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Abstract—This paper proposes a novel framework for lifelong
learning of semantic classes in order to extend the operational
time of robots deployed in real-world and uncontrolled envi-
ronments. In contrast to the common approach that assumes
fixed object classes, the proposed framework Kkeeps track of
the intra-class variability over time in order to refine the class
definition encoded into a classifier. A carefully designed metric is
also presented to quantify the intra-class variability, which leads
to automatic triggering of the class restructuring. Experiments
performed with the CIFAR-100 dataset validate the framework
and the measure of intra-class variability.
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I. INTRODUCTION

The applications in which a robot should be able to
understand what it sees are countless: human-robot interac-
tion, healthcare, service robotics, industrial robotics, logistics,
connected and autonomous vehicles. A deep knowledge of
the visual properties and functionalities that characterize the
objects is vital in the application of the robot itself, allowing
for better manipulation, navigation or exploration. Very often,
this knowledge is manually encoded into the deployed com-
puter vision algorithms during their training process. Lifelong
learning capabilities [1], however, represent a desirable feature.

The last decade of advancements in deep learning have
led to astonishing results in the applications that respond to
the so called closed-world assumption (i.e., the assumption
that the object classes encountered during the operational
life of a robot are known and fixed a-priori) [2]. Robots,
however, operate in dynamic and uncontrolled environments.
As such, the use of standard approaches in these environments
usually reveals performance drops. A continuous update of
the semantic structure on which a classifier works requires
the introduction of additional complexity in the system [3] [4]
[5]. Moreover, the update should be efficient and downtimes
minimized.

In the presented work, with reference to the classification
task, a step is taken towards relaxing the aforementioned
assumption by introducing a novel framework capable of
allowing the refinement of the classes encoded into a classifier
during its operational life. Specifically, the framework keeps
track of the intra-class variability temporal evolution linked to
the various categories in such a way as to trigger meaningful
class reconfiguration. In other words, classes characterized by
high intra-class variabilities should be divided into sets of sub-
classes whose labels are related to the original ones through
hyponymy relationships (i.e., words of more specific meaning
than general or superordinate terms applicable to them). An
example of such a scenario is shown in Figure 1. Clearly, a
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Figure 1. Randomly sampled batches extracted from 4 different
CIFAR-100 [6] classes (poppies, sunflowers, orchids,
tulips). All classes belong to the same super-class of £lowers. Images
in the top rows show homogeneous visual properties while images in the
bottom rows are characterized by very different visual properties. Yet, all the
batches belong to specific categories. A question arises: How does the
intra-class variability impact a classifier, and how can an agent (e.g., a
robot) recognize and exploit this phenomenon?

metric capable of quantifying the abstract intra-class variability
concept plays a key role within the framework. Therefore, we
also propose a suitable metric design.

The remainder of the paper is organized as follows. Section
IT discusses related work. Section III outlines the lifelong
learning framework and Section IV describes the metric for
intra-class variability. Section V presents the experiments and
results. Section VI concludes and discusses future work.

II. RELATED WORK

According to survey [7], the classification task introduced
within the proposed framework can be categorized as hierarchi-
cal. In particular, the so called “flat classification approach” is
pursued. The class hierarchy, a tree data structure representing
hyponymy relationships, is indeed ignored by the classifier,
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that only acts on its leaves. A possible class hierarchy imple-
mentation can follow the WordNet [8] [9] hyponymy network.
However, most of the hierarchical classification literature as-
sumes subsets of directed acyclic graphs to be trees in order to
simplify their manipulation. We are currently unaware of works
that exploit incremental or online hierarchical classification for
lifelong learning purposes. On the other hand, parallel paths
have been explored in robotics. This section continues with an
overview of relevant literature addressing the open set recog-
nition problem as well as measuring intra-class variability.

The Open World Recognition (OWR) framework is for-
mally defined in [3], with the introduction of the Nearest
Non-Outlier algorithm and the design of a suitable evaluation
protocol; the algorithm is able to incrementally add object
categories while detecting outliers. The OWR framework rep-
resents a starting point for [4] that proposes a deep extension
of a non-parametric model that learns additional categories
without retraining the whole system from scratch. The possi-
bility of retrieving annotated images by autonomously mining
the web constitutes a major contribution of the work. An
attempt to extract label uncertainty from state-of-the-art object
detection systems via dropout sampling is performed in [10].
Novel objects are also introduced to robots by means of
pointing gestures and verbal communication [11]. Finally,
an incremental version of the Regularized Least Squares for
Classification algorithm is tested in [12]. The authors also
address the problem of having an unbalanced proportion of
training samples during the algorithm operational life. The
work addressing the open set recognition problem all assume
a definitive set of training classes. In contrast, we propose a
framework capable of managing concept drifts introduced in
all the classes encoded into the considered classifier.

The treatment of intra-class variability in the literature is
scattered across several diverse fields, none that are specific to
robotics or machine vision. For example, the intra-class vari-
ability affecting winter wheat mapping from multi-temporal
Moderate Resolution Imaging Spectroradiometer (MODIS)
Enhanced Vegetation Index (EVI) images is addressed by
generating multiple training sub-classes to decrease the intra-
class differences for the crop type detection [13]. The sep-
arability of the generated sub-classes exploits the Jeffries-
Matusita (JM) Distance; such separability reflects the intra-
class variability of the associated original class. A similar
approach is used for liver lesion detection [14] where a multi-
class convolutional neural network (CNN) categorizes image
patches into sub-categories, which are then fused to obtain a bi-
nary lesion/non-lesion classification. A novel offline approach,
instead, is proposed in [15] to model biometric data intra-class
variability and typicality. The method consists of a two stage
algorithm: the former is represented by the clustering of the
input images while the latter performs a template extraction
from the clustered data. Finally, [16] reports a few functions to
represent the covariance matrix of a multi-variate distribution
as a scalar. While these works consider intra-class variability, it
has mainly been investigated from a qualitative and high-level
point of view. Additionally, the concept is applied in domains
different to our study: they do not specifically address lifelong
learning for a robotic system.

III. LIFELONG LEARNING FRAMEWORK

Our work builds on the Open Set Learning paradigm and
its framework [3] [4] in order to explore an alternative path
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towards the development of an agent characterized by lifelong
learning capabilities. The objective pursued by the definition of
the framework is to theoretically describe the operational life
of a classifier trained on a set of semantic categories or classes
labeled by the positive integers K1 = {1,..., Ny}, with
|K1| = Ni. The considered model thus refines its semantic
categories every time the intra-class variability associated to
a specific category proves to be sufficiently high according
to a pre-defined criterion; this concept, as well as the whole
framework definition, is presented generically in order to
allow the framework to enclose a large variety of future
works. It is therefore natural to define K; C Nt as the set
of classes encoded into the classifier at time ¢. Moreover,
;| = N; < |K;| = N; when i < j. An example of class
structure temporal evolution is shown in Figure 2.

Let x € RY be the features associated to a new sample
seen by the classifier. Let 7; C R? x U§:1 KC; be the set
containing all the samples, with the respective labels, seen
by the classifier up to time ¢ (the definition of 7; does not
allow the repetition of a specific pair, but such scenario can be
verified in the operational life of a real classifier; the problem
can be overcome by adding an auxiliary dimension to the space
of features used to enumerate the samples). The set cardinality
can be expressed as |T;| = M, + ¢: the former term refers to
the model training (ground truth labels) while the latter refers
to the model operational life (labels provided by the classifier).
A model, to function within the defined framework, must be
characterized by the following main ingredients.

A. Multi-class Recognition Function
The multi-class recognition function Fy : R? — K,

exploits the vector function

V() = [fi ()], VieKy, (1)

where the generic per-class recognition function f : R4 —s
R belongs to a suitable space H. Typically, fi(x) reports
the likelihood of being in class i, the values of ff(x) are
normalized across the respective semantic categories and the
multi-class recognition function is implemented as:

Fi(x) = arg max fi(x). )

B. State Update Function

For each semantic category, the corresponding element of
the set should contain all the necessary information to compute
its intra-class variability after the classification performed in
the previous time step. The nature of the generic element s!
is not specified: it could represent a scalar, a matrix or any
other kind of data structure depending on the needs. Every
time a new sample is classified, the state S; = {st}, Vi € K;
must be updated accordingly. The state update function U :
S; x R4 — S, is exploited for the purpose. Specifically,

sp41=Ul(s}, x), 3)

if @ is recognized as belonging to class i. Clearly, s/, , =
sl Vi #1.

At this point, the intra-class variability computation can
finally be formalized through the function V' : §;41 — R.
Intuitively, the intra-class variability of class ¢ at time ¢ should
depend on 7/ = {(wx,k) st. k = i}; si,, encapsulates
this information allowing an efficient sequential update of the
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metric. Indeed, it could not be feasible to store the entire 7?
or to use the set for a direct intra-class variability computation.
The additional state S; is also motivated by the fact that the V'
function, in general, is not invertible; this means that V (s} ;)
may not be obtainable starting from V(s?).

Hence, a trigger T : R — {0, 1} is defined in accordance
with a criterion selected by the designer in order to establish
whether class ¢ needs to be split or not; it returns 1 if the
considered semantic category has to be replaced by more
specific sub-classes, 0 otherwise.

C. Labeling Process and Data Retrieval Functions

The labeling process function L, : P(T}) — PNt \
U§'=1 K;), where P(e) denotes the power set, aims to retrieve
the sub-class labels of class ¢ when its split is triggered (i.e.,
T(V(si;1)) = 1). It is important to remember that the used
labels are excluded from the function codomain. Again, a
subset 7, can be exploited to overcome possible limitations in
the available spatial and temporal computational resources.

Once the new categories are collected, the classifier class
structure has to be updated. The following rule is exploited:

Kig1 =K\ iUNia, 4)

where 7 is the label of the considered class and N; 1 represents
the set of labels returned by the labeling process after the
classification of the ¢-th sample.

The data retrieval function R : P(Kiy1) — P(R? x
Kiy1) is responsible for retrieving the new data D;iq €
P(R®* x K1) for the incremental training of the model. The
function domain is chosen as to allow approaches capable of
mitigating the effect of catastrophic forgetting [5]. Addition-
ally, it is worth noting that the L; and R functions must rely
on an external source of information (e.g., the web) and the
performance of their implementations could not be error free.

D. Incremental Learning Function

The incremental learning function is defined as I, : P(R%x
IC,L,+1) XHNt — HNH'l, where Nt+1 —Nt = ‘-/\/'t+1|_1 The
objective of the function is to incrementally update the model
by replacing the obsolete per-class recognition function f}(x)
with the ones related to the new |N;;1| semantic categories.
The retrieved data Dy, is exploited for the purpose. Hence,
the state S;y1 has to be expanded and the added entries must
be initialized properly. If possible, the model should gradually
adapt to the new class structures without completely retraining.

Every time 7'(V (s, ;)) = 0, a simple implicit update of
the Ky, Fy, f{ subscripts (time steps) has to be performed.

IV. METRIC FOR INTRA-CLASS VARIABILITY

This section describes the design of a suitable metric for
quantifying the intra-class variability. This can then be used
to trigger the splitting event and therefore the update of the
classification model.

Let X be the matrix whose columns are the vectors
belonging to the set {x s.t. (z,k) € 7;'}. In other words,
X contains all the samples, belonging to or classified as
belonging to class ¢ € K;, seen by the considered model
up to time ¢. The matrix can be thought of as the repeated
sampling of a probability distribution over R? associated with
the environment in which the model is immersed (when the
d-th dimension is reserved for the sample enumeration, the
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Figure 2. Example of class structure temporal evolution for the semantic
categories in Figure 1. The leaves (i.e., white nodes) of the trees represent
the classes encoded into the classifier at the considered time steps, where
t1 < to < t3. Clearly, classes that are present at time ¢ are labeled by the
elements of K¢. The orchid class is the first to be split (t = t2), the
tulip class follows (t = t3). Trees follow the hyponymy in [8] [9].
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Figure 3. Our formulation of intra-class variability. The setup is the same
reported in Figure 1 and 2. The intra-class variability of the category shown
in (a) is low while the intra-class variability of the category shown in (b) is
high (sub-classes are shown in (c) for comparison). The shape of the deep

representations reflects the hypothesis: ¢(X poppies) approximates a
hyperball better than ¢(X orchids)-

underlying probability distribution should be defined over the
first d — 1 dimensions).

If the used classifier belongs to the category of deep
models, ¢ : R? —5 R”™ can be defined as the function
responsible for extracting deep representations (e.g., the output
of the last layer before the linear ones in ResNet [17] or VGG
[18]) from the generic sample features € R<. For simplicity,
the ¢ notation is overloaded by defining ¢(X) as the matrix
obtained applying function ¢ to X columnwise. Also, ¢(X)
can be thought of as the repeated sampling of a new probability
distribution derived from the original one by applying ¢ to the
multivariate random variable x (depending on the context, x
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can be regarded as the features of a generic image sample or
the associated random vector).

The intuition, therefore, is to link the abstract concept of
intra-class variability to the shape of the ¢(X) sampling in the
space of the deep representations. The formulated hypothesis
follows: The lower the intra-class variability of class i, the
better the sampling ¢(X) approximates a hyperball. Given
the metric space (R™,d), with the distance function set to be

d:R" x R" — RT U {0}
(z,y) — d(z,y) = ||z -yl (5)

the hyperball of radius » > 0 centered in p is defined as
B.(p) = {& € R" s.t. d(x,p) < r}. Figure 3 provides
a visual explanation of this hypothesis. It is worth noting
that the sampling shape depends on key important elements:
the original probability distribution of the sample features,
the sampling X and, consequently, the exploited dataset; and
function ¢, hence, the considered model. Clearly, the concept
of approximation introduced in the formulated hypothesis
needs to be formalized.

A first proposal consists of analyzing the per-component
variances of the random vector ¢(x). Assuming that ¢(x) is
a zero mean vector (otherwise, the mean can be subtracted),
its (sample) covariance matrix can be computed as

_ 1 T
= |7?-|_1¢(X)¢(X) : (©6)

Hence, the considered variances can be identified in the
diagonal terms of C¢( x); let

Couix)

o=o%,..., 02, )

rYn

be the vector containing these terms and

G =[6%,...,62] (®)

»Yn

of o
= n PREERRE) n 5 | )]
210 > i1 0;
be its normalized counterpart. Two borderline cases can there-
fore emerge from the analysis of o

52 = l, Vi € [1,n], (10)
n

is the best approximation of the introduced hyperball and
1if j =14,
0 otherwise,

Jie[l,n]st 67 = { (11)
is the worst one. The former case characterizes samples that
are homogeneously spread across the n dimensions while the
latter characterizes samples that are spread along a preferential
dimension. At this point, an aggregate score of the & terms
needs to be computed in accordance with the approximation
introduced in (10) and (11). Consequently, the concept of
entropy is borrowed from Information Theory for the purpose.
Let H(p) = — >, p; log, p; be the entropy of the generic
distribution p = [p1, ..., p,). With reference to the framework
of Section III, the proposed metric is defined to be

V(Cyx)) = H(a), (12)

where the state s, is set to be Cy4(x) and the vector &
can be straightforwardly obtained from the diagonal of matrix
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Figure 4. Rotated versions of the same set of samples. The two cases lead to
different aggregated scores.

Cy(x). It is easy to prove that (10) leads to the maximum
value reachable by metric (12),

1 1 "1 1

=1
"1
=> —logyn (14)
i=1 n
= log, 1, (15)

while (11) leads to the minimum one, 0. Note that, in the
presented scenario, the original entropy meaning is abandoned.
The measure, indeed, is only exploited in order to quantita-
tively describe the shape of the considered samples.

Here, a subtle problem arises. The basis in which the set
of deep representations is expressed could not be the most
meaningful one according to the way in which the proposed
metric is computed. In other words, rotated versions of the
same sampling could lead to different aggregated scores;
certainly, such behavior is not desired. Figure 4 shows a
concrete example of the mentioned scenario. The samples in
Figure 4b, ¢(X )450, are obtained from the ones in Figure 4a,
¢<X)O°7 thI'Ollgh ¢(X)45o = R45o ¢(X)Oo, with

11 -1
N -
Consequently, Cy(x),.. can be computed as Cyx),.. =
Ry5:C yx)0 R4T5o. As reported by the captions, 7go2 > O'ooi
while 04502 = 04s0; leading to two different aggregated
scores.

A possible solution to overcome the issue is inspired by
Principal Component Analysis (PCA) [19]. The linear relation-
ship shown in Figure 4b is measured by the off-diagonal terms
of Cy(x) (i.e., the covariances). The larger the magnitudes of
the terms, the higher the redundancy associated to the data. The
goal, therefore, becomes to re-express the original sampling
¢(X) into Y = R¢(X) according to a new orthonormal basis
(i.e., a rotation) in which the covariance magnitudes related to
C'y are minimized: matrix C'y should be diagonal. For a
symmetric matrix A, the following decomposition holds [19]:

Ry5o

A= EAET, 17)

where E is a matrix whose columns are the orthogonal
eigenvectors of A and A is a diagonal matrix. Recognizing that
C4(x) is symmetric [19] and setting A = Cy(x), R = ET
can be identified as the required solution (the orthogonal
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eigenvectors stored in E can always be normalized in order
to obtain an orthonormal change of basis):

_ 1 T
Cy = W|_1YY (18)
1
= W(ETMX))(ETMX))T 19)
1
= WETﬂXW(X)TE (20)
1
=E" (7_1|_1¢(X)¢(X)T>E 2D
t
=E"Cyx)E (22)
= E"(EAETE (23)
= (ETE)A(ETE) (24)
=A, (25)

where (17) is exploited in (23). It is important to highlight
how the diagonal terms of A (i.e., the eigenvalues of Cy(x)),
denoted as

A=A, A, (26)

represent the variances associated to the sampling ¢(X) ex-
pressed in the new selected basis.
Let

A=) 27

A An
= |l = | (28)
Zi:l)‘i Zi:l Ai
be the distribution extracted from A. The final proposal,
therefore, consists of modifying (12) into

V(Cyx)) = HN). (29)

Again, the borderline cases (10) and (11) can be trivially
translated into the new setup, as well as the metric minimum
and maximum values.

V. EXPERIMENTS & RESULTS

The presented experiments, and the respective results, aim
to verify the hypothesis formulated in Section IV, and prelim-
inarily investigate the employability of the defined metric in a
real application scenario.

A. Dataset

The experiments exploit the CIFAR-100 dataset [6], a
popular benchmark for testing Computer Vision algorithms.
The dataset consists of 100 “fine” classes (or sub-classes)
containing 600 32 x 32 pixel color images each. All the sub-
classes are grouped into 20 “coarse” classes (or super-classes).
Moreover, CIFAR-100 is divided into 50000 training images
and 10000 testing images.

B. Classifier

The DeepNCM classifier [20] is selected for the experi-
ments. The model is a distance-based classifier that assigns a
sample to the class with the closest mean:

Fi(e) = arg max —d(¢(x), u; 1) (30)
= arg min d(¢(@), pi_,), (31)
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where

d(¢(@), 1) = (6(@) — py_1)" (6(x) — piy),  (B2)

and 1
S

xz st (x,3)eT

o(x). (33)

The incremental update of the model is granted by (33). The
exploited implementation of DeepNCM relies on ResNet for
the extraction of the deep representations. Hence, function ¢
corresponds to the network layers that precede the classifica-
tion one, as anticipated in Section IV.

It is important to highlight that the class means {ui}
and covariance matrices {C¢( X{)} can be updated sequen-
tially [21] according to:

i = Ty g+
! ITeal+1 7
T -1

pX0) ITi |

(34)

(X _y)

+ (x—pi_)(@—pi_)". (35

1
T +1
Therefore, with reference to the framework of Section III,
the additional state information of the model can naturally be
set to 53y = Cyxiy = U(Cyxi_,),®) = U(s;,@). Re-
computing class means and covariance matrices by scratch,
indeed, is prohibitively computationally expensive for large
amounts of samples.

Hence, the choice of the classifier is motivated by the ease
with which the DeepNCM framework can be extended in order
to incorporate S;, U and V.

C. Qualitative Hypothesis Verification

To verify the presented hypothesis, DeepNCM is trained
(200 epochs, further details on the training procedure can
be found in [20]) on 20 modified CIFAR-100 super-classes,
250 samples per super-class, made of only one randomly
selected sub-class. This change is introduced to start the metric
computation from an initial set of super-classes that have a
low intra-class variability. Subsequently, 5000 unseen samples
belonging to the same sub-classes exploited during the model
training (i.e., 250 samples per super-class) are supplied to the
classifier. After each classification, the experiment assigns the
samples to the respective ground truth categories in order to
evaluate the metric regardless of the accuracy achieved during
the classifier training. The model state is updated and the score
produced by the metric computation is stored. Then, the model
state is re-initialized. Again, 5000 unseen samples (i.e., 250 per
super-class), from randomly chosen sub-classes, different from
the ones of the training phase, are supplied to the classifier and
the corresponding metric scores are computed and stored.

Note that misclassifications can impact the intra-class
variability. The consequence, however, could be mitigated by
the labeling process function L,. For example, the function
might be able to recognize if the images in 7;° belong to the
hyponyms of the considered super-class label ¢ in accordance
with the exploited external source of information.

The first part of the experiment analyzes the metric behav-
ior in a scenario in which the intra-class variability is expected
to remain constant (referred to as “constant”), while the second
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Figure 5. Metric scores for 4 randomly chosen example classes. Top row reports computations with the V(C¢,< X)) = H(&) definition while the bottom row

reports computations with the V(C &( X)) = H(X) definition. Solid lines show the “constant™ scenario and dashed lines show the “drift” scenario.
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part investigates a scenario in which the intra-class variability
is expected to increase (referred to as “drift”). Moreover, the
metric scores are computed in accordance with both definition
(12) and (29); this is necessary to understand the benefits
introduced with the computation of the eigenvalues.

Figure 5 shows the obtained results for some example
classes. Considering each super-class separately, most cases
present lower metric values, under the same number of classi-
fied samples, for the “drift” scenario confirming the correctness
of the formulated hypothesis with respect to the considered
dataset/classifier pair. With reference to the V(Cy(x)) =

H () final metric definition, it is interesting to notice that the
“constant” scenario is also characterized by slightly decreasing
trends. The limited amount of training samples, indeed, leads
to an adjustment of the scores during the testing phase.
However, the initial values of the metric are spread into a large
interval resulting in a partial overlapping of the curves related
to the different tested scenarios; such data represents the legacy
of the criterion with which the CIFAR-100 authors decided
to collect the images in the different classes. Additionally,
the initial scores assume intermediate values between 0 and
log, n = 9. Hence, it is immediate to infer that the considered
initial configuration is placed in an intermediate position
between the borderline cases described in (10) and (11).

D. Quantitative Metric Evaluation
In order to quantitatively evaluate the performance of the

defined metric, the separability of the scores associated to the
“constant” and “drift” scenarios is investigated. Defining

0 if V(Sioom) >0

T(V(5110001)) = {1 if V(Szioom) <0, (36)
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as the family of threshold triggers acting on the metric scores
after the 10000 sample classifications of the experiment, with
i € Kioooo = Kt U K/t (the super-class labels must be
doubled in order to keep track of the model states deleted with
the re-initialization performed after the first experiment part)
and 0 € R, a True Positive (TP) is denoted as V' (s%y1) S:t. 7 €
Karift A T(V(sip001)) = 1 while a True Negative (TN) as
V(stooo1) st i € K8 A T(V(stpoo1)) = 0. The False
Positive (FP) and False Negative (FN) definitions immediately
follow. Hence, the investigation is performed by computing the
Receiver Operating Characteristic (ROC) curves for both the
V(Cyx)) = H(d) and V(Cy(x)) = H(A) definitions, and
the respective Area Under the ROC Curve (AUC) integrals.

Figure 6 shows the produced ROCs and two additional
accuracy evaluations. The computation of the eigenvalues
reveals to be necessary with a final AUC of 0.79, a net
improvement over the direct use of the per-component vari-
ances, characterized by an AUC of 0.56. The statement is
also confirmed by the binary accuracy plots, with an accuracy
peek of 0.80 for the V(Cy(x)) = H(A) definition. Definition
V(Cyx)) = H(a), instead, reveals a performance similar to
that of a random trigger.

It is important to emphasize the naivety of the family of
triggers considered in the evaluation process. Therefore, the
presented results leave room for a promising future application
of the metric in a real scenario.

VI

This paper presented a novel lifelong learning framework
and metric in order to manage and quantify the intra-class
variability of a trained classifier. The proposed work is an
important step to extend the life of robots, thus enabling them
to operate longer in real uncontrolled environments without
the luxury of the closed-world assumption. For future work,
we intend to fully implement the introduced framework (i.e.,
F, S, U, V, T, Ly, R and I;) and test the full framework’s
real-world performance on a robot platform.

CONCLUSION
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