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Abstract—The homography matrix is a key component in various
vision-based robotic tasks. Traditionally, homography estimation
algorithms are classified into feature- or intensity-based. The
main advantages of the latter are their versatility, accuracy, and
robustness to arbitrary illumination changes. On the other hand,
they have a smaller domain of convergence than the feature-based
solutions. Their combination is hence promising, but existing
techniques only apply them sequentially. This paper proposes a
new hybrid method that unifies both classes into a single nonlinear
optimization procedure, applies the same minimization method,
and uses the same homography parametrization and warping
function. Experimental validation using a classical testing frame-
work shows that the proposed unified approach has improved
convergence properties compared to each individual class. These
are also demonstrated in a visual tracking application. As a final
contribution, our ready-to-use implementation of the algorithm
is made publicly available to the research community.

Keywords–Robot vision; Homography optimization; Hybrid ap-
proaches; Vision-based applications.

I. Introduction
The homography matrix is a key component in computer

vision. It relates corresponding pixel coordinates of a planar
object in different images, and has been used in a variety
of vision-based applications such as image mosaicing [1],
visual servoing [2] and object grasping [3]. The homography
estimation task can be formulated as an Image Registration (IR)
problem. IR can be defined as a search for the parameters that
best define the transformation between corresponding pixels
in a pair of images. Solutions to this problem involve the
definition of at least four important characteristics [4]: the
information space, the transformations models, the similarity
measures, and the search strategy.

With respect to the information space, the vast majority of
vision-based algorithms use a Feature-Based (FB) approach. In
this class, firstly an extraction algorithm searches each image
for geometric primitives and selects the best candidates. Then,
a matching algorithm establishes correspondences between
features in different images. Afterwards, the actual estimation
takes place. However, both the extraction and matching steps
are error-prone and can produce outliers that affect the quality
of the estimation. Additionally, by using only a sparse set of
features, these algorithms may discard useful information.

In contrast, Intensity-Based (IB) methods have no extrac-
tion and matching steps. These methods are also referred to
as direct methods since they exploit the pixel intensity values

directly. This allows the estimation algorithm to work with
more information than FB methods and does not depend on
particular primitives. Thus, it leads to more accurate estimates
and is highly versatile. However, an important drawback is that
they require a small interframe displacement, i.e., a sufficient
overlapping between consecutive images.

The algorithms presented in this work use multidimen-
sional optimization methods as the main search strategy for the
image registration problem. When formulated as such, an ini-
tial solution is iteratively refined using a nonlinear optimization
method. Specifically, the algorithms presented here are derived
from the Efficient Second-order Minimization method (ESM)
[5]. Its advantages include both a higher convergence rate and
a larger convergence domain than standard iterative methods.
It allows for a second-order approximation of the Taylor series
without computationally expensive Hessian calculations.

The use of the ESM framework has shown remarkable
results for IB methods. However, its application within FB
methods has been limited so far. As discussed, the two classes
of estimation methods have complementary strengths. This
work aims to develop a hybrid method that exploits their advan-
tages and reduces their shortcomings. The proposed algorithm
is made available as ready-to-use ROS [6] packages and as a
C++ library. In particular, a homography-based visual tracking
application is also developed. In summary, our contribution is
the development of a vision-based algorithm that:
• unifies the intensity- and feature-based approaches to

homography estimation into a single nonlinear opti-
mization problem;

• solves that problem using the same efficient mini-
mization method, homography parametrization, and
warping function;

• can be applied in real-time settings, such as for
homography-based visual tracking as experimentally
demonstrated in this paper; and

• its ready-to-use implementation is made publicly avail-
able for research purposes as a C++ library and as a
ROS package.

The remainder of this article is organized as follows. Sec-
tion II presents the related works, whereas Section III describes
the proposed unified approach. Section IV then reports the
benchmarking experiments and the application of the proposed
algorithm to visual tracking. Finally, the conclusions are drawn
in Section V, and some references are given for further details.
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II. Related Works
The main distinction between IB and FB methods regards

their information space. Indeed, on one hand FB requires the
extraction and association of geometric primitives in different
images before the actual estimation can occur. These primitives
can be, e.g., points and lines [1][7]. IB methods simultaneously
solves for the estimation problem and pixel correspondences
with no intermediate steps [8][9].

The transformation model dictates which parameters are
estimated. For example, the original Lucas-Kanade [10] al-
gorithm only estimated translations in the image space. This
was later extended to more sophiscated warp functions [11].
Simultaneous Localization And Mapping (SLAM) algorithms
commonly use IR to perform the pose and structure estimation
[12]. The homography matrix is often used as a transformation
model when dealing with predominantly planar regions of
interest [13][14][15]. Illumination parameters may also be
considered as a component of the transformation model, e.g.,
in [16].

The quality of the IR is defined by a similarity measure.
When an optimization method is applied, this measure is often
used as a cost function, such as the Sum of Squared Differences
(SSD) [10][17]. Other possibilities include correlation-based
metrics [18][19] and mutual information [20].

The last component of IR algorithms is the search strategy.
Most real-time applications use a multidimensional optimiza-
tion approach based on gradient descent. They use the first
and second derivatives of the similarity measures with respect
to the transformation parameters. The ESM algorithm is such
an example, and is applied in the proposed method. Al-
ternative optimization approaches include Gauss-Newton and
Levenberg-Marquardt [21]. All of these techniques are most
suited to applications with small interframe displacements.
Indeed, global techniques are too computationally expensive
to be applied in real-time settings. A more thorough review
and comparison of image registration algorithms can be found
in [22][23].

As for the existing techniques that combine IB and FB
methods, their overwhelming majority only applies them se-
quentially, e.g., [24][25]. In sequential strategies, a FB tech-
nique is firstly considered and then its estimated parameters
are fed as the initial guess to some IB optimization. This
standard combination scheme is thus not optimal and is more
time consuming. An exception to that sequential procedure is
reported in [26]. However, it aims to estimate the pose param-
eters, which requires a calibrated camera. The objective of this
paper is to estimate the projective homography, i.e., there is no
calibrated camera. Furthermore, that existing technique applies
a first-order minimization method, and the considered scaling
factors do not take into account the convergence properties of
the individual approaches, as will be proposed in the sequel.

III. Proposed Unified Approach
Consider that a reference template has been specified to an

estimation algorithm. This is typically a region of interest with
predefined resolution inside a larger reference image. Then, a
second image, referred to as the current image, is given to that
algorithm. The goal is to find the transformation parameters
that, when applied to the current image, results in a current
template identical to the reference template.

A. Transformation Models
The considered transformation models consist of a geo-

metric and a photometric one. The geometric transformation
model explains image changes due to variations in the scene
structure and/or the camera motion. For a given pixel p∗ in the
reference template that corresponds to pixel p in the current
image, we model the geometric motion using a homography:

p ∝ Hp∗ (1)

=

[
h11u∗+ h12v

∗+ h13
h31u∗+ h32v∗+ h33

,
h21u∗+ h22v

∗+ h23
h31u∗+ h32v∗+ h33

, 1
]>

(2)

= w(H,p∗), (3)

where p∗ = [u∗,v∗,1]> ∈ P2 is the homogeneous pixel coordi-
nates in the reference template, w is the warping operator,
and H ∈ SL(3) is the projective homography matrix with
its elements {hi j}. Such matrix has only eight degrees-of-
freedom. In general, this situation leads to a reprojection step
after each iteration of the minimization algorithm that takes
the estimated homography into the Special Linear Group. To
avoid this problem, the proposed algorithm parameterizes the
homography using its corresponding Lie Algebra [2]. This
is accomplished via the matrix exponential function, which
maps a region around the identity matrix I ∈ SL(3) to a region
around the origin 0 ∈ sl(3). A matrix A(v) ∈ sl(3) is the linear
combination of eight matrices that form a base of the Lie
Algebra. Therefore v has eight components. A homography
is thus parameterized as

H(v) = exp(A(v)). (4)

The homography matrix may be used to extract relative motion
and scene structure information [27]. However, this decompo-
sition is out of the scope of this work and is unnecessary for
many robotic applications.

The photometric transformation model explains the changes
in the image due to variations in the lighting conditions of
the scene. Let us model in this work only global illumination
variations, i.e., changes that apply equally to all pixels in the
images. This model is defined as

I ′(p) = αI(p)+ β, (5)

where I(p) ≥ 0 is the intensity value of the pixel p, I ′(p) ≥ 0
denotes its transformed intensity, and the gain α ∈ R and the
bias β ∈ R are the parameters that fully define the transforma-
tion. These parameters can be viewed as the adjustments in
the image constrast and brightness, respectively.

B. Nonlinear Least Squares Formulation
Consider that the reference template is composed of m

pixels. Also, consider that a feature detection and matching
algorithm provides n feature correspondences between the
reference template and the current image. Ideally, it would be
possible to find a vector x∗ = {H∗, α∗, β∗} such that:

α∗I(w(H∗,p∗i ))+ β
∗ = I∗(p∗i ), ∀i = 1,2, . . .,m, (6)

w(H∗,q∗j ) = qj, ∀ j = 1,2, . . .,n, (7)

by substituting (3) in (5), where I and I∗ are the current and
reference images, respectively, p∗i ∈ P

2 contains the coordinates
of the i-th pixel of the reference template, and qj,q∗j ∈ P

2 are
the representations of the j-th feature correspondence set in the
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current image and reference template, respectively. The perfect
calculation of x∗ is impossible due to a variety of reasons,
including noise in the camera sensor and outliers in the feature
matching. This leads to the reformulation of this task as a
nonlinear least-squares problem.

Two separate cost-functions are defined: One for the IB part
and another for the FB one. The i-th pixel of the reference
template contributes to the following row to the IB cost
function via the distance

ai(x) = αI(w(H,p∗i ))+ β−I
∗(p∗i ), (8)

and an output vector yIB can be constructed as:

yIB =
[
a1 a2 · · · am

]>
. (9)

The FB cost function is defined using the distance between the
features coordinates in each image:

bj(x) = w(H,q∗j )−qj =
[
buj bvj 0

]
, (10)

where buj ,b
v
j are distances between the features in the u and v

directions, respectively. The third element is disregarded since
it is always zero. Thus, a vector yFB can be constructed as:

yFB =
[
bu1 bv1 bu2 bv2 · · · bun bvn

]>
. (11)

Using (9) and (11), a unified nonlinear least squares prob-
lem can be defined as

min
x={H,α,β }

1
2

(
wIB ‖yIB(x)‖22+wFB ‖yFB(x)‖22

)
, (12)

where wIB,wFB are carefully chosen weights given to the
intensity- and feature-based components of the cost function,
respectively, as will be proposed later on. For real-time sys-
tems, only local optimization methods can be applied since
global ones are too costly. In this case, an initial approximation
x̂ = {Ĥ, α̂, β̂} of the true solution is required. This estimate can
be integrated into the least-squares formulation as:

min
z={v,α,β }

1
2

(
wIB

yIB(x(z) ◦ x̂)
2
+wFB

yFB(x(z) ◦ x̂)
2

)
,

(13)
where the symbol ‘◦’ denotes the composition operation. For
the scalars α and β, it corresponds to the addition, whereas
for the homography that operation is the matrix multiplication.
Furthermore, to take into account the different number of
observations for IB and FB methods, we include normalization
factors and define the unified output vector as

yUN =
[√

wI B

m yIB

√
wFB

2n yFB

]
. (14)

Hence, a more concise unified formulation is achieved:

min
z={v,α,β }

1
2
yUN (x(z) ◦ x̂)

2
, (15)

which can be efficiently solved using [17].

C. Weight Choices
The weights wIB and wFB should be carefully selected to

ensure the best convergence properties for the algorithm. The
following constraints apply to the weights:

wIB +wFB = 1, (16)
wFB,wIB > 0. (17)

The idea behind the proposed method for determining the
weights is to let the feature-based error be more influential
to the optimization when the current solution is far from
the true one. As the FB error decreases, then the intensity-
based component becomes increasingly more important. This
is consistent with the idea that the FB method is better suited to
handle large displacements, whereas IB methods have higher
accuracy, but only work when the initial guess is sufficiently
close to the true solution.

The main measurement used for calculating the weights is
the feature-based error associated with the current estimated
homography Ĥ. It is calculated using the following root mean
squared error (RMSD):

RMSD(yFB) =

√√√∑n
j=1

w(Ĥ,q∗j )−qj

2

2
n

= dFB . (18)

The proposed weights are then defined from

wFB = 1− exp(−dFB) (19)

and (16). This function allows for a continuous transition where
the feature-based weight decreases as its error gets lower,
and the intensity-based component becomes increasingly more
important in the optimization.

D. Local versus Global Search
The processing times may be drastically increased if the

feature detection and matching algorithms are allowed to pro-
cess the entire current image. The proposed method processes
only a small region in the current image to obtain good matches
whenever possible.

Firstly, a current template is generated by warping the
current image with the initial approximation Ĥ. Then, this
current template is assigned a score by comparing it with
the reference template using the Zero-mean Normalized Cross-
Correlated. If this score is higher than a predefined threshold,
then the feature detection algorithm searches only within this
current template. Otherwise, the current template and Ĥ are
both discarded. In this case, the detection algorithm searches
the entire current image for features. The first scenario is
referred to as a “local” search, whereas the second one as a
“global” search. When the global search is used, it is necessary
to recalculate an initial approximation Ĥ. This is done by
calculating the homography solely from the features matches
between the current image and the reference template.

IV. Experimental Results
A. Validation Setup

The same testing procedure used in [28] is implemented
to validate the algorithm. Firstly, a reference image of size
800× 533 pixels is chosen, and a region of size 100× 100
pixels is selected as the reference template. The coordinates
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of each corner are independently perturbed in the −→u and
−→v directions with a zero mean Gaussian noise and standard
deviation of σ pixels (see Figure 1). The relation between the
original corner points and the perturbed ones defines a test
homography. The reference image is then transformed by this
test homography. The algorithm receives the reference template
and the transformed image with the identity element as the
initial guess for the photogeometric transformation. From this
input, the algorithm produces an estimated homography. In
turn, this homography is used to transform each reference
corner point. If the average residual error between the actual
perturbed corner points and the estimated perturbed ones is
less than 1 pixel, the result is declared to have converged.
1,000 test cases are randomly generated for each value of the
perturbation σ ∈ [0,20] and used as input for each evaluated
algorithm. In all tests, 3 levels of a multiresolution pyramid are
used. In each level, a maximum of 3 iterations of the algorithm
are allowed to execute.

“Teatro Amazonas Atualmente 01” by Karine Hermes | Modified

Figure 1. Validation setup. (Top) Reference image and
selected reference template, resp. (Bottom) Examples of
transformation with perturbations σ = 5 and σ = 10, resp.

This setup is used to compare different algorithms. Three
criteria are analyzed: Convergence domain, convergence rate
and timing analysis. The methods differ on whether they use
only the IB or the FB component (SURF is here applied
for feature detection and description) in the cost function, or
both for the Unified case. Another difference is the use of a
ZNCC predictor to improve the initialization in some methods.
Finally, some algorithms do not consider the photometric part
of the transformation space. These algorithms along with their
characteristics are summarized in Table I.

TABLE I. Homography estimation algorithms used for comparisons.

Method IB FB Predictor Photometric

ESM 3 7 7 7
IBG 3 7 7 3
IBG_P 3 7 3 3
FB_ESM 7 3 7 7
UNIF 3 3 7 3
UNIF_P 3 3 3 3

B. Convergence Domain
Figure 2 shows that the proposed Unified algorithms have

a larger convergence domain than all pure FB or IB versions.
It also shows that the use of the ZNCC predictor in the unified
version does not affect its frequence of convergence, as well
as that the IBG (i.e., IB with robustness to Global illumination
changes) and ESM algorithms have a very similar performance.
The latter is expected because there are no lighting changes in
this validation setup.
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Figure 2. Percentage of convergence versus magnitude of
perturbation for different homography estimation algorithms.

Another interesting observation is that the results of the al-
gorithms in the FB class (FB_ESM and the algorithm available
in OpenCV) were significantly worse than the ones in the IB
class, although it was expected that they would have a higher
convergence domain. This suggests that there is still room for
improving the FB components of the estimation, which would
in turn lead to a further improvement in the unified method as
well.

C. Convergence Rate
Figure 3 compares the convergence rate of the homogra-

phy estimation algorithms under a perturbation of magnitude
σ = 10. This rate is displayed as the progression of the root
mean squared (RMS) error between the coordinates of the 4
corners of the reference template and the estimated transfor-
mation of the current template. Out of the 1,000 test cases,
only those where the estimation converged are considered
here. Note that the results from the OpenCV algorithm is
omitted because it was used as a black-box, and therefore the
sequence of homographies at each iteration cannot be accessed.
The x-axis of Figure 3 contains each important step in the
optimization. The first step, which is labeled “predictor”, is
the result of the ZNCC prediction step. The second step,
which is labeled “global”, is the step where the algorithm
decides to search for features in the entire current image, as
described in Section III-D. Of course, these two steps are
not performed by every algorithm. Afterwards, steps from
the iterative optimization method follow. They are separated
by pyramids level, such that the notation “X-Y” represents
pyramid level X at iteration Y.
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Figure 3. Pixel RMS error after each optimization iteration
for different homography estimation algorithms under

perturbation σ = 10.

Figure 3 allows for several observations. Firstly, the
FB_ESM performance is very dependent on the “global” step.
After this step, it is the algorithm with the best RMS value.
However, it is not capable to improve this value too much in
the subsequent optimization steps. When the other algorithms
reach the third level of the pyramid, they all outperform its
RMS. The behaviour of ESM, IBG and IBG_P is very similar
as they share the same framework. A small difference between
them is that IBG_P is able to converge even for cases with a
slightly higher initial RMS error, due to the prediction step.
After that step, however, all these three algorithms perform
quite similarly.

Finally, let us note that the Unified algorithms have a
behaviour that combines the FB and IB methods, as desired.
The UNIF_P uses both the “predictor” and “global” steps.
Interestingly, the global search is less applied in that version
than the UNIF one because of the prediction step. This explains
its smaller initial reduction in RMS value. On the other hand,
less usage of the global step leads to a improvement in the
processing times, as shown in the next section. After these
steps, both the Unified algorithms behave similarly to IB ones,
with the advantage of having a better initialization procedure.

D. Timing analysis
Figure 4 shows how the average time needed to run the

estimation algorithms varies depending on the magnitude of
perturbation. This time is measured in a Intel i7-6700HQ
processor, and is averaged over the subset of the 1,000 cases
only when the estimation has converged. The most noticeable
aspect of this graph is that pure IB algorithms have nearly
constant time, regardless of the perturbation level. In constrast,
the algorithms that have a feature-based component need more
time to process images with higher perturbation levels. This
phenomenon can be explained by considering the effect of the
global versus local feature search. As the perturbation level
increases, the number of occasions where the algorithm applies
the global search also increases. This step, however, is very

computationally expensive. The UNIF_P manages to have a
lower processing time because the prediction step increases the
probability that the local search is used. Therefore, the UNIF_P
can be seen as a compromise between having the advantage
of being capable of performing global search, without taking
a big penalty in the processing times.
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Figure 4. Processing times for different perturbation levels.

However, these results also show that more research is
needed to develop a method that is able to reliably perform
in real-time settings for large perturbations. The IB methods
are already capable of that when they converge, requiring less
than 0.02s/image. The FB and Unified methods may need up
to 0.12s, which may be unacceptable for some applications.

E. Use Case: Visual Tracking
The proposed algorithm is publicly available for research

purposes as a C++ library and as a ROS package [29], along
with its technical report [30]. This section shows its application
to homography-based visual tracking. Results are available at
[31]. The prediction step is applied, as recommended for real-
time tracking applications. Figure 5 shows some excerpts of
this tracking experiment. An interesting result is that the pro-
posed unified visual tracker can recover from full occlusions.
Even after completely removing the tracked region from the
current image, the tracker can recover given its feature-based
ability to perform the “global” search. Additionally, it can be
seen that the algorithm is robust to large global illumination
changes, and that in some cases it can recover from complete
failure even under severe lighting variations.

V. Conclusions
This paper proposes a first step towards a truly unified opti-

mal approach to homography estimation. The results show that
improved convergence properties are indeed obtained when
combining both classes of feature- and intensity-based methods
into a single optimization procedure. This can help vision-
based applications to handle faster robot motions. Future work
will focus on reducing the processing time of the unified
algorithm, specially when very large interframe displacements
lead to a global search for features.

114Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-787-0

ICAS 2020 : The Sixteenth International Conference on Autonomic and Autonomous Systems



Figure 5. Excerpts of homography-based visual tracking (left-to-right then top-to-bottom) using the proposed unified approach.
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