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Abstract - Autonomous Computation and cognition, the set of 
processes that characterise intelligent behaviour are related. 
For example, cognition drives the autonomy of a robotic agent. 
In this paper, it is our position that Innateness and 
Introspection, sometimes referred to here as Instinct and 
Observation, respectively, are key areas not explicitly focused 
upon in many current cognitive architectures. By identifying a 
‘minimalistic’ cognition, and incrementally adding Innateness 
capabilities and Introspection ability, this research defines a 
structure underpinning a robot explorer that can deal with 
uncertain environments. The flexibility offered by this 
structure is considered to be essential for full autonomy. This 
paper proposes a framework for achieving Innateness and 
Introspection in autonomous agents and describes briefly two 
experiments that have shown that a degree of Innateness and 
Introspection can be achieved, functionally, in robotic agents. 

Keywords - Autonomy; Innateness; Introspection; Machine 
Intelligence; Cognitive Architecture. 

I.  INTRODUCTION 

Autonomous agents require cognition if they are to 
understand and adapt flexibly to complex worlds, and so 
underpin their ability to manage themselves. This is 
particularly important when the worlds are dynamic, 
uncertain and impossible to anticipate fully ab initio. There 
is a well-known definition of cognition as:  

 
“…all processes by which the sensory input is 

transformed, reduced, elaborated, stored, recovered, and 
used..”, [1]. 

 
To get the full benefits of cognition in agents, it is 

desirable to identify what the potential benefits are and to 
study cognitive processes that are manifested in humans and 
other higher mammals. These can be incorporated in a 
cognitive architecture, and they offer fundamental 
capabilities that are needed for practical application in AC 
(Autonomous Computing) systems, such as those for 
surveillance systems, animal behaviour modelling systems, 
robots, software agent systems, and other infrastructural 
systems for computing. 

In an AC system, these capabilities should be amenable 
to distribution across the whole system, but, at the other 
extreme, there are situations where a centralised agent 
covering a cluster of relatively fixed low-level system 
elements, rather than one monolithic ‘self’, is appropriate. 
The structures and applicability of the alternative dispersion 
patterns is an area for further investigation. Our ideas cover 

the distributed scenario, but we focus on a relatively 
centralised situation as a starting point, and leave the 
distribution aspects for future elaboration. 

Many functional elements are needed for autonomy in 
the general case. We argue that two specific capabilities, 
Innateness and Introspection, are needed for full cognition, 
and are often overlooked completely or under-cooked by 
researchers in AI (Artificial Intelligence) who offer cognitive 
architectures that could be considered for adoption in AC 
systems. A list of ‘normative’ capabilities that would be 
considered as ‘cognitive’ has been fairly well established in 
the literature. These are usually included in published 
cognitive reference models or cognitive architectures, and 
we believe that they should be considered by anyone seeking 
to produce AC systems that can deal flexibly and effectively 
with streams of signals and other inputs from their worlds. 
They include memory handling, various (somewhat 
subjectively selected) functions required for ‘intelligent 
behaviour’, and means of interacting with the environment. 
We claim that they must be supplemented.  

For illustration of our approach in this introduction we 
use the relatively comprehensive LRMB (Layered Reference 
Model of the Brain) [2] for cognitive systems which, has 
been put forward specifically for use in AC systems. This 
model can be used either to help in explaining fundamental 
‘natural’ cognitive mechanisms and processes [3 – 4], or to 
simply gather together specifications of capabilities that 
could be useful when engineering artefacts for various 
activities. Our focus here is on the latter use. 

 By common consent there are a lot of cognitive 
processes in ‘natural intelligence’. The LRMB designers list 
39 of these at six layers known as the sensation, memory, 
perception, action, metacognitive, and higher cognitive 
layers. 

The designers of LRMB and other researchers taken 
collectively have produced a close-to-exhaustive list of 
features that should be possessed by any cognitive agent. 
There are various cognitive architectures [5] that have been 
mooted to capture the basis of cognition. They are intended 
to specify domain independent infrastructures for intelligent 
systems.  

Starting from such suggestions, we desire to identify and 
understand some particular mechanisms and interactions for 
use in complex processes such as those requiring AC. 
However we find that they do not adequately cover the 
features on which we focus, i.e., on the Innateness 
relationships and interactions between what are called in 
LRMB the ‘inherited and the acquired’ cognitive functions, 
as well as Introspective processes that support deep 
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reasoning. These features tend to be understudied in other 
reference models. For example according to Wang, in 
LRMB, these capabilities are relatively simple: the analogue 
of the operating system and applications in a computing 
system, particularly a real-time system and there is little 
mention of isolating a way of ‘keeping an eye on’ what is 
transpiring during cognitive activity, as a significant 
subsystem. 

In this paper, our hypothesis is that consideration of 
cognitive architectures can greatly enhance AC systems, and 
we outline two novel aspects of a cognitive architecture that 
builds on previous work in this area, and make it particularly 
well suited to AC. This paper is therefore laid out as follows: 
we discuss the useful reference point or baseline of minimal 
cognition briefly, identifying the most basic mechanisms 
needed if a system is to be called cognitive. After this we 
define a general cognitive structure where we look at 
representative architectures in the literature and discuss the 
Innateness and Introspection functionality. We argue that 
these features are essential for true cognition. Basic learning 
methods to be applied in this research are considered and 
briefly demonstrated in an example of an exercise involving 
instincts. Finally, the paper discusses implications for 
measuring autonomy.  

II. MINIMAL COGNITION 

Simple devices, which do not have functions that are 
commonly associated with cognition, such as reasoning and 
learning, can produce seemingly complex behaviour – using 
a stimulus response mechanism. Such mechanisms have 
been investigated by Konrad Lorenz [6], considered to be the 
father of Ethology. They have been termed ‘fixed action 
patterns’ or alternatively ‘innate release mechanisms’ where 
specific stimuli will trigger a fixed response. These events 
may appear intelligent but in fact are simple pre-
programmed codes that do not deviate from pattern. An 
engaging example is given by Sharkey [7] where apparently 
conscious and smart behaviour can be observed with simple 
reaction mechanisms. The observed behaviour can be 
interpreted in many anthropomorphic ways, but the operation 
of the device is very simply explained by these limited, 
somewhat ‘brainless’ responses to sense data. 

There are many important questions arising from thought 
experiments like this and related studies. We focus on one: 
When does a system become intelligent? However the 
gedanken above suggests a more fundamental preliminary 
question – one that we are actively studying in our labs. 
What is the minimal structure that is needed if we are to have 
a cognitive system? An alternative to the definition mooted 
earlier is to say that agents ‘that reason act, perceive, and 
learn in changing, incompletely known, and unpredictable 
environments’ are cognitive. The device in Sharkey’s 
thought experiment clearly does not qualify. 

Now, a two-component signal transduction (TCST) 
system [8] a molecular sensorimotor system in bacteria, has 
been discovered relatively recently, and this is seen by some 
to mark a boundary for cognition. The TCST system is 
important because it elucidates a molecular mechanism for 
adaptation and memory. Its sensorimotor organization is still 

dependent on metabolic activity, but it is ‘organizationally 
autonomous’, and functionality similar to that of the nervous 
system is claimed for it. 

We claim that a minimally cognitive system must have 
two particular features before it can be called cognitive – 
Innateness and a degree of self-awareness, or Introspection. 
These features are discussed later. 

III.  GENERALISED COGNITIVE ARCHITECTURE 

As stated above, in research in this area at least two 
‘flavours’ are identifiable…. ‘Modelling invariant aspects of 
human cognition’ – explaining/matching psychological 
phenomena; and ‘an effective path toward building 
intelligent agents’ – generating intelligent behaviour 

Baars with the GWT (Global Workplace Theory) [9] and 
Moreno et al with CERA (Consciousness and Emotional 
Reasoning Architecture) [10] give examples of the types of 
architectural frameworks that are needed for a computational 
model of consciousness. 

The first of these mainly deals with what Moreno calls 
A-Consciousness – accessibility of contents of memory for 
reasoning volition and speech. It seems to aim primarily at 
understanding consciousness in organisms. For CERA, 
Moreno includes inner perception or introspection (M-
consciousness) and self-recognition and reasoning about the 
self (S-Consciousness) in his Reasoning consciousness. The 
functioning of artefacts based on CERA is important; 
however a goal of that model that we do not aim for is to get 
close to computational correlates of biological neural 
structures. Another architecture that is very well developed is 
ACT-R [11], and it presents a comprehensive list of 
functionality that would largely be agreed by any researcher 
working in this domain: Sense functions for visual and other 
sense processing; Motor functions for action; Memory 
functions for, e.g., short-term buffers and a long-term 
memory. 

In such architectures, ‘soft computing’ functions are also 
needed, as are intentional functions for goals etc., along with 
a coordinator. The main components of ‘Soft Computing’ 
[12] (in Zadeh’s SC Institute UC Berkeley) are: 

 
- Fuzzy logic (FL) 
- Neural network theory (NN)  
- Probabilistic reasoning (PR) 
 
Our emphasis is on exploration. We seek integrated 

systems for intelligent ‘agental’ behaviour, rather than piece-
wise improvement of individual functions/modules. We want 
to accommodate the following generalised functionality: 
Perception and Action (motor) - outer stratum of Fig 1; 
Reasoning/Predicting/Deciding/Learning – second stratum, 
Soft (Computing) Functions’, of Fig 1; 
Remembering/Learning - short or long memories STM 
(Short Term Memory) and LTM (Long Term Memory), in 
Fig 1. The general architectural framework for cognition 
presented in outline in Fig 1 gives the ‘shape’ of a sort of 
consensus of many contributors to this topic. In addition to 
showing the ‘common consent’ framework, we use it to 
distinguish our own architectural focus.  
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Figure 1.  Standard Schema for a generalised Cognitive Architecture. 

IV.  LEARNING, REASONING, AND UNCERTAINTY AND 

INCONSISTENCY HANDLING MECHANISMS 

Our research is approached from the direction of data and 
knowledge engineering. Our particular interest is in the areas 
of inconsistency handling and to an extent, machine learning. 
Both of these areas should arguably be key focuses for AC. 
A variety of projects have led to development of and 
usefulness of artefacts with this sort of functionality e.g., 
Medical, Transportation, Education, General Engineering, 
Telecoms, Music, Manufacturing, and Biology. Important 
topics include transitional (esp. time series) mining, 
causality, categorisation, reinforcement learning, and 
harmonisation issues, especially those connected with the 
obtaining of new knowledge. 

The latter topic is of particular interest here – it is the 
primary catalyst which triggered the present proposals. As 
indicated above, it is all treated very much from an 
engineering viewpoint. It has led quite naturally to the 
contemplation of the possibility and practicability of adding 
a self-conscious aspect of agents to support ‘deep’ reasoning 
and thereby facilitate autonomous behaviour and AC. 

To manage the changes of agent’s beliefs, we need to 
consider ways of revising or updating an agent’s current 
beliefs when new knowledge/evidence is obtained. To 
achieve this, a success principle must be maintained which 
states that new knowledge should be retained, and the 
minimal change principle is crucial. It argues that the agent’s 
prior knowledge should also be retained as much as possible 
while maintaining consistency. When the new knowledge is 
not guaranteed to be kept, merging has to take place to 
determine a new belief set based on the strengths of the prior 
beliefs and new evidence. There is much research [13 – 20] 
on various aspects of ‘Soft Computing’ relevant to this work 
on revising and measuring the amount of conflict and 
agreement between prioritized knowledge bases, and 

resolving the conflicts in such knowledge bases e.g., by 
lexicographic aggregation, combining them by negotiation, 
or merging them under various constraints. 

Revision in numerical related theories, such as 
probability theory is handled differently. In Probability 
theory, revision is done by Bayes’ updating rule or Jeffery’s 
rule. In other theories, such as the Dempster-Shafer theory 
and possibility theory, the counterparts of Jeffery’s rule or 
Bayesian updating rule have been developed. The key idea 
of belief revision and merging in an agent environment is to 
accommodate new knowledge and to reach a consistent set 
of ne beliefs for the agent. In machine learning, methods are 
available for ‘Rough’ computations, discovering causal 
patterns in data through mining, reinforcement learning and 
feature subset selection based on relevance. 

V. SPECIFIC COGNITIVE ARCHITECTURE 

The standard model of Fig 1 is supplemented by two 
important ingredients in our scheme [21] – functions and 
memory modules for each of two capabilities – viz: 
Innateness and Introspection (“Observer”).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Cognitive Architecture Schema. 

A.  Innateness 

A key factor in many programmes where flexibility is 
required of agents is what is built-in ab initio. Instinct is 
innate ability of agent to detect/react to/associate stimuli 
from the environment or from internal urges. By it an agent 
can begin, for example, to form de facto categories [22] 
(“We are sensorimotor systems who learn to sort and 
manipulate the world according to the kinds of things in it, 
and based on what sensorimotor features our brains can 
detect and use to do so.”), and thus learning. It can then use 
the categories and other learning outcomes to plan and 
predict, and to some extent modify the built-in innate 
reactions. Some behaviour can still be explained as innate, 
but the agent can learn and solve problems related to ‘goals’ 
– maybe, in some organisms, even ‘let its hypotheses die in 
its place’. 

STM

LTM

Sensor‐motor

Soft Functions

STM

LTM

Sensor‐motor

Soft Functions

Innateness

Introspection
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In an attack-flee scenario in one of our projects which we 
conduct using Khepera platform [23], two innate instincts 
are: Investigate (E) / Beware (B). Both of these trigger the 
collection of sense data (S) from which the robot learns. 
When a new object (e.g., a light) appears – both E and B lead 
to S and dominate when enough data is available, learning is 
possible, and this takes place systematically. 

The decision resulting from a particular episode of 
exploration indicates which of E or B results – essentially 
whether the robot investigates further (E) or flees (B). This 
result depends on the evidence acquired according to 2 rules 
(illustrations are given in Rules 1 and 2 below) – from sense 
data. 

Rule 1 - If light then B and S (strength .90) (an ‘innate’ 
rule) ….this says that if a light is detected, the robot has an 
instinct to be careful, but to passively collect data on the 
light’s behaviour. 

Rule 2 - If test is positive then E and S (a 
learned/acquired rule) ….this says that if the robot tries some 
test, such as: approach the light and look to see if object 
reacts aggressively, in which case the robot is put off (score -
0.5 if yes); alternatively if the light does not react, score 1, 
and the robot is positively prompted to investigate further. 
Nothing is added otherwise. 

There are two phases in episodes captured as behavioural 
traces. The first is illustrated in the table below – the result 
depends simply on the rules (instincts) and the sense data. At 
the end of this phase, when some termination criterion is 
reached, the balance of evidence lies in some particular 
direction e.g., Beware (as here) with certain strength (such as 
0.90), probably indicating that the object is dangerous. The 
termination criterion for the tabled data is when the 
accumulated ‘score’ exceeds 5. 

TABLE I.  TRACE OF ACTION: STEPS IN A BEHAVIOURAL EPISODE 

 
Just one piece of evidence is considered here – there 

could be others. Evidential reasoning can then be used to 
come to a decision. It is important to distinguish situations 
where this does not necessitate a particular decision - e.g., 
strength is only 0.90 - especially one which is against the 
purpose of the robot. This is in contrast to a more general 
purpose – such as to ‘scientifically’ reflect ‘the real world’. 
Such a decision should be taken as a suggestion, but not a 
necessitation [24]. In the second phase, not illustrated here, 

further episodes could be conducted to get more persistent 
knowledge. 

At the end of the episode in Table 1, we are at the point 
in the trace where the accumulated score exceeds 5 (so B 
dominates here). This pattern of robot plasticity or flexibility 
of behaviour could be applied in many other AC application 
areas such as surveillance, software agent systems and other 
complex computational systems. There is no requirement for 
self-awareness or Introspection in this example. We add the 
observer functionality/module as below. 

B. Introspection 

In previous work [25 – 26], the main theme of the 
simulation was to show grounding of real world experiences 
in an agent’s sense data and hence some aspects of the 
common intuition of “understanding”. The mapping of this 
sense data to internal mental constructs, categorising 
experience and patterns, and most importantly to justify 
actions, is considered to be a basis for understanding. 

Figure 3.  A simulated experiment in Webots, 3 rooms representing 
different activities an agent can engage and a colour trace top left that can 

be linked by an ‘Observer’ to a mood. 

It is important to consider what understanding is. For 
present purposes it is the ability to rationalise ideas through 
abstractions in order to form a concept, and later to justify 
any resulting actions, in a given environment. A key 
consideration here is to ground concepts in sense data. In 
‘playback’ systems the agent carries out actions which are 
pre-programmed, with no initial understanding of what it is 
doing. In our scenarios this is their situation initially and 
actions can be considered here as primitive “instincts”. 
Concurrently there is a “mind” (Observer) linking these 
actions to an internal construct by abstraction. By doing this 
it can be said that body and mind have been separated 
function-wise to achieve this understanding. 

Here we suggest that a level of understanding can be 
achieved by means of symbolic grounding. Two cognitive 
sub-agents called actor and observer are implemented to 

Agent Actions Object Actions  
Approach Attack React Score Added 

1 0 0 1 
1 0 0 1 
1 0 1 -0.5 
1 0 0 1 
1 0 0 1 
1 0 1 -0.5 
1 0 0 1 
1 0 1 -0.5 
1 0 0 1 
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allow deep reasoning/query response in simple 
environments. The actor subagent pursues a programme 
involving engaging in activities and changing mood in a 
manner depending on the activities and their ordering. The 
observer sub-agent records the trace of activities and moods 
and links the activities and moods to its own sense data using 
a simple symbolic grounding function. For example, the 
actor from time to time enters rooms while leaving a colour 
trail. This colour trail changes depending on the room. The 
actor can be interrupted from time to time and this is 
recorded to see what the relationship it has with mood and 
activity pattern. Colours are linked to moods and rooms to 
activities. As the actor ‘experiences’ a particular path, the 
observer is able to classify, reason and explain what the actor 
is doing and experiencing in terms of sense data and 
summaries thereof. See Fig 3. 

The environment is a working space which can be varied 
– e.g., from very simple rooms up to rather complex 
labyrinths, with various complexities of event mixes. The 
agent can pick up attributes of the environment form sensors 
and with the help of a built-in observer, answer factual 
(related to direct sense data values) and explanatory (related 
to summaries, etc. of sense data) questions about what it 
experiences. An example of patterns /characteristics of an 
agent are : while the activity is reading the mood is initially 
good, musing turns it to fair and discussion has a bad effect 
on mood. 

This grounding can again extend the flexibility of 
artefacts such as the common AC applications, this time by 
relating ‘understanding’ to the basic inputs from the agent’s 
environment. 

VI. TOWARDS THE MEASUREMENT OF AUTONOMY 

 
From an engineering point of view, it is important to be able 
to compare AC systems with respect to their degrees of 
autonomy. Like the closely related topic of intelligence tests, 
this is as yet not well understood and part of our work is to 
look at this issue. We do so from various angles here. 

Keedwell [27] presents an initial proposal of staged 
testing for Intelligence, known as the Staged Developmental 
Machine, based on staged testing methods for developing 
children, per Piaget’s theory. An analogous staged test 
device can be envisaged for AC systems. This proposed test 
offers a scalar value measure rather than the Yes/No of the 
Turing test, and there is no requirement for Natural 
Language Processing. The idea is that ‘machines could be 
judged by their effective stage’. For use in testing for 
autonomy levels here, we highlight the following stages/part 
stages, per Keedwell, that we expect our artefacts to attain... 
 
Stage 1 Sensory Perception 

- Reacts to Basic Stimuli 
- Understands Cause and Effect – predicts next step… 
- Understands concept of objects (those controllable 

and those not) and what to expect from them. 
- Uses trial and error to learn about the World 

(experimentation). 
 

Stage 2 Pre-Operational 
- Responding to (NOT Language understanding) 

relating to self (e.g., answering questions on state). 
- Relating objects (though NOT via language) though 

not in current perceptual field (memory). 
 
Stage 3 Concrete Operation 

- Conservation of volume etc. of objects( e.g., 
estimating quantity of objects in visual field) 

- Classification of objects logical rather than on 
attribute basis (animals/shapes…) 

- Sorting objects (e.g., size or colour) 
- Effect of Reverse of action (undoing) predictable 

 
Stage 4 Formal Operations 

- Ability to create hypotheses/experiments 
- Abstract thought – prediction of interactions of 

objects in novel ways 
We also propose [21] a staged approach to the 

measurement of degree of intelligence or autonomy via a 
similar scale based on complexity of the environment similar 
to the Sphex test [28], as well as a degree of Innateness and a 
degree of Introspection. 

VII.  SUMMARY AND CONCLUSION 

This research is part of a project which focuses on 
developing a robot explorer. A more generally applicable, 
unique cognitive architecture has been proposed that can 
underpin wider AC functionality. It is expected that most 
autonomous agents at some point will encounter uncertain 
‘territory’. 

Two key and somewhat distinctive features – Innateness 
and Introspection - are included in the architecture. These are 
considered to be indispensible if the flexibility and 
adaptability required for applications requiring autonomy is 
to be supported. We will use a probabilistic/possibilistic 
approach combined with classification methods to establish 
(inexact) rules and tools for AC. We will develop novel 
methods of evaluation for the added functionality. In 
particular, as an exemplar of dynamic application systems 
where the additional capabilities described here are targeted, 
a robotic agent will be able to explore and describe 
environments effectively. 
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