The primary reason
for this is that the behaviour of the system is expected to adapt,
and change over time due to the activities of the Reflection layer.
This implies that a means for these systems to self-validate within
the context of the defined goal is required. One way to go about
verifying/validating these systems is by separating the architecture
from the algorithm contained within.This is similar to what was
done in the DySCAS project [25], in which, a middleware to
support self-configuring automotive systems was developed. Here
the autonomic decision-making logic was developed and validated
independently of the actual middleware mechanisms. For example,
if the Reflection layer of a product implements an artificial neural

125

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Sensor

Self-management

properties

Actuators

Certification

Validation\Verification

Autonomic Element

Figure 3. Verification, Validation and Certification

network algorithm, one can first check to see if the architecture
implemented in the product meets a certain criteria e.g., portability,
stability etc. using already established methods. If the architecture
meets expectations, the arduous task of validating and verifying the
algorithm follows. Otherwise, if the implemented architecture fails
to meet expectations, the product should be deemed to have failed
the test, and therefore there is no need to proceed to validate the
algorithm implemented within. Validating/Verifying the algorithm
e.g., artificial neural networks or genetic algorithms, on the other
hand would require new formal methods of verification/validation
or at least an extension of the known techniques. Some research
efforts have been expended in this regard. Jacklin et al. [26] propose
that any testing method for artificial neural networks, whether new
or modified must take cognizance of the following; the level of
detail and the correctness of the training data, the impact of data
outside the training set on the system, the amount of memory
available to hold the data set being operated upon, and the impact
of the network algorithm on associated components. Needless to
say, a strong grasp of the fundamentals of these learning algorithms
is mandatory for this exercise.

A crucial aspect of correctly assessing the quality of an auto-
nomic computing system is knowing what to measure and where
to take these measurements. This task is often very difficult as
highlighted in [27]. Several metrics have been identified, using the
ISO 9126-1998 standard as a guide [28], that can be measured
within the context of the four cardinal self-* properties of auto-
nomic systems i.e., self-configuration, self-protection, self-healing
and self-optimization. [28] defines six main characteristics that
could be used to assess the quality of a software product, includ-
ing; Functionality, Usability, Portability, Reliability, Efficiency and
Maintainability. The Usability, Reliability and Maintainability at-
tributes are implicit in the definition of autonomic systems, because
of this, only the attributes relating to Functionality, Portability and
Efficiency will be considered here.

The Functionality attribute consists of the following character-
istics; suitability to the problem and interoperability. The speed
of response, processing times and throughput of the system are

characteristics of the Efficiency attribute. Finally, the Portability
component consists of adaptability, installability, co-existence and
replaceability. All have a sub-attribute that deals with compliance to
standards. These three main attributes can and should be applied
to each of the four main self-* properties during the validation,
verification and certification process.

V. CONCLUSION AND FUTURE WORK

Relative to currently deployed IT systems, autonomic computing
system are expected to exhibit superior control/management be-
haviour and high adaptability, regardless of the operational context.
However, a means for measuring this superiority is lacking. In this
paper, two areas that allow for these assessments were tackled i.e.,
the architecture and the metrics that will allow for certification.

In this paper, an evaluation of the way in which, MAPE is
not well-suited for certifiable systems was provided. The intel-
ligent machine design architecture was discussed, and shown to
be amenable to certification. Five technical autonomic maturity
indices, that are similar in broad strokes to those proposed by IBM,
were also presented and aligned to the intelligent machine design
architecture. As it relates to metrics of autonomic systems, three
of the six metrics defined in ISO 9126-1998 i.e., Functionality,
Efficiency and Portability, were shown to be relevant to assessing
autonomic systems, and are under ongoing investigation.

The work presented in this paper has laid the foundation on
which, the certification of autonomic systems can be pursued.
However, there is still much work to be done. The next tasks
include;

• Firmly establishing the intelligent machine design architecture
for autonomic systems such that it enforces structure but
does not restrict the self-management algorithms implemented
within. Clearly defining interfaces between any two autonomic
elements or managers, or between any two levels on the
architecture.

• Propose and implement mechanisms that will allow for effi-
cient management coordination among elements of an auto-
nomic system. These mechanisms will allow for proper es-
tablishment of administrative relationships between elements,
will provide components that allow for management conflict
resolution, if two or more autonomic managers simultaneously
effect changes on a single managed system etc.

• Define and demonstrate steps by which autonomic computing
systems are to be rated within the context of the targeted
application domain. In the first instance, qualitative measures
that fully describe the architectural make up of each manager
and their associated maturity indices will be proposed. These
qualitative metrics in turn will point to what quantitative
measures or performance characteristics can be obtained from
the machine under an evaluation scenario. As discussed pre-
viously, the quantitative measures will be based on ISO 9126-
1998.

REFERENCES

[1] IBM, An architectural blueprint for autonomic computing. IBM
Corporation, 4 ed., June 2006.

126

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

[2] M. Salehie and L. Tahvildari, “Autonomic computing: Emerging
trends and open problems,” DEAS’05. Workshop on the Design
and Evolution of Autonomic Application Software, vol. 30, pp. 1–
7, 2005.

[3] R. Sterritt, “Autonomic computing,” Innovations System Software
Engineering (2005), Springer-Verlag, vol. 1, no. 1, pp. 79–88,
2005.

[4] R. J. Anthony, “A policy-definition language and prototype im-
plementation library for policy-based autonomic systems,” ICAC
’06. IEEE International Conference on Autonomic Computing,
pp. 265 – 276, 2006.

[5] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing degrees, models, and applications,” ACM Computing
Surveys, vol. 40(3), August 2008.

[6] B. Dillenseger, T. Coupaye, M. Salaun, and M. J. Barros, “Auto-
nomic computing and networking:the operators’ vision on tech-
nologies, opportunities, risks and adoption roadmap,” Eurescom
study report, p. 21, 2009.

[7] C. Reich, K. Bubendorfer, and R. Buyya, “An autonomic peer-
to-peer architecture for hosting stateful web services,” CCGRID
’08. 8th IEEE International Symposium on Cluster Computing
and the Grid, 2008.

[8] C. Kennedy, “Decentralised metacognition in context-aware au-
tonomic systems: some key challenges,” In American Institute
of Aeronautics and Astronautics (AIAA) AAAI-10 Workshop on
Metacognition for Robust Social Systems, Atlanta, Georgia, 2010.

[9] P. de Grandis and G. Valetto, “Elicitation and utilization of utility
functions for the self-assessment of autonomic applications,”
ICAC ’09. International Conference on Autonomic Computing,
2009.

[10] C. Dorn, D. Schall, and S. Dustdar, “A model and algorithm for
self-adaptation in service-oriented systems,” ECOWS ’09. Seventh
IEEE European Conference on Web Services, pp. 161 – 170, 2009.

[11] B. Pickering, S. Robert, S. Mnoret, and E. Mengusoglu, “Model-
driven management of complex systems,” MoDELS’08. Proceed-
ings of the 3rd International Workshop on Models@Runtime ,
Toulouse, France, pp. 277 – 286, October 2008.

[12] V. Cardellini, E. Casalicchio, V. Grassi, F. L. Presti, and R. Mi-
randola, “Qos-driven runtime adaptation of service oriented archi-
tectures,” ESEC/FSE ’09. Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering,
2009.

[13] R. Nzekwa, R. Rouvoy, and L. Seinturier, “Modelling feedback
control loops for self-adaptive systems,” Third International Dis-
CoTec Workshop on Context-Aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services (2010) 7, vol. 28, 2010.

[14] V. K. Naik, A. Mohindra, and D. F. Bantz, “An architecture for
the coordination of system management services,” IBM SYSTEMS
JOURNAL, vol. 43, no. 1, pp. 78–96, 2004.

[15] R. Quitadamo and F. Zambonelli, “Autonomic communication
services: a new challenge for software agents,” Journal of
Autonomous Agents and Multi-Agent Systems, vol. 17, no. 3,
pp. 457–475, 2008.

[16] B. A. Caprarescu and D. Petcu, “A self-organizing feedback loop
for autonomic computing,” IEEE CS’09. In Proceedings of the
Computation World: Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns, vol. 126–131, 2009.

[17] R. J. Anthony, “Emergence: a paradigm for robust and scalable
distributed applications,” ICAC’04. IEEE International Confer-
ence on Autonomic Computing, pp. 132–139, 2004.

[18] C. Dorn and S. Dustdar, “Interaction-driven self-adaptation of
service ensembles,” CAiSE’10. 2nd International Conference on
Advanced Information Systems Engineering, 2010.

[19] W. Truszkowski, L. Hallock, C. Rouff, J. Karlin, J. Rash,
M. G.Hinchey, and R. Sterritt, Autonomous and Autonomic Sys-
tems. Springer, 2009.

[20] T. B. Sheridan, Telerobotics, Automation, and Human Supervisory
Control. The MIT Press, 1992.

[21] R. W. Proud, J. J. Hart, and R. B. Mrozinski, “Methods for
determining the level of autonomy to design into a human
spaceflight vehicle: A function specific approach,” PerMIS 03.
Proc. Performance Metrics for Intelligent Systems, NIST Special
Publication 1014, September 2003.

[22] D. A. Norman, A. Ortony, and D. M. Russell, “Affect and machine
design: Lessons for the development of autonomous machines,”
IBM Systems Journal, vol. 42, no. 1, pp. 38 – 44, 2003.

[23] R. Sterritt, M. Parashar, H. Tianfield, and R. Unland, “A con-
cise introduction to autonomic computing,” Elsevier Journal on
Advanced Engineering Informatics,, pp. 181–187, 2005.

[24] IEEE Standards Board, “IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std. 610.121990),” Tech. Rep.
610.121990, IEEE, August 1990.

[25] R. Anthony, D. Chen, M. Pelc, M. Persson, and M. Torngren,
“Context-aware adaptation in dyscas,” CAMPUS’09. Proceedings
of the Second International DisCoTec Workshop on Context-
aware Adaptation Mechanisms for Pervasive and Ubiquitous
Services, vol. 19, 2009.

[26] S. A. Jacklin, M. R. Lowry, J. M. Schumann, P. P. Gupta, J. T.
Bosworth, E. Zavala, J. W. Kelly, K. J. Hayhurst, and C. M.
Belcastro, “Verification, validation, and certification challenges
for adaptive flight-critical control system software,” In Ameri-
can Institute of Aeronautics and Astronautics (AIAA) Guidance,
Navigation and Control Conference and Exhibit, number AIAA
2004-5258, Providence, Rhode Island, August 2004.

[27] B. T. Clough, “Metrics, schmetrics! how the heck do you de-
termine a uavs autonomy anyway?,” Proceedings of the Perfor-
mance Metrics for Intelligent Systems Workshop, Gaithersburg,
Maryland, 2002.

[28] International Organization for Standardization/International Elec-
trotechnical Commission, “Software engineering Product quality
(ISO/IEC 9126),” tech. rep., International Organization for Stan-
dardization/International Electrotechnical Commission, 1998.

127

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

