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Abstract - Autonomous Computation and cognition, the set of
processes that characterise intelligent behaviourra related.
For example, cognition drives the autonomy of a rottic agent.
In this paper, it is our position that Innateness ad
Introspection, sometimes referred to here as Instiet and
Observation, respectively, are key areas not expltty focused
upon in many current cognitive architectures. By iegntifying a
‘minimalistic’ cognition, and incrementally adding Innateness
capabilities and Introspection ability, this reseach defines a
structure underpinning a robot explorer that can deal with
uncertain environments. The flexibility offered by this
structure is considered to be essential for full aenomy. This
paper proposes a framework for achieving Innatenesand
Introspection in autonomous agents and describes iefly two
experiments that have shown that a degree of Innatess and
Introspection can be achieved, functionally, in robtic agents.
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l. INTRODUCTION

the distributed scenario, but we focus on a redftiv
centralised situation as a starting point, and dedle
distribution aspects for future elaboration.

Many functional elements are needed for autonomy in
the general case. We argue that two specific chipedi
Innateness and Introspection, are needed for @ighition,
and are often overlooked completely or under-cookgd
researchers in Al (Artificial Intelligence) who effcognitive
architectures that could be considered for adopimo®C
systems. A list of ‘normative’ capabilities that wd be
considered as ‘cognitive’ has been fairly well bished in
the literature. These are usually included in igd
cognitive reference models or cognitive architestyrand
we believe that they should be considered by anger&ing
to produce AC systems that can deal flexibly aridcgifely
with streams of signals and other inputs from therlds.
They include memory handling, various (somewhat
subjectively selected) functions required for ‘lhgent
behaviour’, and means of interacting with the emvinent.
We claim that they must be supplemented.

For illustration of our approach in this introdwcti we

Autonomous agents require cognition if they are 1t0ge the relatively comprehensive LRMB (Layered Refee

understand and adapt flexibly to complex worldsd @0 \odel of the Brain) [2] for cognitive systems whijchas
underpin their ability to manage themselves. TISS ipeen put forward specifically for use in AC systerfibis
particularly important when the worlds are dynamic,oqge| can be used either to help in explaining &mental

uncertain and impossible to anticipate fudlly initio. There
is a well-known definition of cognition as:

‘natural’ cognitive mechanisms and processes [3, -oi4to
simply gather together specifications of capakditithat
could be useful when engineering artefacts for ousi

“...all processes by which the sensory input issctivities. Our focus here is on the latter use.

transformed, reduced, elaborated, stored, recovetd
used..”,[1].

To get the full benefits of cognition in agents,ist
desirable to identify what the potential benefite and to
study cognitive processes that are manifested inang and

By common consent there are a lot of cognitive
processes in ‘natural intelligence’. The LRMB desis list
39 of these at six layers known as the sensati@many,
perception, action, metacognitive, and higher dbgni
layers.

The designers of LRMB and other researchers taken

other higher mammals. These can be incorporatea@ in collectively have produced a close-to-exhaustive bf

cognitive  architecture,
capabilities that are needed for practical appboain AC

and they offer fundamentalfoarres that should be possessed by any cogritieet.

There are various cognitive architectures [5] theate been

(Autonomous  Computing) systems, such as those fqfgoted to capture the basis of cognition. Theyimended

surveillance systems, animal behaviour modellingtesys,
robots, software agent systems, and other infretstrai
systems for computing.

In an AC system, these capabilities should be abiena
to distribution across the whole system, but, a& tther
extreme, there are situations where a centralisgehta
covering a cluster of relatively fixed low-level stgm
elements, rather than one monolithic ‘self’, is rappiate.
The structures and applicability of the alternatiNgpersion
patterns is an area for further investigation. @eas cover
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to specify domain independent infrastructures fioeliigent
systems.

Starting from such suggestions, we desire to ifleatid
understand some particular mechanisms and intenacfor
use in complex processes such as those requiring AC
However we find that they do not adequately cowver t
features on which we focus, i.e., on the Innateness
relationships and interactions between what aréedah
LRMB the ‘inherited and the acquired’ cognitive @tions,
as well as Introspective processes that supportp dee
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reasoning. These features tend to be understudiedhier
reference models. For example according to Wang,
LRMB, these capabilities are relatively simple: drealogue
of the operating system and applications in a cdmgu
system, particularly a real-time system and therditile

mention of isolating a way of ‘keeping an eye ortiawis

transpiring during cognitive activity, as a sigaint

subsystem.

In this paper, our hypothesis is that consideratdn
cognitive architectures can greatly enhance ACesyst and
we outline two novel aspects of a cognitive arahitee that
builds on previous work in this area, and makeaitipularly
well suited to AC. This paper is therefore laid astfollows:
we discuss the useful reference point or baselineimimal
cognition briefly, identifying the most basic menfsans
needed if a system is to be called cognitive. Aftés we
define a general cognitive structure where we lauk
representative architectures in the literature disduss the
Innateness and Introspection functionality. We argiat
these features are essential for true cognitiosicBaarning
methods to be applied in this research are coresidand
briefly demonstrated in an example of an exergis®elving
instincts. Finally, the paper discusses implicatiofor
measuring autonomy.

II.  MINIMAL COGNITION

dependent on metabolic activity, but it is ‘orgatianally
iautonomous’, and functionality similar to that bétnervous
system is claimed for it.

We claim that a minimally cognitive system must dav
two particular features before it can be callednitbge —
Innateness and a degree of self-awareness, ospezton.
These features are discussed later.

lll.  GENERALISED COGNITIVE ARCHITECTURE

As stated above, in research in this area at lwest
‘flavours’ are identifiable.... ‘Modelling invariardspects of
human cognition’ — explaining/matching psychologica
phenomena; and ‘an effective path toward building
intelligent agents’ — generating intelligent belvavi

Baars with the GWT (Global Workplace Theory) [9Han
Moreno et al with CERA (Consciousness and Emotional
Reasoning Architecture) [10] give examples of tyyges of
architectural frameworks that are needed for a cdatipnal
model of consciousness.

The first of these mainly deals with what Morendisca
A-Consciousness — accessibility of contents of mgnfior
reasoning volition and speech. It seems to aim gmilynat
understanding consciousness in organisms. For CERA,
Moreno includes inner perception or introspectidvi- (
consciousness) and self-recognition and reasorbingtahe
self (S-Consciousness) in his Reasoning conscigasiide

Simple devices, which do not have functions tha ar functioning of artefacts based on CERA is important

commonly associated with cognition, such as reagpand
learning, can produce seemingly complex behaviousirg

however a goal of that model that we do not ainmiddo get
close to computational correlates of biological naku

a stimulus response mechanism. Such mechanisms hasteuctures. Another architecture that is very welreloped is

been investigated by Konrad Lorenz [6], considéoele the
father of Ethology. They have been termed ‘fixedicac
patterns’ or alternatively ‘innate release mechasiswhere
specific stimuli will trigger a fixed response. Heeevents
may appear intelligent but
programmed codes that do not deviate from pattam.
engaging example is given by Sharkey [7] where gl
conscious and smart behaviour can be observedsinithle
reaction mechanisms. The observed behaviour can
interpreted in many anthropomorphic ways, but theration
of the device is very simply explained by theseitkah,
somewhat ‘brainless’ responses to sense data.

There are many important questions arising fronugjnb
experiments like this and related studies. We famuone:

ACT-R [11], and it presents a comprehensive list of
functionality that would largely be agreed by apgearcher
working in this domain: Sense functions for visaatl other
sense processing; Motor functions for action; Memor

in fact are simple pre-functions for, e.g., short-term buffers and a loegn

memory.

In such architectures, ‘soft computing’ functioms also
needed, as are intentional functions for goals atong with
kze coordinator. The main components of ‘Soft Compiti
[12] (in Zadeh’s SC Institute UC Berkeley) are:

- Fuzzy logic (FL)
- Neural network theory (NN)
- Probabilistic reasoning (PR)

When does a system become intelligent? However the
gedankenabove suggests a more fundamental preliminary Our emphasis is on exploration. We seek integrated

guestion — one that we are actively studying in lalns.
What is the minimal structure that is needed ifareto have
a cognitive system? An alternative to the defimitmooted
earlier is to say that agents ‘that reason actgdez, and
learn in changing, incompletely known, and unprittite

environments’ are cognitive. The device in Sharkey' Soft

thought experiment clearly does not qualify.

systems for intelligent ‘agental’ behaviour, rattiean piece-
wise improvement of individual functions/modulese Want

to accommodate the following generalised functiibyal
Perception and Action (motor) - outer stratum of) Hi
Reasoning/Predicting/Deciding/Learning — seconatn,
(Computing) Functions’, of Fig 1;
Remembering/Learning - short or long memories STM

Now, a two-component signal transduction (TCST)(Short Term Memory) and LTM (Long Term Memory), in

system [8] a molecular sensorimotor system in bacthas
been discovered relatively recently, and this ensey some

Fig 1. The general architectural framework for dtgn
presented in outline in Fig 1 gives the ‘shapead$ort of

to mark a boundary for cognition. The TCST systam i consensus of many contributors to this topic. Iditagh to

important because it elucidates a molecular mesharor
adaptation and memory. Its sensorimotor organizasicstill
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showing the ‘common consent’ framework, we useoit t
distinguish our own architectural focus.
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Sensor-motor

Soft Functions

Figure 1. Standard Schema for a generalised Cognitive Arctoite.

IV. LEARNING, REASONING AND UNCERTAINTY AND

INCONSISTENCY HANDLING MECHANISMS

Our research is approached from the direction tf dad
knowledge engineering. Our particular intereshithie areas
of inconsistency handling and to an extent, mackiaming.
Both of these areas should arguably be key focigseaC.

A variety of projects have led to development ofd an
usefulness of artefacts with this sort of functiggpae.g.,
Medical, Transportation, Education, General Enginge
Telecoms, Music, Manufacturing, and Biology. Impmit
topics include transitional (esp. time series) mnmRi
causality, categorisation, reinforcement learningnd
harmonisation issues, especially those connected thie
obtaining of new knowledge.

The latter topic is of particular interest heret-sithe
primary catalyst which triggered the present prajmsAs
indicated above, it is all treated very much from a
engineering viewpoint. It has led quite naturally the
contemplation of the possibility and practicabildf adding
a self-conscious aspect of agents to support ‘deggoning
and thereby facilitate autonomous behaviour and AC.

To manage the changes of agent’s beliefs, we need
consider ways of revising or updating an agent'srecu
beliefs when new knowledge/evidence is obtained. T
achieve this, a success principle must be mairdamach
states that new knowledge should be retained, &ed t
minimal change principle is crucial. It argues ttiegt agent’s
prior knowledge should also be retained as mugboasible
while maintaining consistency. When the new knogéed
not guaranteed to be kept, merging has to takeeptac
determine a new belief set based on the strendtie @rior
beliefs and new evidence. There is much reseai@h-[20]
on various aspects of ‘Soft Computing’ relevanthis work
on revising and measuring the amount of conflicd an

agreement between prioritized knowledge bases, anlglS
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resolving the conflicts in such knowledge bases, ey
lexicographic aggregation, combining them by neiutn,
or merging them under various constraints.

Revision in numerical related theories, such
probability theory is handled differently. In Prdiiay
theory, revision is done by Bayes’ updating ruleleffery’s
rule. In other theories, such as the Dempster-8hhéory
and possibility theory, the counterparts of Jeffemule or
Bayesian updating rule have been developed. Thedesy
of belief revision and merging in an agent envirenins to
accommodate new knowledge and to reach a consisént
of ne beliefs for the agent. In machine learningthuds are
available for ‘Rough’ computations, discovering salu
patterns in data through mining, reinforcementreey and
feature subset selection based on relevance.

as

V. SPECIFICCOGNITIVE ARCHITECTURE

The standard model of Fig 1 is supplemented by two
important ingredients in our scheme [21] — funcdicand
memory modules for each of two capabilites — viz:
Innateness and Introspection (“Observer”).

Sensor-motor

Figure 2. Cognitive Architecture Schema.

Innateness

A key factor in many programmes where flexibility i
Pequired of agents is what is built-ab initio. Instinct is
innate ability of agent to detect/react to/assecistimuli

A.

from the environment or from internal urges. Bwiit agent

can begin, for example, to form de facto categofy
(“We are sensorimotor systems who learn to sort and
manipulate the world according to the kinds of gsnn it,
and based on what sensorimotor features our braizs
detect and use to do s9."and thus learning. It can then use
the categories and other learning outcomes to plaah
predict, and to some extent modify the built-in dten
reactions. Some behaviour can still be explainethaate,
but the agent can learn and solve problems retatégbals’
maybe, in some organisms, even ‘let its hypothese in
place’.
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In an attack-flee scenario in one of our projediéctv we
conduct using Khepera platform [23], two innatetimgs
are: Investigate (E) / Beware (B). Both of thesgger the
collection of sense data (S) from which the rolesrhs.
When a new object (e.g., a light) appears — baahdEB lead
to S and dominate when enough data is availatdenitey is
possible, and this takes place systematically.

The decision resulting from a particular episode
exploration indicates which of E or B results —ezdgilly
whether the robot investigates further (E) or fl@@s This
result depends on the evidence acquired accordi@gtiles B | .
(illustrations are given in Rules 1 and 2 belovf)em sense - Introspection
data. In previous work [25 — 26], the main theme of the

Rule 1 - If light then B and S (strength .90) (an ‘infate Simulation was to show grounding of real world eigreces

further episodes could be conducted to get morsigtent
knowledge.
At the end of the episode in Table 1, we are afpthiat
in the trace where the accumulated score excegds B
dominates here). This pattern of robot plasticitflexibility
of behaviour could be applied in many other AC aayion
areas such as surveillance, software agent systechsther
ofcomplex computational systems. There is no requérerfor
self-awareness or Introspection in this example.adf@ the
observer functionality/module as below.

rule) ....this says that if a light is detected, thbot has an
instinct to be careful, but to passively collectadan the

in an agent's sense data and hence some aspetie of
common intuition of “understanding”. The mappingtbfs

light's behaviour. sense data to internal mental constructs, categgris

Rule 2 - If test is positve then E and S (a experience and patterns, and most importantly &ifyu
learned/acquired rule) ....this says that if the tdties some actions, is considered to be a basis for understgnd
test, such as: approach the light and look to Bexbject
reacts aggressively, in which case the robot iofiuscore -
0.5 if yes); alternatively if the light does notot, score 1,
and the robot is positively prompted to investighteher.
Nothing is added otherwise.

There are two phases in episodes captured as benalvi
traces. The first is illustrated in the table belevthe result
depends simply on the rules (instincts) and theeseiata. At
the end of this phase, when some termination wmiteis
reached, the balance of evidence lies in some cphati
direction e.g., Beware (as here) with certain gitteifsuch as
0.90), probably indicating that the object is dangs. The
termination criterion for the tabled data is wheme t
accumulated ‘score’ exceeds 5.

TABLE I. TRACE OF ACTION STEPS IN A BEHAVIOURAL EPISODE
Agent Actions Object Actions
Approach Attack React Score Added
1 0 0 1
1 0 0 1
1 0 1 0E _ Figure 3. _A;imulated experiment in Webots, 3 rooms représgnt
different activities an agent can engage and aucdtace top left that can
1 0 0 1 be linked by an ‘Observer’ to a mood.
1 0 0 1
1 0 1 -0.E It is important to consider what understanding Her
1 0 0 1 present purposes it is the ability to rationalideas through
1 0 1 0E abstraction's in orqer to form a concept, _and ladgustify
1 0 0 1 any resulting actions, in a given environment. Ay ke

consideration here is to ground concepts in seasa. dn
‘playback’ systems the agent carries out actionghwlare
pre-programmed, with no initial understanding ofawvht is
doing. In our scenarios this is their situatiortiadly and
actions can be considered here as primitive “intin
Concurrently there is a “mind” (Observer) linkingese
actions to an internal construct by abstraction.dBing this
it can be said that body and mind have been sephrat
function-wise to achieve this understanding.

Here we suggest that a level of understanding @an b
achieved by means of symbolic grounding. Two cagmit
sub-agents called actor and observer are implemhetate

Just one piece of evidence is considered here re the
could be others. Evidential reasoning can then d®d to
come to a decision. It is important to distingugtuations
where this does not necessitate a particular decisie.g.,
strength is only 0.90 - especially one which isiagtathe
purpose of the robot. This is in contrast to a nmgeaeral
purpose — such as to ‘scientifically’ reflect ‘theal world’.
Such a decision should be taken as a suggestiomadba
necessitation [24]. In the second phase, not ilitesti here,
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allow deep reasoning/query response in
involving engaging in activities and changing mooda

manner depending on the activities and their ongerihe
observer sub-agent records the trace of activéties moods
and links the activities and moods to its own setaa using
a simple symbolic grounding function. For exampiee

actor from time to time enters rooms while leavingolour
trail. This colour trail changes depending on tbem. The
actor can be interrupted from time to time and tlss
recorded to see what the relationship it has wittognand
activity pattern. Colours are linked to moods andms to
activities. As the actor ‘experiences’ a particytath, the

observer is able to classify, reason and explaiat e actor

simpleStage 2 Pre-Operational
environments. The actor subagent pursues a proggamm

Responding to (NOT Language understanding)
relating to self (e.g., answering questions oreytat
Relating objects (though NOT via language) though
not in current perceptual field (memory).

StageS Concrete Operation

Conservation of volume etc. of objects( e.g.,
estimating quantity of objects in visual field)
Classification of objects logical rather than on
attribute basis (animals/shapes...)

Sorting objects (e.g., size or colour)

Effect of Reverse of action (undoing) predictable

is doing and experiencing in terms of sense datd anStage4 Formal Operations

summaries thereof. See Fig 3.

The environment is a working space which can b&dar
- eJg.,
labyrinths, with various complexities of event nmixelhe
agent can pick up attributes of the environmennhfeensors
and with the help of a built-in observer, answectdal
(related to direct sense data values) and explanéieated
to summaries, etc. of sense data) questions abbat i
experiences. An example of patterns /charactesisifcan
agent are : while the activity is reading the mddhitially
good, musing turns it to fair and discussion hésa effect
on mood.

This grounding can again extend the flexibility of
artefacts such as the common AC applications,titme by
relating ‘understanding’ to the basic inputs frame tigent’s
environment.

VI. TOWARDS THE MEASUREMENT OF AUTONOMY

From an engineering point of view, it is importamtoe able
to compare AC systems with respect to their degdes
autonomy. Like the closely related topic of inggdihce tests,
this is as yet not well understood and part of wark is to
look at this issue. We do so from various angles.he
Keedwell [27] presents an initial proposal of sthge
testing for Intelligence, known as the Staged Dgwelental
Machine, based on staged testing methods for dewelo
children, per Piaget's theory. An analogous stagest
device can be envisaged for AC systems. This pexptest
offers a scalar value measure rather than the esfNhe
Turing test,
Language Processing. The idea is that ‘machinekl doe
judged by their effective stage’. For use in tegtifor
autonomy levels here, we highlight the followingggs/part
stages, per Keedwell, that we expect our artefacistain...

Stage 1 Sensory Perception
Reacts to Basic Stimuli
Understands Cause and Effect — predicts next step.

and those not) and what to expect from them.
Uses trial and error to learn about the World
(experimentation).
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from very simple rooms up to rather complex

14]

Understands concept of objects (those controllable

Ability to create hypotheses/experiments
Abstract thought — prediction of interactions of
objects in novel ways

We also propose [21] a staged approach to the
measurement of degree of intelligence or autonomyav
similar scale based on complexity of the environnsémilar
to the Sphex test [28], as well as a degree oftémess and a
degree of Introspection.

VIl.  SUMMARY AND CONCLUSION

This research is part of a project which focuses on
developing a robot explorer. A more generally atile,
unique cognitive architecture has been proposet dha
underpin wider AC functionality. It is expected thaost
autonomous agents at some point will encounter rtaine
‘territory’.

Two key and somewhat distinctive features — Inregen
and Introspection - are included in the architextiihese are
considered to be indispensible if the flexibilitynda
adaptability required for applications requiringanomy is
to be supported. We will use a probabilistic/pagistic
approach combined with classification methods taldish
(inexact) rules and tools for AC. We will developvel
methods of evaluation for the added functionality.
particular, as an exemplar of dynamic applicatigatems
where the additional capabilities described heectameted,
a robotic agent will be able to explore and describ
environments effectively.
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