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Abstract—Radar based imaging techniques can be used to collect
3D information about objects, which in turn can be used to
identify and measure specific parameters of these objects. Such
measurements need to correlate specific radar signals with the
object properties. This can be done using neural networks, as
they are designed to search for patterns, which are difficultto find
using analytic methods. This work presents a first step towards a
neural network based radar signal processing system for object
identification by attempting to identify an object placed in a
rectangular waveguide.
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I. I NTRODUCTION

Radars find many applications as imaging tools. Using the
property of electromagnetic waves to partially penetrate and
partially reflect from dielectric materials, they can provide 3D
images of a large set of objects. The development of easily
available high-frequency components up in the microwave,
millimetre wave and even THz regions allows for high spa-
tial resolution of the obtained images. This technique finds
multiple applications in security systems, the medical systems
and in agriculture.

We can consider as an example the sensor described in
[1]. The system consists of a 24 GHz Frequency Modulated
Continuous Wave (FMCW) radar used to make 3D images of
grapevine plants in order to estimate the volume of grapes ina
given plant. The radar is equipped with a high gain antenna and
is mounted on a pan-tilt platform, which allows for performing
azimuthal and elevation scans. The radar bandwidth is 2 GHz.
This setup allows for a7.5 cm depth resolution (that is the
precision of the measurement of the distance between the
object and the radar) and transverse resolution of1.5 cm. Of
course, using higher signal frequencies and bandwidths and
more directive antennas, resolutions in the millimetre range
can be achieved [2].

The processing of the radar signal in order to obtain
information about the object parameters of interest can be a
challenging task. The measurement system described in [1]
relies on statistical analysis in order to obtain the grapes
volume. Neural networks are optimised for pattern search in
complex data. Therefore, they can be used in radar based
measurement systems as they can extract the data of interest
from the clutter and simultaneously estimate the value of the
parameter of interest. In the grapevines radar example, the
parameter of interest is the volume of the produced grapes
and the clutter is the signals from the plant’s trunk and leaves.

In order to develop a full intelligent 3D image processing
system, we need to start by implementing simple 1D solutions.
In this paper, we present a neural network for shape recognition
based on the scattered signal as a benchmark case study.
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Figure 1. Positioning of a ball of a diameter2r (a) and a cube with edge
2m (b) in a WG-12 rectangular waveguide.

The investigated object is an obstacle of perfectly conducting
material placed in a rectangular hollow waveguide. This limits
the neural network input signal to the spectral representation
of a single point reflection signal. The setup has been modelled
numerically and the results have been obtained using computer
simulation.

Section II describes the setup of the performed simulation
and shows the computed reflected signals from the two types of
objects in a waveguide. Section III details the neural network
based signal processing used to identify the objects based on
the reflected signal. Section IV summarises the results and
sketches the future work.

II. EXPERIMENTAL SETUP

The experimental setup consists of a hollow rectangu-
lar WG12 waveguide with an object placed at distance∆z
form the excitation port, as shown in Figure 1. The cross-
sectional dimensions of the waveguide area = 47.5mm
and b = 22.1mm. The scattering objects are a sphere of
radius r (Figure 1a) and a cube of length2m (Figure 1b).
Both objects are made of a perfect electric conductor and
are placed at a distance of∆x from the short wall of the
conductor. The objects were placed in the middle of the
waveguide in the verticaly direction. The excitation port has
been placed at the−z end of the waveguide. The opposite
end has been terminated with an open boundary in order to
model an infinitely extended waveguide and thus eliminate the
reflections from that boundary. The model has been simulated
for the frequency range of 4 to 6 GHz, which corresponds to
the full single mode range of the waveguide. We measure the
reflection coefficient at the excitation port. The used simulation
tool is CST Microwave studio.

Two families of results have been generated. First, we
varied the dimensions of the objects—correspondingly the
sphere radiusr and the cube edge2m—while keeping both
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Figure 2. Family of curves showing the magnitude of the reflection
coefficient of a waveguide with a conducting cube inside. Thesolid lines

and the dotted lines represent varying position and size of the cube
correspondingly.
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Figure 3. Family of curves showing the magnitude of the reflection
coefficient of a waveguide with a spherical object inside. The solid lines and

the dotted lines represent varying position and size of the sphere
correspondingly.

objects at fixed position∆z = 100mm and∆x = a/2, that is
100 mm from the excitation port and in the middle along thex
direction. The size parametersr andm varied from 4 to 10 mm
in 0.6 mm steps. Then, we held the object dimensions fixed at
r,m = 7mm and varied the offset dimension as follows:

∆z = 0 to − 30mm in 10 mm steps,
∆x = 0 to 10mm in 5 mm steps.

The full combination of offset coefficients has been modelled.

The results for a cube and a ball are presented in Figures 2
and 3, correspondingly, where the dotted lines show the family
of curves for varying object size, while the position is held
fixed, and the solid lines show the results for fixed size
and varying offset. The dotted lines show a greater reflection
coefficient ans the object dimensionsr andm increase, which
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Figure 4. MLP NN (11-8-5-2) output results for Output neuron1 when
recognizing the 12 exemplars of objectsball and cube.
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Figure 5. MLP NN (11-8-5-2) output results for Output neuron2 when
recognizing the 12 exemplars of objectsball and cube.

can be expected as larger objects create larger echo.

The frequency distribution of the reflection coefficients
have been used to train a neural network to recognise between
the two types of objects - a ball and a cube. We have used only
11 points from each curve, as the frequency response varies
slowly and using this representation we lose no information.
The network has been trained with 10 curves from each object,
including curves with varying offset and varying object size,
and has been tested with the rest of the curves.

III. N EURAL NETWORK SIGNAL PROCESSING

As the two 3D objects have similar shapes, it is necessary
to use an adaptive and precise method for recognition and
classification of the two objects. The Deep Learning method
using LP (Multi-Layered-Perceptron) feed forward Neural
Network (NN), trained by the BP (Backpropagation) algo-
rithm, gives satisfactory results in these cases [3]. This allows
precise placement of boundaries between object classes with
overlapping parametric descriptions – in our case very similar
reflection signals.

To meet the requirement for fast real-time neural network
performance, we need to run small MLP NN structures.
Thereafter, the structure may be changed by increasing the
number of hidden neurons and /or the number of hidden layers,
in order to improve the proportion between response time and
the recognition accuracy. The software package NeuroSystem
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Figure 6. MLP NN (11-10-8-2) output results for Output neuron 1 when
recognizing the 12 exemplars of objectsball and cube.

by Siemens [4] was used for running the experimental simu-
lations.

We have trained the NN with only 11 points from each
curve, as they vary slowly in frequency. For each of the
two objects, the training set contains 10 curves with varying
offset and object size. The test set contains 12 specimens,
representing the two types of objects, whose reflected signals
have not participated in the training set.

We have designed the NN by adding two hidden layers
and increasing the number of neurons in each layer until satis-
factory recognition was achieved. The first 100 % recognition
accuracy was obtained for object ball when training a 11-
8-5-2 MLP NN structure (with two hidden layers, having 8
and 5 neurons and 2 output neurons, representing the two
recognizable objects). The MLP NN (11-8-5-2) output results
for Output neuron 1 when recognizing the first 12 exemplars
of object ball and the second 12 exemplars of object cube are
given in Figure 4. The training iterations were stopped when
the Mean Square Error (MSE –ε) has reached 5 %. In this
case, the obtained recognition accuracy for object cube was
83.3 % (two of twelve tested objects are misrecognized), with
results shown in Figure 5. It can be noted that objects 16 and
22 (both are cubes) are incorrectly recognized.

In order to put more precise boundaries between the object
classes and to improve the accuracy of recognition, it is
necessary to increase the number of neurons in the two hidden
layers of the MLP NN. Thus, the next attempt is made with a
MLP 11-10-8-2 structure. The training iterations were stopped
when the MSE has reached 2 %. In this case the obtained
recognition accuracy for both objects was 100 % when tested
with the same test set. The obtained results for Output neurons
1 and 2 are given in Figure 6 and Figure 7 respectively. It
is good recognizable that the approximation of ideal/ desired
values is much better. The summary of the experimental results
is shown in Table I.
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Figure 7. MLP NN (11-10-8-2) output results for Output neuron 2 when
recognizing the 12 exemplars of objectsball and cube.

TABLE I. SUMMARY OF THE EXPERIMENTAL RESULTS.

MLP Structure
Recognition Accuracy, [%]

Ball Cube MSE – (ε)

11-8-5-2 100 % 83.3 % 5 %
11-10-8-2 100 % 100 % 2 %

IV. CONCLUSIONS ANDFUTURE WORK

This paper shows the initial work on identifying suitable
neural network signal processing tools for radar based shape
recognition techniques. The achieved recognition resultsshow
that it is very appropriate to implement MLP NN for 3D
object recognition, when using radar reflection signals. The
good approximation abilities of the MLP NNs make it possible
to recognize even objects of very similar shapes.

As future work, we intend to test the method for a larger
number of objects with similar 3D object shapes. Also, to
generalize the method, the test sample set will be increased.
Additional calculations of approximation error are also fore-
seen. The presented results provide shape recognition by a
single point wideband reflected signal, which is a model of a
pulse radar. We intend to expand these results towards scanning
pulsed and scanning frequency modulated continuous wave
(FMCW) radars.
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