
OptPLAN: Improving the Optimal Plan Calculation
on Relational Databases

Luı́s Fernando Orleans∗, Miguel Mendes de Brito†, Egberto Caetano Araújo da Silva‡
∗Departamento de Ciência da Computação

Instituto Multidisciplinar - UFRRJ, Rio de Janeiro, Brazil
†Email: lforleans@ufrrj.br, mmdebrito@ufrrj.br, egbertocaetano@ufrrj.br

Abstract—In order to find the best execution plan for an
SQL query, a DBMS uses information regarding the cost of
disk operations, notably the cost of a sequential page reading
(seq page cost or just spc) and the cost of random pages reading
(random page cost or just rpc). Such information is predefined
by DBMS vendors and are rarely changed - although it can cause
inaccuracies in the optimization phase. This paper lists some
typical scenarios where disk access costs miscalculations can lead
to sub-optimal query plans and presents the OptPLAN, a tool for
the PostgreSQL DBMS that calculates the correct relationship
between spc and rpc and automatically set their values at the
configuration properties. In our experiments, we obtained up to
69% of query speed up after spc and rpc adjustment.

Keywords—OptPlan; Query Optimization; Autonomous
RDBMS.

I. INTRODUCTION

Because Relational Database Management Systems
(RDBMS) provide a convenient and secure way to store
and retrieve data, they became crucial components for many
modern systems [1]. Also, RDBMS are a result of decades of
joint efforts from both scientific and industry research teams
[2], which provides a solid and well-formed theory behind
them.

The Structured Query Language (SQL) is the most used
tool for manipulating data stored by RDBMS [3]. Commands
written in SQL are first parsed and validated. If no errors are
found, the commands are then translated to an internal logical
tree representation of the query, denoted as execution plan or
just plan.

Several plans can be derived from a single SQL state-
ment [3], each using different strategies and algorithms for
performing relational operations, e.g., a joint operation could
be represented using a Nested Loop Join algorithm in one tree
and using a Hash Join in another tree. While the algorithm
choosing process does not impact on query’s semantics, it
does directly impact on query’s cost, i.e., the amount of disk
blocks the RDBMS will transfer from/to memory during query
execution.

Finding the cheapest tree is not a trivial task – in fact, [4]
claims this problem is NP-complete. Each RDBMS has one
or more optimization algorithms implemented for this specific
problem and they vary greatly from one vendor to another.
The open-source RDBMS PostgreSQL, for instance, uses a
genetic query optimization approach. In addition, PostgreSQL
provides a classic optimization engine based on Dynamic
Programming [5]. Regardless the optimization strategy, the

RDBMS server hardware configuration influences the search
for the optimal plan. For instance, the same SQL statement
might result in different plans depending where data is stored:
in a fast SSD or in a slow HDD. Ignoring this hardware
dependency can result in sub-optimal execution plans due to
inefficient optimizations phases which, in turn, can result in
poor query performance.

This paper presents OptPLAN, a tool that calculates both
sequential and random disk read costs for a PostgreSQL
RDBMS host and set those values on the configurations
file, providing the optimization algorithm correct costs which
results in better optimal plan search. Our results show that
all example queries presented reduced costs after OptPLAN
adjust the configurations file when compared to default values
provided by RDBMS vendor.

The remainder of this paper is as following: Section II
describes a few related works we found most relevant, while
Section III reviews the steps taken by a query executor engine
from a typical RDBMS. Our tool OptPLAN is defined in
Section IV, the experiments we conducted along with their
results are described in Section V. Finally, Section VI lists
our conclusions and possible future works.

II. RELATED WORK

The research presented in [6] discusses self-adaptable
database systems based on Microsoft’s AutoAdmin project.
That work focuses primarily on the design of automatized
databases. Other approaches for query optimization are de-
scribed in [7], where the authors describe a log inspec-
tion tool, which provides several statistics for the database
administrator (DBA). Those statistics are collected through
Machine Learning techniques. Also using changes in the query
optimizer, the work on [8] explains ORACLE 10g’s capability
of optimize SQL queries automatically. Such optimization is
possible due to longer than usual SQL statement analysis,
validating statistics used on the search for the optimal plan.
Finally, Chaudhuri et al. [9] describe the advances made on
self-adjustment on Microsoft’s SQL Server RDBMS, which
is achieved through automatic indexes creation and more
efficient memory management and dynamic resource allocation
approaches.

All those works do not pursuit finding the correct values
for sequential and random page disks reads, neither do they
have an open implementation that can be used on more than
one DBMS. Our work exploits hardware-related factors from
the DBMS host, enhancing the searching for the optimal plan

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

for the SQL queries without the need of any modifications at
the DBMS core.

III. QUERY PROCESSING

Data is typically manipulated on a RDBMS through a series
of SQL statements issued by a user or a system. Upon its
arrival, each SQL statement is checked for syntax correctness
and, whether no errors are found, an internal representation
(using a tree format) of the statement is created. Each node of
the tree represents a Logic Relational Operator (LGO) that can
have several implementations, one for each specific scenario.
For instance, a Join LGO can be implemented physically as
Nested Loop Join (NLJ), Hash Join (HJ) or Sort-Merge Join
(SMJ). The decision of which implementation should be picked
is responsibility of the Query Optimizer, that searches for the
cheapest execution plan that physically represents the tree.
After the optimal plan is found, it gets executed by the Query
Executor Engine (Figure 1).

Fig. 1: Query Execution [3]

Internally, the most widespread implementation of an ex-
ecution plan is through the Iterator pattern, described in [10].
Also, each LGO includes an annotation regarding which phys-
ical implementation shall be used.

A. Query Optimization

A typical query optimizer relies on host hardware informa-
tion and relations statistics to find the cheapest execution plan
for an SQL statement. RDBMSs often store those metadata
within an internal structure called catalog. It is a common
practice to store information about column values, such as
histograms, ordering, among others. When combined with
some hardware information, such as sequential page read cost
(SPC), random page read cost (RPC), data transfer rate, etc.
The Query Optimizer can correctly determine which physical
relational operator should be used in order to find the cheapest
plan. It is important to notice that hardware information are
often represented as normalized cost values instead of absolute
values, i.e., the amount of time for the hardware to process a
task.

As an example, consider the following database schema:

CLIENT (i d c l i e n t , name , emai l , gender ,
age , i d a d d r e s s) ;
ADDRESS(i d a d d r e s s , s t r e e t n a m e , number ,
borough , c i t y , s t a t e , z i p) ;

Consider there is an B-Tree index on column ’Ad-
dress.city’. The following SQL statement is used to retrieve
the names of all clients that live in the city of ’Nova Iguaçu’:

SELECT C . name
FROM CLIENT C , ADDRESS A
WHERE C . i d a d d r e s s = A. i d a d d r e s s
AND A. c i t y = ”Nova I gu ac u ” ;

One of the possible plans that represents the SQL statement
in Section III-A is shown in Figure 2(a). Now consider the
Figure 2(b) is the histogram that counts how many clients live
on each city.

(a) Execution Query Plan.

(b) Clients distribution among cities.

Fig. 2: Information used by the Query Optimizer.

Finally, consider that there are 1000 tuples in each table.

The cost for reading a whole table – sequentially or
randomly – can be expressed by:

C = (blc ∗ cl) + (t ∗ cc), (1)

where C is the total cost; blc is the total number of disk
blocks where tuples are stored; cl is the cost for a block read.
The read can be performed sequentially (cls) or randomly
(clr); t is total tuples of a relation; and cc is the CPU cost

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

for processing each tuple [11]. It is worth noting cls, clr and
cc are hardware related parameters.

For the first example, let us assume the following values
for the variables (the variable blc has the same value for both
tables):

cls = 1; clr = 4; blc = 10. (2)

Worth noting that those are default values for clean Post-
greSQL installations.

When the process of selecting all Address tuples that have
city values equal to ’Nova Iguaçu’ (point 1 at 2(a)) is evaluated,
both sequential (CSequential) and random (CRandom) reads are
considered. The cost for CSequential is computed as follows:

CSequential = (blc ∗ cls) + (t ∗ cc) (3)
CSequential = (10 ∗ 1) + (1000 ∗ 0.01) = 20 (4)

On the other hand, to compute the cost for CRandom, the
Query Optimizer can use the histogram depicted in Figure 2(b)
to retrieve an estimate of how many tuples will be read, as
random reads use indexes to perform direct access to the data.
As the frequency of Address tuples having city equals to ’Nova
Iguaçu’ is 0.25, hence fNovaIguaçu = 0, 25. So, t = 1000 ∗
0, 25 = 250 and the expression is as follows:

CRandom = (blc ∗ clr) + (t ∗ cc) (5)
CRandom = (10 ∗ 4) + (250 ∗ 0.01) = 42.5 (6)

which is 4 times greater than CSequential. Hence, the
Optimizer will prefer to perform a table scan instead of random
reads using the index.

However, let us consider that clr variable value is 1.5, i.e.
a random read is one and a half times slower than a sequential
read. Hence:

CRandom = (10 ∗ 1.5) + (250 ∗ 0.01) = 17.5 (7)

and the Optimizer now should prefer using the index
instead of a full table scan to perform the query! It becomes
clear that inaccuracies on both SPC and RPC values can cause
the Query Optimizer to choose a suboptimal execution plan for
any SQL statement.

B. PostgreSQL Hardware Specific Variables

Among PostgreSQL configuration files, postgresql.conf is
the one that holds default values for SPC (seq page cost)
and RPC (random page cost) [5]. The first parameter refers
to reading a single page from disk sequentially and its value
is normalized to 1. On the other hand, the second parameter
refers to randomly reading a single page from disk and its
value defaults to 4 – which means that RPC is 4 times
greater than SPC by default. As those are normalized values,
increasing SPC and RPC values proportionally will not change
the execution plan.

However, as PostgreSQL can be used on a plethora of
different platforms, those variables should be adjusted to
reflect the host’s hardware. Whether the PostgreSQL server
is attached to a Storage Area Network or using a conventional
HDD, those relative values will vary from one configuration
to another. In the next section, we present OptPLAN, a tool
that computes the correct values for both SPC and RPC and
sets them in the configuration file.

IV. OPTPLAN

We developed a tool named OptPLAN that executes a
series of tests on the hardware where the PostgreSQL is being
installed and determines the up-to-date relative values for SPC
and RPC, setting those values on postgresql.conf file. The
Query Optimizer will then use correct values when searching
for optimal plans, avoiding query slow down. In addition,
OptPLAN is invoked periodically to detect hardware changes.

A. Implementation

OptPLAN was written in C, taking advantage of low-
level capabilities provided by the Operating System for that
language. As the Linux Kernel is also written in C, its API
opens room for using disk read functions with very little
overhead [12]. Hence, OptPLAN creates two test files (one
for sequential reads and the other for random reads) with the
same number of pages but with different contents, a strategy
planned to avoid the Operating System caching mechanism.
Those files are split in contiguous blocks with 512 bytes each
– which are the same size of a standard disk page on Ext4, the
file system used in our experiments. Nevertheless sequential
reads or random reads are in use, the system reads one page
at a time.

The second step in OptPLAN is to read those files. The
sequential scan is performed first, by positioning the read
pointer to the file beginning, i.e., to the first byte of the file.
Sequential read operations are performed within a loop and
the system halts when all pages were read.

Random read tests are more complex, because the pointer
should not read contiguous pages. To simulate this behaviour,
OptPLAN uses a array with the same number of positions that
the number of pages kept in the file. That array is then shuffled
and is seen as holding the positions to where the pointer should
be moved. After the shuffle process is over, the array is scanned
sequentially and, for each iteration, the page corresponding to
the value kept on the current position is read. This process
successfully simulates a table scan using a complete index
transverse.

V. EXPERIMENTS

This section explains how the experiments were conducted,
their setup and the obtained results.

A. Setup

We conducted the experiments on 3 different hardware
configurations, denoted here as Maq1, Maq2 and Maq 3 (All
computers were running the Ubuntu Linux OS, version 14.04
LTS):

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

TABLE I: TEST RESULTS OF OPTPLAN READS.

File \Server Maq1 Maq2 Maq3
102.4MB 1.359 1.332 1.334
204.8MB 1.419 1.417 1.551
307.2MB 1.423 1.429 1.556
409.4MB 1.461 1.467 1.650
512MB 1.491 1.483 1.605
1024MB 1.540 1.522 1.707
Mean 1.449 1.441 1.567

• Maq 1: a notebook with an Intel Core i7 Quad Core
Mobile Processor i7-4700MQ, clocked at 2.40GHz
6MB of cache, 8GB RAM DDR3 (1600MHz) and
with a 120GB Samsung SSD 120GB;

• Maq 2: a desktop with AMD Phenom(tm) II X4 955
Quad Core with 512KB cache, 4GB RAM and a 1TB
Seagate HDD 7200 RPM;

• Maq 3: a desktop with an Intel Core i5 Dual-Core
Processor 4210U clocked at 1.7GHz, 3MB cache, 4GB
RAM DDR (1600MHz) and a 500GB HD Seagte 5400
RPM.

Each server was running a stable version of PostgreSQL
9.4 and populated with the sample database DVD Rental [13].

We used three SQL statements on our experiments, each
one with different complexity. Query Q1 returns all clients
that rented any movies starring the actor with name Nick
Stallone (a simple query example). On the other hand, Query
Q2 retrieves the tuples containing clients that never rented
any movies where the actor Nick Stallone starred (A subquery
example). Finally, Query Q3 returns the names of those clients
that rented all movies where actor Nick Stallone starred (a
complex DIVIDE example). All SQL statements were an-
alyzed using the PostgreSQL’s EXPLAIN command, which
prints the chosen execution plan calculated by the RDBMS
along with the best and worst costs.

In order to detect the correct values for SPC and RPC,
we conducted a series of experiments on each hardware
configuration. The size of files used on our experiments varied
from 102.4MB to 1024MB. Those values correspond to the
number of pages in each file: the 102.4MB file has a total of
200,000 512 bytes pages. Each file was read 5 times, using
both sequential and random reads strategies. At the end, the
we calculated the median for each round to avoid anomalies on
the final result. Finally, the mean of the values obtained using
all files were used on postgresql.conf to replace the default
values of seq page cost and random page cost.

B. Results

The results of our experiments comparing the execution
plans generated using PostgreSQL default values for SPC and
RPC against those values corrected by OptPLAN appear on
the next graphics and table below. Table I describes the ratio
between random and sequential reads median values in each
server. We used 6 different files to simulate accessing tables
of different sizes. The mean is calculated and the updated
random page cost value is set at postgresql.conf.

Figure 3 shows the results we obtained for the best case for
Q1. Note that the costs for executing the query after updating

RPC value is lower than the default in all hardware configu-
rations. Also, note that for different hardware configurations,
OptPLAN calculated different RPC values, which leads to
different costs. That is not true whether the default value of
RPC is used, where all hardware configurations calculated the
same execution plan.

Fig. 3: Q1 - Best case

Figure 4 shows the cost values for the worst cases, where
updated configurations have up to 15.3% of cost drop.

Fig. 4: Q1 - Worst case

Fig. 5: Q2 - Best case

Figure 5 compares the costs for executing Q2 in the best
case. Again, the scenarios where OptPLAN were used obtained
better results – up to 13.9% of cost drop. Figure 6 compares

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Fig. 6: Q2 - Worst case

the costs for the worst case, where OptPLAN caused a drop
of up to 13.75% on the costs.

Finally, Figure 7 compares the results for the best cases
on each server when executing Q3. Once again, OptPLAN
utitlization resulted on better, (up to 33.4%) cheaper plans.
The worst cases of Q3 plans are compared in Figure 8 and the
modified RPC values resulted in up to 69% of cost drop.

Fig. 7: Q3 - Best case

Fig. 8: Q3 - Worst case

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we discussed how the search for the best
execution plan, i.e., the optimization of an SQL statement is

affected by the hardware configurations where the RDBMS
is deployed, as cost-based Query Optimizers highly depends
on the capacity of that hardware to transfer data from disk to
memory sequentially and randomly, execute in-memory com-
parisons, etc.. We focused our discussion on the PostgreSQL
RDBMS due to its open source nature.

In that direction, we developed a tool called OptPLAN, that
computes the speed that data is read from disk both sequen-
tially and randomly – permitting to compute their normalized
values that are used by PostgreSQL, seq page cost (SPC) and
random page cost (RPC). Afterwards, we compared the costs
of three SQL queries using both default and rectified SPC and
RPC values in three RBDMS servers using different hardware
configurations. Our results showed a performance gain of up to
69% and confirmed that is possible to obtain cheaper costs for
SQL queries only by adjusting hardware related parameters.

As future works, we intend to implement a hybrid read
approach, where sequential reads and random reads are per-
formed in the same OptPLAN run. The main advantage of
this combined method would be representing a more real
behaviour of disk access. Also, we plan to better examine the
effect of cache mechanisms on file access patterns and their
impacts on OptPLAN. Finally, as our tool is tightly coupled to
some functions provided by the Kernel of the Linux Operating
System, we are currently evaluating the possibility to provide
alternate OptPLAN implementations that work with MacOS
and Windows.

REFERENCES

[1] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
7th ed. Pearson, 6 2015.

[2] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, Architecture of a
database system. Now Publishers Inc, 2007.

[3] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query processing,”
Found. Trends databases, vol. 1, no. 1, pp. 1–140, Jan. 2007. [Online].
Available: http://dx.doi.org/10.1561/1900000001

[4] Y. E. Ioannidis, “Query optimization,” ACM Comput. Surv.,
vol. 28, no. 1, pp. 121–123, Mar. 1996. [Online]. Available:
http://doi.acm.org/10.1145/234313.234367

[5] PostgreSQL, “Query planning - planner cost constants,”
http://www.postgresql.org/docs/9.3/static/runtime-config-query.html,
2016, [Online; acessado em 22 de Maio de 2016].

[6] S. Chaudhuri and V. Narasayya, “Self-tuning database systems: a decade
of progress,” in Proceedings of the 33rd international conference on
Very large data bases. VLDB Endowment, 2007, pp. 3–14.

[7] B. Mozafari, C. Curino, and S. Madden, “Dbseer: Resource and
performance prediction for building a next generation database cloud.”
in CIDR, 2013.

[8] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin,
“Automatic sql tuning in oracle 10g,” in Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. VLDB
Endowment, 2004, pp. 1098–1109.

[9] S. Chaudhuri, E. Christensen, G. Graefe, V. R. Narasayya, and M. J.
Zwilling, “Self-tuning technology in microsoft sql server,” IEEE Data
Eng. Bull., vol. 22, no. 2, pp. 20–26, 1999.

[10] G. Graefe, “Query evaluation techniques for large databases,” ACM
Computing Surveys (CSUR), vol. 25, no. 2, pp. 73–169, 1993.

[11] PostgreSQL, “Using explain,” http://www.postgresql.org/docs/9.3/static/using-
explain.html, 2016, [Online; Accessed: 2016-05-22].

[12] R. Love, Linux System Programming: Talking Directly to the Kernel
and C Library, 2nd ed. O’Reilly Media, 6 2013.

[13] “Dvd rental database,” http://www.postgresqltutorial.com/postgresql-
sample-database/, 2016, [Online; Accessed: 2016-05-22].

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

