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Abstract—This paper proposes the application of deep neural
network models to detect references in off-road driving for
autonomous vehicles. Due to the absence of traffic signs in
non-urban areas, the work searched for a low-cost sensory-
based solution for autonomous localization in this environment.
Given the advancement of Machine Learning techniques, we used
Object Detection algorithms to solve the localization problem. For
this reason, we trained three existing object detection models (Fast
YOLOv2, SSD300 and Faster R-CNN) to detect a reference at the
road boundary. The project analyzed these three architectures
performance after training with a small dataset (around 300
images), regarding the detection distance, the number of detection
and image processing time. Through two experiments, one in
the same environment as the training step and another with a
different background, we evaluate the pros and cons of each
model and the possible application scenario for each one in
autonomous cars.

Keywords–YOLO; Faster RCNN; SSD; Object Detection; Au-
tonomous Vehicles.

I. INTRODUCTION

In the last years, autonomous driving in signposted roads is
a research field that has received increasing interest, both from
academy and industry. Different solutions and strategies have
been proposed to provide the right information and actions to
make a robot vehicle drive autonomously. The main objective
is to use different sensors and algorithms to map and identify
traffic signs, traffic lights, obstacles, pedestrians and cars on
the street, in real-time. However, off-road environments still
present challenges that need attention. In the absence of lane
lines and traffic signs, uneven terrain and the presence of
animals, off-road environments require careful driving with
different approaches to extract the information of the road and
make the right decisions.

Nowadays, the use of Deep Learning in autonomous ve-
hicles is one of the most common solutions, becoming the
state-of-the-art approach for a host of problems in perception
area, such as image classification and semantic segmentation
[1]. Based on how humans accelerate, brake, identify the signs
and the limits of the road, the machine can learn and respond
in the same fashion. One important research line focuses on
the different ways to train the machine on how to detect lane
lines [2] or the road itself [3][4]. Another investigation field
related to the off-road driving used Semantic Segmentation to
identify tracks in the middle of a forest [5]–[7]. The Semantic
Segmentation method presents a perfect choice to train a robot

how to drive on an off-road track because this method does not
use any kind of line or reference on the road. The technique
uses a mask as a reference to train the machine for identifying
each place or object in the scene [8]. Nowadays, there are
some techniques that can achieve more than 70% accuracy
processing more than 70 frames per second [9][10]. However,
it requires a powerful Graphics Processing Unit (GPU) to train
the machine. Consequently, this is one of the main motivations
for the work presented in this paper, where we use a different
approach for reference detection.

Learning-based Object Detection is a fast method to train
a robot to detect specific objects (car, dog, cat, person, etc.).
Many models in the literature, with different architectures,
compete to be the fastest and most accurate method [11]. The
evolution, in the last decade, regarding fast processors and
efficient object detection algorithms allows for the use of these
models to train and identify specific objects, increasing their
application to autonomous systems.

The concept of detecting patterns through images has been
studied for decades and used in detecting faces, people and
simple objects [12]. Nowadays, with the advantage of fast
processing CPU’s (Central Processing Unit) and GPU’s, the
complexity of artificial intelligence allows us to train a machine
to detect and classify any pattern with a predetermined data set.
Furthermore, new techniques, such as transfer learning, allow
the use of a small amount of data to achieve good results [13].

The detector algorithms are usually composed of two parts,
a backbone, that aims to identify the main characteristics of the
image and, the head, which uses the backbone information to
predict classes and bounding boxes of objects. The backbone
component is usually represented by the VGG model [14],
ResNet [15], MobileNet [16][17] or DarkNet [18]. On the other
hand, the head component uses different approaches and, based
on that, the detector algorithm can be categorized as a two-
stage detector or an one stage detector.

The two-stage detectors are composed of two parts: the
first part uses the input image to propose a set of regions of
interest, with select search or Region Proposal Network (RPN)
and the second part performs the classification of the candidate
regions. The models that use this approach are the Regions
with Convolutional Neural Network (R-CNN) features [19],
Fast R-CNN [20] and Faster R-CNN [21].

On the other hand, one-stage detectors do not use the region
proposal step, but rather go straight to the detection of a limited
number of predefined bounding boxes. This method makes the
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model processing faster, however, it decreases the accuracy.
The most known models that use this one-stage detector
are You Only Look Once (YOLO) [18][22][23], Single Shot
Detector (SSD) [24] and RetinaNet [25].

This paper is organized as follows. Section II presents the
background related to the object detection models that were
used in this work. Section III proposes the training method and
two experiments to evaluate the model’s performance. Finally,
Section IV presents the conclusion about the experiments and
discusses improvements to the project in the future.

II. BACKGROUND
In this section, we will present the main Learning-based

Detecion algorithms used for image recognizing applications.

A. Faster R-CNN
In 2014, Ross Girshick proposed a simple and scalable de-

tection algorithm, an approach that combines the high-capacity
of convolutional neural networks with proposed regions to
localize and segment objects [19]. The model, called Regions
with CNNs features (R-CNN), receives the input image and
extracts around 2000 region proposals. Each region is warped
to a fixed-size and computed by a large CNN, where it is
classified by label probabilities (Figure 1).

Figure 1. R-CNN architecture [19].

However, the R-CNN method presents some problems in
real-time implementation. It needs a huge amount of time to
train the network by classifying 2000 region proposals per
image. Thus, in 2015, Girshick presented Fast R-CNN, a new
model evolved from the previous one and intended to be faster
and more accurate [20].

The approach of Fast R-CNN is similar to the R-CNN
algorithm, however, instead of feeding the region proposals
to the CNN, it sends the image into the CNN to generate
a convolutional feature map. From this map, the regions
proposals are identified and warped into bounding boxes.
Using a Region of Interest (RoI) pooling layer, the regions
are reshaped into a fixed size to be fed into a sequence of
fully connected layers, each one with two outputs. The first
output is a softmax classification layer, where it decides which
object class was found in the prediction. The second output
is the Bounding Box Regressor (BBox Regressor), a popular
technique to refine or predict localization boxes in recent
object detection approaches. This technique approximates the
nearby bounding boxes to the region proposals (or Anchors).
In other words, the BBox Regressor outputs the bounding box
coordinates for each object class [20].

Both algorithms (R-CNN and Fast R-CNN) use Selective
Search. This involves sliding a window over the image to gen-
erate region proposals where objects could possibly be found
[26]. However, this method is a slow and time-consuming
process that affects the performance of the network. For this
reason, in 2017 Shaoqing Ren et al. proposed a different
object detection design, called Faster R-CNN, that eliminates

the selective search algorithm and makes a network learn the
region proposals [21].

The Faster R-CNN head part is composed of two modules.
First, there is a deep fully convolutional neural network that
proposes regions, the RPN and, second, a network that uses
these proposals of RPN to detect objects (Figure 2a). The
second module works with the same detector used in Fast R-
CNN.

The RPN takes an image of any size and, with a Convolu-
tional Neural Network (VGG-16 was used in [21]), it proposes
a set of region boxes (Anchors) and gives the probability of
those region boxes being an object class or a background. To
generate these regions, an n×n window slides over the feature
map. Each sliding-window predicts multiple region proposals
(Anchors), where the maximum number of possible regions is
denoted by k (k = 9 [21]) (Figure 2b).

(a) Faster R-CNN Architecture
[21].

(b) Sliding-window generating k
(k = 9) Anchors.

Figure 2. Faster R-CNN.

As a final step, the model unifies the RPN with the Fast
R-CNN detector. The algorithm applies a RoI to reduce all
Anchors to the same size and, for each region proposal, the
model flattens the input, passing it through two fully-connected
layers with Rectified Linear Unit (ReLU) activation. Finally,
these fully-connected layers generate the prediction of the class
and the box of each object.

B. YOLO
The YOLO architecture, differently from Faster R-CNN,

has no RPN. It uses a single feed-forward convolutional
network to predict classes and bounding boxes.

The YOLO algorithm divides the input image into a S×S
grid, where each grid cell is responsible for detecting the object
in its area. Each one predicts B bounding boxes and it scores
the confidence to be an object or not. The confidence score
reflects the probability of the predicted box to contain an object
Pr(Object), as well as how accurate is the predicted box by
evaluating its Intersection over Union value (IoU truth

pred ). In this
sense, the confidence score becomes:

Confidence Score = Pr(Obj) ∗ IoU truth
pred (1)

Pr =

{
1 If object exists
0 Otherwise

(2)

Each bounding box consists of 5 values, 4 representing
its coordinates (x,y,w,h) and one representing the confidence
score.

Regarding the grid cell, each one also predicts the number
of C Conditional Class Probabilities, where C represents the
number of classes and the Conditional Class Probabilities
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represent the chance of an object to belong to class i (Equation
3).

Conditional Class Probabilities = Pr(Classi|Object) (3)

At the test time, the model multiplies the Conditional Class
Probabilities and the individual box Confidence score:

Pr(Classi|Object) ∗ Pr(Obj) ∗ IoU truth
pred = Pr(Classi) ∗ IoU truth

pred (4)

Consequently, the above equation yields the score of the
probability of the class appearing in the box and how the
predicted box fits the object (Figure 3)[22].

Figure 3. The representation of the two YOLO steps, identifying the objects
and defining the probabilities of the classes in each grid [22].

The predictions results into a S × S × (B ∗ 5 +C) tensor.
For example, if it takes S = 7, B = 2 and C = 20, we have
a (7, 7, 2 ∗ 5 + 20) → (7, 7, 30) tensor. This tensor provides
the information about the Bounding Boxes and each class
probabilities.

There are two types of YOLO algorithms: Regular YOLO
and Fast (Tiny) YOLO. The Regular model consists of 24
convolutional layers followed by 2 fully connected layers
(Figure 4). On the other hand, the Tiny model has 11 layers,
9 convolutional and 2 fully connected. As this architecture is
much smaller compared to other detecting methods, it presents
a fast response in object predictions, allowing the detection in
real-time speed.

Figure 4. YOLO architecture [22].

The YOLOv2 represents the second version of YOLO
where the objective is to improve the accuracy while making
it faster. To achieve these features, the second model adds new
features to improve the previous model performance. Among
them, there are the adding of Batch Normalization in convo-
lution layers, the high resolution classifier, convolutional with
Anchors boxes, dimension clusters, direct location prediction,
fine-grained features and a multi-scale training.

C. SSD
Single Shot Detector (SSD), like YOLO, takes only one

shot to detect multiple objects present in an image using
multibox. Furthermore, similar to Faster R-CNN, SSD model
is built on a network architecture (backbone), e.g., the VGG-
16 architecture [14], a high quality image classification model,
without the final classification layers (fully connected layers).
Instead, a set of convolutional layers are added, decreasing the
size of the input to each subsequent layer, enabling to extract
features at multiple scales. Thus, predictions for bounding
boxes and confidence for different objects are done by multiple
feature maps of different sizes (Figure 5).

Figure 5. SSD architecture [24].

During the training process of SSD model, each added
feature layer produces a detection prediction using convolu-
tional filters (the ”Extra Feature Layers” in Figure 5). For a
layer of size m×n (number of locations) with p channels, the
predicting map is a 3× 3× p kernel that produces a score for
a category. For each location, the predicting map generating k
bounding boxes. These boxes have different sizes (e.g., a 4 size
box as in Figure 6). Furthermore, for each bounding box, there
are computed c class score and 4 offsets relative to the original
default box shape. At the training time, the default boxes are
matched to the ground truth boxes, where the maching cases
are treated as positives and the remaining as negatives. In this
way, it results in a (c+4)k filters that are applied around each
location in feature map, resulting in a (c+4)kmn outputs for
an m × n map. Using the Figure 5 as an example, the result
will be an 8732 bounding boxes.

During the training process, it is necessary to determine
which boxes correspond to a ground truth detection. With this
purpose, SSD model matches each ground truth box to the
default box by their IoU ratio and, the boxes with an IoU value
over than 0.5 are selected, simplifying the learning problem
and allowing the network to predict high scores for multiple
overlapping boxes.

Figure 6. SSD Framework [24].

The SSD model is distinguished by two categories SSD512
and SSD300, working with images 512× 512 and 300× 300
respectively. SSD512 provides the best accuracy by detecting
objects in large images, however the SSD300 model process
the image almost twice as faster as SSD512 (Figure 7) [24].

To conclude, the SSD uses VGG-16 network as a back-
bone to extract features of images. However, different bases
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Figure 7. Comparison of SSD models [24].

(GoogleNet, MobileNet, AlexNet, Inception, etc.) can be used
for better performance.

Figure 8. Performance on ImageNet, comparison for different networks [17].
MAdds represents the counting of total number of Multiply-Adds.

In 2017, Howard presented the first MobileNet, a network
that performs faster and nearly as accurate as VGG-16 network
[16]. And in 2018, the second version of MobileNet has shown
to be faster and more accurate than the last network [17]
(Figure 8).

III. PROPOSAL WORK AND EXPERIMENTAL RESULTS

In this work, we seek for high speed and accurate detection
of landmarks on the off-road track. To obtain the best result,
we chose three models (Faster R-CNN, Fast YOLOv2 and the
MobileNetv2 SSD300) and analyzed the result of each one for
a real application.

This section presents the Training Stage, where all methods
are trained considering the same conditions, as wall as the
experiments comparing the different object detection models.
Furthermore, the training and detection process were done with
a GPU Nvidia Geforce 1060 3GB and CPU Intel i5 8500u on
Windows 10 operational system.

A. Training Stage
To start the training process, it was chosen a white cone as

the object for the reference detection to represent the limits of
the road (Figure 9a). The training of this object was presented
in Dhall work (June 2019). A monocular camera was used
to detect and estimate the localization of a traffic cone in
3D world coordinates [27]. As the work aims to observe the
performance of the models by detecting an object at the road
boundary, the models were trained and tested to recognize the
reference in this area.

The training was made using a set of different images with
a single cone in different backgrounds and off-road tracks with
cones spaced by 3 meters, which makes up most of the dataset
(Figure 9).

To provide a fair comparison between the accuracy of the
models, all object detection methods were adapted to train with
the same dataset, 296 images (608× 608 pixels).

The models were trained until the convergence of the
Localization Loss value of each model. The Loss represents
the quantitative measure of how much the predictions differ
from the actual output (label). As an evaluation method, the
localization loss value shows the difference of each model
accuracy.

The loss of each model is represented by different equa-
tions [21][22][24]. To compare the predicted box localization

(a) Object reference. (b) Training example image.

Figure 9. Training process.

accuracy, it will be used only the Localization Loss which
shows the errors of the predicted box localization when com-
pared to the ground truth (Table I).

TABLE I. MODEL LOSS COMPARATIVE

Model Loss Training images
Faster R-CNN 0.017 296

MobileNetv2 SSD300 0.258 296
Fast YOLOv2 1.500 296

It is possible to observe from Table I that at the end of the
training stage, the Fast Yolov2 presents a bigger error between
the predictions and the real label with 1.5 of loss value.
Furthermore, the Faster R-CNN and MobileNetv2 SSD300
showed small loss values, representing a good precision from
these two methods.

B. Experiment 1
The first experiment was done by post-processing of an off-

road driving video with similar characteristics of the dataset
training. To compare the results of each model, it was chosen
video frames of the off-road ride (Figure 10).

(a) Faster R-CNN Model. (b) SSD300 Model. (c) Fast YOLOv2 Model.

Figure 10. Comparative of three Detection Methods.
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As can be observed from Figure 10, the Faster R-CNN
model and the SSD300 presented comparable detection. The
Faster R-CNN presents an advantage in accuracy, detecting the
reference up to 12 meters ahead of the car (Figure 10a), while
the SSD300 keeps the identification around 9 meters from the
car (Figure 10b).

On the other hand, the Fast YOLOv2, which presented
the biggest Localization loss value, showed the worst detector
accuracy among the three models. The model resulted in a
maximum detection of ∼ 4 meters ahead from the car during
all trajectory, failing sometimes to detect near references
(Figure 10c).

Looking at the accuracy of each model, the Faster R-CNN
showed the best choice for an autonomous driving application
in off-road environments. However, besides a high precision
in its detection, it is necessary a fast response of the reference
identification. To estimate this, we tested 10 images, using
different angles of the reference on the off-road street and, then
the Mean Time Process (MTP) of each method was calculated
(Table II).

TABLE II. COMPARATIVE OF MODELS. MTP: MEAN TIME PROCESSING;
FPS: FRAMES PER SECOND

Model Loss Training images MTP (seconds) FPS
Faster R-CNN 0.017 296 3.14 00.3

MobileNetv2 SSD300 0.258 296 1.41 00.7
Fast YOLOv2 1.500 296 0.07 14.3

Through these results, it is possible to observe that the
Faster R-CNN proved to be the slowest detector. It takes
around 3 seconds to process each image, resulting in an
unfeasible application for autonomous driving. On the other
hand, the Fast YOLOv2, which showed a low precision in the
detection, identified the references in less than 0.1 seconds. For
this reason, it is expected to be a good detector for prevention
moments, detecting nearby warnings, like animals or holes, or
even tight curves.

Finally, the MobileNetv2 SSD300 showed an intermediary
MTP. It detects all references in an image at around 1.4
seconds. The advantage of this model is that its accuracy was
near to that of the Faster R-CNN, though SSD processing the
image twice faster. For autonomous driving application, 1.4
seconds to detect the limits of a road in a curve presumably
would result in a car off the track. On the contrary, in a straight
road, such a fast steer correction may not be necessary and,
this model can be useful.

C. Experiment 2
For the purpose of observing eventually overfitting in the

models, in the second experiment, the detection architectures
were tested to identify the same reference in a different
background from those they were trained.

The experiment was done by post-processing video of a
car driving in a different environment from the training step
(Figure 11).

The experiment presented a decrease in the detection of
the Faster R-CNN and SSD300, where the models presented
some failures in near detection. However, even with a small
number of training images (296) from a different background,
the methods did not present many false positives detection.

The Fast YOLOv2 had the smallest performance decrease.
As in the first experiment, the model could only detect close
references, failing sometimes to recognize them.

(a) Faster R-CNN Model. (b) SSD300 Model. (c) Fast YOLOv2 Model.

Figure 11. Comparative of three Detection Methods in a different
environment.

Ten images were used in the new background scenario to
observe the change in time detection. However, the models
provided the same time process observed in the first experi-
ment.

IV. CONCLUSION AND FUTURE WORKS
This work showed a Deep Learning application to identify

reference marks on a road. The technique was implemented by
training three existing Object Detection models with transfer
learning, to identify a new object as a reference and comparing
their results, Faster R-CNN, Fast YOLOv2 and MobileNetv2
SSD300.

While Faster R-CNN and SSD300 showed similar accu-
racy, detecting references in close and far ahead distances, Fast
YOLOv2 model did not detect references when it was more
than 4 meters ahead. Despite the precision of Fast YOLOv2,
it processes the detection in less than 0.1 seconds, providing
the faster detection among the three models.

While the Fast YOLOv2 presented a fast detection, the
Faster R-CNN showed the slowest detector. It spent more than
3 seconds to detect the references in each image. On the other
hand, the SSD300 with an accuracy similar to that of the Faster
R-CNN, processes the image twice faster, detecting objects in
about 1.5 seconds.

Each model presented a particularity in accuracy and speed
that is important for autonomous cars to drive safely on a
road without line lanes. The Faster R-CNN presented the
best accuracy of all, though it is considerably slow for an
autonomous drive application. The SSD300 with a similar
precision was proven to be a good model to identify the limits
on straight roads. With a low process time to detect references,
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the model could only analyzes and determine the action to keep
the vehicle in the middle of the road at every 1.5 seconds.

In addition, the Fast YOLOv2 only detected close refer-
ences which can be useful for fast detection, e.g., tight curves
or emergency situations, allowing the machine to make fast
decisions on a drive.

For an autonomous driving application, that uses a powerful
GPU and CPU, the implementation of SSD and Fast YOLOv2
should result in a safe drive. The first one for detecting the
main limits of the road and the second one to work as a
warning system for fast actions.

Future works in this project are aimed to explore alternative
architectures, including the recent versions of the models
presented at this work. Additionally, the work pretends to
label a test dataset to provide a quantitative evaluation of the
models or to conduct statistical tests known from the literature
[28][29].

Searching for generalizing the ideas of this project, the
work will extend the detection from the reference object
described in the text to real objects that can be used to represent
the road boundary in an off-road environment.
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