
Synthetic Data Generation for Autonomic Computing

Catherine Saunders, Roy Sterritt, Peter Nicholl, Ian McChesney

School of Computing and Mathematics

Ulster University

Belfast, Northern Ireland

e-mail:{ce.saunders, r.sterritt, p.nicholl, ir.mcchesney}@ulster.ac.uk

Abstract—This paper discusses an approach that integrates

data generation capabilities into the Autonomic Computing

MAPE-K (Monitor Analyse Plan Execute and Knowledge

Loop) to mitigate problems with data scarcity in autonomous

space missions. The purpose of this work is to enhance the

decision-making abilities of an Autonomic Manager by

providing it with the ability to use simulation and data

generation. A Conditional Tabular Generative Adversarial

Network (CTGAN) is used to generate new synthetic datasets.

Synthetic datasets are then evaluated to assess their utility. The

evaluation results show that synthetic data can closely

resemble the original data. However, this paper does not

address the challenges of equipping a swarm with the

necessary hardware, focusing instead on the feasibility of the

proposed data generation pipeline.

Keywords-Autonomic Computing; conditional generative

adversarial networks; ctgan; autonomic manager; mape-k loop.

I. INTRODUCTION

Integrating data generation capabilities into the MAPE-
K loop can address data scarcity challenges in space
missions. The current trend in space exploration involves
the development of autonomous swarms of small spacecraft
that collaborate with each other to complete a common goal.
NASA’s Autonomous Nano Technology Swarm (ANTS)
mission proposed using a swarm of a 1,000 small craft
organized into 10 different classes depending on the
instrument they carry [1][2]. Managing a large swarm
requires a high degree of autonomy since human operators
cannot manage each craft individually [3] .

The field of Autonomic Computing [4] aims to solve the
complexity associated with managing a large swarm of
autonomous craft. By incorporating Autonomic Computing
concepts, such as the MAPE-K loop [5][6], each individual
craft can self-manage its internal state and plan its actions.
This work contributes to the concept of the MAPE-K
control loop by adding simulation and data generation
capabilities to enhance the analysis and planning stages. An
in-built component that enables each swarm member to
monitor and adapt its internal state helps decrease the
complexity involved when designing a large swarm.
Additionally, a Mission-level Autonomic Manager craft
could be designated to oversee higher-level reasoning and
planning tasks for the entire swarm. The MAPE-K loop
could incorporate predictive analytics within the Analyse
and Plan phases to improve decision-making. Prediction
algorithms generally require substantial amounts of data to
provide accurate results [7].

Recent advancements in Machine Learning (ML) have
introduced techniques such as Generative Adversarial
Networks (GANs) to help solve the issue of data scarcity
[8] [9]. A generative model can be trained to produce new
synthetic data that is statistically similar to the training
dataset. This is particularly useful for ML prediction
algorithms, as larger datasets can lead to better accuracy
when identifying trends and relationships between features.
However, the quality of the data is as important as the
quantity; therefore, evaluation of the synthetic data is
necessary to determine its usefulness. An area that could
benefit from data generation is space exploration. Collecting
sufficient data from space missions is a significant challenge
due to high costs and risk associated with operating in a
hazardous environments [10]. Deploying large swarms of
spacecraft to unforgiving environments adds further
complexity to mission management. Attempting to gather
enough data to cover every possible scenario could prove
costly and inefficient. Generative models address data
scarcity by augmenting existing datasets with synthetic data
that reflects the statistical properties of the real data.

 By integrating data generation into the MAPE-K loop
the issue of data scarcity can be mitigated, especially at the
beginning of missions. A data generation pipeline could
increase the dataset size so that there is enough data for
prediction analytics. Additionally, the pipeline could
enhance the dataset by interpolating new scenarios not
captured by the swarm. This would allow the mission to
gather comprehensive data at a lower cost. This synthetic
data could then be used to inform more precise planning and
deployment strategies. Enhancing real data is a step up from
simulation and more cost effective than a full scale mission
deployment. Synthetic data reduces reliance on real world
data and can help augment the data and improve planning
and prediction for future missions.

This work focuses on enhancing the capabilities of a
Mission-level craft that oversees the mission as a whole. By
equipping this craft’s Autonomic Manager with a simulation
capability it could help improve planning by simulating the
future mission data. This data can then be analysed and used
to train prediction algorithms. In addition to prediction
modelling, simulation data could be used to train a
Conditional Tabular Generative Adversarial Network
(CTGAN) [11] model that generates new synthetic data. The
purpose of this step is to evaluate the ability of the
Autonomic Manager’s data generation pipeline to produce
synthetic data that is a good proxy for the real data. By
using simulation data to train the generative model, it
functions as a first pass of the data generation pipeline.

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

Once generated, the synthetic data is evaluated to check
whether it is similar to the original simulation data. The
purpose of this is to provide assurance that any future real
data gathered by the swarm and used for data generation
will result in high quality synthetic data.

The data generation process could also include an
interpolation feature that produces new data for unseen
scenarios. This interpolated dataset could then be used to
train the CTGAN to produce synthetic data for scenarios
that aren’t present in the original dataset. Data augmentation
would help enhance real data that is scarce or incomplete.
Enhancing limited datasets could reduce cost and
unnecessary wastage of craft. For this work, we assume the
AM has sufficient GPU resources to perform data
processing. Hardware issues, such as power consumption,
memory, and bandwidth in space missions are important
considerations, however, these are outside the scope of this
paper.

In Section II, we provide background information on
previous work; Section III discusses the main contribution
of Data Generation in the MAPE-K Loop; Section IV
discusses the data evaluation experiments and results.

II. BACKGROUND AND RELATED WORK

In our previous work [12], we developed a simulation
tool for testing communication strategies for robot swarms,
varying cooperation and cohesiveness. The ideas discussed
in this paper build upon the previous work, the simulation
output datasets were used to train a CTGAN model that
produced synthetic data similar to the simulation output.

The Autonomic Computing concept of an Autonomic
Manager (AM) that exists within each craft could be
expanded so that the overseer craft processes the mission
data and uses this to plan future tasks. Having an in-built
component that enables each swarm craft to self-manage by
monitoring and adapting their internal state helps to
decrease the amount of complexity involved when designing
a large swarm. The overseer AM could simulate mission
data and use this simulated data to test a data generation
pipeline that produces good quality synthetic data.

To prove that simulation and data generation are a useful
addition to the MAPE-K loop, it is important to evaluate the
synthetic data’s quality [13]. The evaluation of the synthetic
data is necessary so that there is confidence in the quality of
the synthetic data produced. If the simulated data is
evaluated to be of high quality, the AM could use the real
data and generate synthetic data to increase the dataset size.
This data could also be enhanced to include swarm
configurations that were not gathered by the swarm. The
purpose of this would be to save on the cost of sending a
large swarm. A relatively small swarm could gather a
sample of data. The small dataset could then be used to
generate a large amount of synthetic data. If the real data is
insufficient for training prediction algorithms, the AM
would have the option to use the synthetic data to train
machine learning prediction algorithms used by its planning
component.

The purpose of this paper is to show that data generation
could be used as a proxy for real data, to prove this we have

performed several comparative tests that evaluate the quality
of the synthetic data. This is an important step as the data
must be an accurate representation of the original dataset in
terms of statistical similarity and feature relationships [14]
[15]. Section III discusses the data generation process using
CTGAN, 20 models were trained with various parameters.

III. DATA GENERATION IN THE LOOP

Data generation is accomplished by training a neural
network that can learn the statistical properties of the
training dataset. The goal of synthetic data generation is to
improve the accuracy of machine learning models by
increasing the size and diversity of datasets. They can also
be used to enhance the privacy of individuals by creating
synthetic data that anonymizes personal information
contained within the original dataset.

A Generative Adversarial Network (GAN) consists of
two neural networks models that compete against each other
during the training process. The Generator model creates
new data and the Discriminator model acts as a binary
classifier that scores the new data on its accuracy to the
training set. The adversarial training process continues until
the Generator can produce data that can fool the
Discriminator into classifying it as real.

Traditionally, GANs perform best with image data,
however, a CTGAN was designed specifically for tabular
data. It can work with categorical and numerical data it is
also capable of learning the relationships between the
features/columns. The GAN architecture consists of two
models, each with an input layer, several hidden layers and
an output layer. The input layer of the Generator takes a
random noise vector and transforms it into output data
resembling the training dataset. The Discriminator’s
classification of the output data is then used to calculate the
loss function, a backward pass is performed through the
Discriminator’s network to update it’s internal weights and
improve its predictions.

The Discriminator is also used to help guide the
Generator, a backward pass through the Generator network
uses the Generator’s loss value to determines how much the
Generator’s internal weights need to be adjusted in order to
improve the data quality during the next iteration. The
Generator never sees the training data; it relies on the
feedback from the Discriminator. This learning technique is
known as backpropagation and continues iteratively until
the training process ends.

The training duration can be adjusted by modifying the
number of Epochs. The Batch Size determines how many
training samples are processed during one pass through the
model. For this paper, we trained 20 CTGAN models and
varied the Epochs and Batch Size parameters. In future
work, additional hyperparameters may be considered to
improve training performance. This could involve adjusting
the Generator and Discriminator learning rates.

The tabular dataset outputted by the simulation includes
many features, such as: ‘Simulation Time’, which robot
discovered and found each item, and what time the items
were discovered and found. The rules of the simulation
stipulated that items could only be analysed by a robot of

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

the same type as the item. This was simulated by rules that
state that only a robot that is the same colour as the item can
analyse that item. However, items could be discovered by
any type of robot, messages would then be sent to the rest of
the swarm asking for help from other robots. The swarm
simulation output included all of the information discussed
above, the dataset was compiled from 270 simulation runs
and consists of ~50,000 rows. This was reduced to 4,600
rows for training, a sub-set of the data was used to train the
CTGAN as this improved the chance of learning the
distribution of the data. The subset also significantly
reduced the amount of time required to train the CTGAN.
The subset of data consisted of only the simulation runs in
which the signal range was set to the lowest range and the
robot swarm was split unevenly with 90% one type of robot
and only 10% of the other type.

The flowchart in Figure 1 outlines the stages of the
control loop for data generation using a CTGAN. The
processing, training and evaluation code was written in
Python. An AM could implement this pipeline to prepare
real or simulated data for data generation. The pipeline
performs data pre-processing to convert the time features to
seconds so that there is consistency when performing
calculations on the data. The original dataset is then filtered
to a subset of the data based on key attributes such as robot
split, signal type or type of communication protocol. Unique
IDs were added to help maintain data integrity.

Figure 1. Flowchart of simulation and data generation pipeline.

Constraint rules are applied to ensure that the model
learns the relationships between certain features and
respects the rules of the original simulation. The constraint
rules are essential to ensure that the synthetic data generated
by the model follows the rules and relationships defined in

the original simulation that produced the training dataset. In
the swarm simulation, the following rules were defined:

• Time Relationship Rule: the Found (analysed)
Time of the item must be greater than or equal to
its Discovered Time.

• Robot and Item Matching Rule: this dictates that
items can only be found/analysed by a robot of the
same type (e.g., Colour).

An item can be discovered by robots that are unequipped

to analyse it, but can only be found/analysed by robots that
have the correct instrument. A robot that discovers but
cannot analyse the item sends a help request to find a robot
that has the correct instrument. If an item is discovered at
time=10 seconds, it cannot have a found time less than this
value. A Time Constraint check is added so that item
‘Found Time’ is always greater than or equal to ‘Discovered
Time’. The Matching Constraint rule is added so that items
can only ever be found and analysed by a robot of the same
type (e.g., Colour). If a blue item is discovered by a red
robot, the robot must send a help request to find a red robot
that can analyse the item. Applying a constraint that
enforces this rule ensures that the relationships between
robots and items are preserved in the new data. The
constraint step is necessary to maintain the fundamental
rules of the simulation and ensure the synthetic data is
realistic.

The ‘Train CTGAN’ step uses the Synthetic Data
Vault’s (SDV) [16] implementation of CTGAN to train the
model. The trained model can then be used to produce data
that is similar in structure to the original data. The ‘Evaluate
Data Quality’ stage uses a variety of metrics to assess the
similarity of the generated data to the original test dataset.
An overall composite score was then calculated from the
key metrics were identified as most important. The
composite score assigns a weighting to the key metrics
tests.

IV. EXPERIMENTS

To assess the ability of the CTGAN to generate
synthetic data similar to the original data, we conducted 20
training experiments. For each experiment, we varied the
Epochs training time (100, 500, 1000, 1500, 2000), and
Batch Size (50, 100, 250, 500), all other parameters stayed
consistent. The Generator Learning rate was set to 0.0001
and the Discriminator Learning rate was 0.0002. The
learning rate controls how much the models can learn within
an iteration, with a lower value allowing the model to learn
at a gradual rate. A lower batch size results in a longer
training time as a smaller number of samples are viewed
within each iteration. The entire dataset must be covered per
epoch, therefore a lower batch size results in more iterations
per epoch. Using a large batch size results in faster
processing times and fewer iterations per epoch, however
this can lead to less accurate weight updates and less
accurate synthetic data. A larger batch size may require
more epochs to reach the same results as a lower batch size
and less epochs.

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

The CTGAN model training script was implemented in
Python, it used PyTorch [17] to enable GPU acceleration.
An NVIDIA RTX A500 GPU was used for training the
GANs. The training script used an instance of SDV’s
‘CTGAN Synthesizer’, this is an implementation of
Conditional Tabular GAN (CTGAN) [11] which was
designed to work with tabular data. The script saves the
trained CTGAN model as a pickle (.pkl) file and generates a
new synthetic dataset for comparison. The model .pkl file
can be reused to generate more data if necessary.

A. Evaluation Metrics

To evaluate the synthetic data generated by the CTGAN,
we used the open-source SDV library that provides a suite
of evaluation metrics. These SDV metrics assess the quality
of the Synthetic Data in terms of its similarity to the original
data. In addition to the SDV tests, we also implemented
tests that check for similarity. These tests used Python
libraries such as Scikit-learn, SciPy and Pandas to perform
regression, statistical and correlation tests.

The primary objective was to generate synthetic data
that closely mimics the real data, especially in terms of how
the simulation time varies with different communication
protocols. The goal was to have the CTGAN capture the
same feature relationships and distributions.

• SDV Evaluation Metrics

The SDV metrics verify that the synthetic data adheres

to the schema as the original data. The schema refers to the
data types, categories, and numerical ranges. The Validity
Score result should always be 100%, indicating the data
adheres to the schema but is not a similarity check. For all
tests shown below the Validity Score was 100%. The results
for each test are shown in Table 1, along with the number of
Epochs and Batch Size.

TABLE I. SDV EVALUATION METRICS

Test Eps Batch

Size

Data

Quality

Column

Shapes

Pair

Trends

1 100 50 91% 91% 91%
2 100 100 91% 92% 90%

3 100 250 90% 90% 90%

4 100 500 90% 90% 89%
5 500 50 91% 91% 91%

6 500 100 92% 93% 91%

7 500 250 92% 93% 92%

8 500 500 91% 91% 91%

9 1000 50 93% 92% 93%

10 1000 100 92% 92% 93%
11 1000 250 92% 92% 91%

12 1000 500 91% 91% 90%

13 1500 50 92% 92% 92%
14 1500 100 93% 93% 92%

15 1500 250 91% 91% 91%

16 1500 500 92% 93% 92%
17 2000 50 93% 93% 93%

18 2000 100 91% 91% 91%
19 2000 250 92% 92% 92%

20 2000 500 93% 94% 92%

The Data Quality metric is a composite score calculated

from the ‘Column Shapes’ and ‘Pair Trends’ values.

Column Shapes measures how well the distribution of

features in the data matches those in the real data. The Pair

Trends metrics analyses the relationships between columns.

All tests scored similar results, it was therefore necessary to

perform additional tests to gain more insight into the quality

of the data.

• Statistical Similarity Metrics

This Kolmogorov-Smirnov (KS) test checks whether the

distributions of continuous variables are similar. The
variables checked were ‘Discovered Time’, ‘Found Time’,
‘Simulation Time’ and ‘Time Difference’. The ‘Time
Difference’ variables gives the time between an item being
discovered and found. The results for ‘Simulation Time’ and
‘Time Difference’ are shown in Table II.

The KS Test consists of the KS Statistic and the KS
Complement, it measures the difference between the
numerical values in the two datasets. It helps assess whether
the distributions are similar and if the synthetic data is a
reliable replacement for the real data.

The KS Statistic measures the maximum difference
between the two datasets, a smaller KS Statistic results
indicates that the datasets are similar. The KS Complement
test transforms the KS Statistic into a score that is more
intuitive for comparison purposes, the closer the score is to
1 the higher the similarity between the datasets.

Model 20 had the best KS Complement result for ‘Time
Difference’. Models that were trained with higher epochs
generally show higher KS Complement scores. This suggest
that longer training times are better at capturing the
distribution of the data. For ‘Simulation Time’, Model 18
performed best as it had the highest KS Complement score
of 0.950. This indicates that the synthetic data closely
matches the simulation times of the original data. Figure 2
shows the distribution for ‘Simulation Time’ for Model 18,
the Synthetic data approximately matches the pattern of the
real data.

Figure 2. Simulation Time numerical distribution.

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

TABLE II. STATISTICAL SIMILARITY TEST

Test Eps Batch

Size

Simulation

Time KS

Stat

Simulation

Time KS

Comp

Time

Diff

KS

Stat

Time

Diff

KS

Comp

1 100 50 0.148 0.851 0.396 0.603

2 100 100 0.096 0.903 0.309 0.691
3 100 250 0.091 0.908 0.372 0.627

4 100 500 0.087 0.912 0.367 0.632

5 500 50 0.122 0.878 0.355 0.645
6 500 100 0.069 0.931 0.205 0.785

7 500 250 0.069 0.931 0.331 0.669

8 500 500 0.107 0.893 0.358 0.642
9 1000 50 0.098 0.902 0.296 0.704

10 1000 100 0.073 0.926 0.265 0.735

11 1000 250 0.118 0.882 0.259 0.741
12 1000 500 0.106 0.894 0.311 0.689

13 1500 50 0.072 0.928 0.290 0.710

14 1500 100 0.069 0.930 0.282 0.718
15 1500 250 0.079 0.921 0.330 0.670

16 1500 500 0.087 0.913 0.345 0.655

17 2000 50 0.075 0.925 0.356 0.644
18 2000 100 0.050 0.950 0.325 0.675

19 2000 250 0.061 0.939 0.438 0.562

20 2000 500 0.069 0.931 0.174 0.826

• Regression Results for Simulation Time

The Regression Analysis Test compares how well a

Random Forest Regressor model that’s trained on the
synthetic data performs against the real data when
predicting ‘Simulation Time’. This test demonstrates the
utility of the synthetic data and how useful it is as a proxy
for the real data. We trained Random Forest models on both
the real and synthetic data. A combined model (Model B)
was also created by augmenting the real data with synthetic
data.

Table III shows the Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and R² scores for models
trained on the real data, synthetic data and the combined
dataset. The MSE is the average of the error rate between
actual values and those predicted by the model. The RMSE
value gives the root of the MSE, it shows how much the
predictions deviate from the actual values, this value is in
seconds and is easier to interpret. A lower MSE and RMSE
indicates that the model’s predictions are closer to the actual
real values. The R² value indicates how much the changes in
the ‘Simulation Time’ variable can be explained by the
independent variables – ‘Discovered Time’, ‘Found Time’,
‘Communication Protocol’.

The range for the ‘Simulation Time’ variable is ~90-700
seconds. The results for the real data are, MSE 12,495 sec²,
RMSE 111.78 sec, and R² 0.26. The model trained on the
real data has a prediction error rate of 111.78 seconds, this is
high and suggests that the data may be too variable for the
Random Forest to learn effectively. However, the error rates
for the models trained using the Synthetic data are similar to
those for the real data, demonstrating that the synthetic data
is a good proxy for the real data in predictive modelling.

The model trained in Test 5 performs best and has a
lower RMSE than the real data. Of the combined models,

Test 14 gives the lowest RMSE result. Several models
trained on the synthetic data and the combined data
outperform the model trained on the real data.

The limited number of independent variables may
explain the poor R² result. The CTGAN training dataset
was reduced from having all signal ranges and robot swarm
splits to just one signal range and one type swarm split. This
may have hindered the Random Forest from learning as it
cannot use the signal and robot split as independent
variables. The lack of dataset variation means both variables
are constants in the dataset and do not contribute to
explaining the variance in ‘Simulation Time’. Despite the
low R² values, the results are consistent across models
trained on both real and synthetic data. This suggests that
the CTGAN has been able to capture the relationships
within the subset of data.

The results show that models trained on the synthetic
data perform similar to, and in some cases better than the
models trained on real data. This demonstrates the utility of
synthetic data in improving predictive performance.

TABLE III. REGRESSION RESULTS FOR SIMULATION TIME

Test MSE

(sec²)

RMSE

(sec)

R²

Comb.

MSE

Comb.

RMSE

Comb. R²

1 10,320 101.59 0.25 11,325 106.42 0.33
2 10,969 104.74 0.22 12,051 109.78 0.28

3 12,608 112.28 0.04 12139 110.18 0.28

4 18,654 136.58 -0.20 13,947 118.09 0.17
5 9,623 98.10 0.31 11,990 109.50 0.29

6 10,894 104.38 0.32 11,217 105.91 0.37

7 10,270 101.34 0.28 11,473 107.12 0.32

8 9,902 99.51 0.28 12,495 111.78 0.26

9 11,041 105.08 0.21 11,401 106.78 0.33

10 10,316 101.57 0.25 11,800 109.09 0.30
11 10,534 102.64 0.18 12,070 109.86 0.29

12 10,208 101.04 0.25 11,080 105.26 0.35

13 11,088 105.30 0.23 11,742 108.37 0.31
14 10,220 101.09 0.24 10,426 102.11 0.38

15 10,084 100.42 0.22 11,954 109.34 0.29

16 10,015 100.08 0.29 11,553 107.49 0.32
17 10,584 102.88 0.35 11,477 107.13 0.32

18 10,473 102.34 0.29 11,252 106.08 0.33

19 9,777 98.88 0.29 10,858 104.20 0.36
20 11,682 108.09 0.24 11,973 109.42 0.29

• Correlation of Feature Importances

The purpose of this test was to determine the degree to

which the CTGAN preserved the relationships between
features. To do this, we compared the results from a Feature
Importances Test to assess the correlation between feature
importances values for real and synthetic data. The
correlation of Feature Importances results are shown in
Table IV.

Figure 3 shows the Feature Importances results for Test
10, the blue bars show the amount of importance assigned to
that feature when predicting the ‘Simulation Time’ feature.
The red bars show the importance assigned to the synthetic
data features. The Feature Importances Test measures how
much each feature contributes to predicting the target

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

variables ('Simulation Time’ and ‘Time Difference’). Two
Random Forest Regressor models were trained on both real
and synthetic data, and the importance of each feature
calculated.

Figure 3. Feature Importances for Simulation Time.

To calculate the correlation of Feature Importances, we
used the Pearson correlation coefficient. This compares the
importances scores for both datasets and outputs a
Correlation of Features result. A high correlation close to 1
indicates that the relationships between the features are
preserved in the synthetic data. If the models disagree on
which features are the most important then the correlation
result will be low and closer to zero. The Correlation
Similarity Score is a composite score for the Correlation of
Features for both ‘Simulation Time’ and ‘Time Difference’.

TABLE IV. CORRELATION OF FEATURE IMPORTANCES

Test Eps Batch

Size

Corr. of

Features

(Sim.

Time)

Corr. of

Features

(Time

Diff.)

Corr.

Similarity

Score

1 100 50 0.950 0.996 0.960

2 100 100 0.910 0.996 0.959

3 100 250 0.683 0.990 0.919
4 100 500 0.442 0.982 0.880

5 500 50 0.981 0.999 0.970

6 500 100 0.980 0.995 0.968
7 500 250 0.980 0.999 0.923

8 500 500 0.985 0.999 0.966

9 1000 50 0.943 0.987 0.958
10 1000 100 0.997 0.973 0.967

11 1000 250 0.941 0.994 0.952

12 1000 500 0.974 0.999 0.966
13 1500 50 0.966 0.999 0.970

14 1500 100 0.960 0.999 0.964

15 1500 250 0.945 0.999 0.967
16 1500 500 0.984 0.993 0.957

17 2000 50 0.995 0.977 0.964

18 2000 100 0.993 0.995 0.968
19 2000 250 0.972 0.998 0.961

20 2000 500 0.964 0.982 0.962

Most tests show a high correlation above 0.9, this
suggests that the synthetic data has preserved the
relationships between features. Test 10 had a result of 0.997
for ‘Simulation Time’, indicating that the real and synthetic
scores for feature importances are nearly identical.

B. Composite Results

The key metrics chosen to create the composite score
were SDV Pair Trends, Overall Quality, Simulation Time
KS Complement, Correlation of Feature Importances
(Simulation Time), Correlation Similarity Score. These
metrics were chosen to assess the statistical similarity
between the synthetic and real data.

To derive an overall quality assessment, we used a
weighted composite score to rank each model, the top five
performing models are listed in Table V. A weighting was
applied to each metric as follows: Data Quality 20%, Pair
Trends 30%, Simulation Time KS Comp 20%, and Feature
Importances Correlation 30%. By combining different
evaluation metrics, the composite score provides a balanced
view of each model’s quality.

TABLE V. COMPOSITE METRIC SCORE

Test Epochs Batch Size Composite Score

17 2000 50 0.9485

10 1000 100 0.9473
18 2000 100 0.9429

7 500 250 0.9402

19 2000 250 0.9394

Figure 4. Composite score for 20 CTGAN models.

Model 17 (2000 Epochs, Batch Size 50) produced the
highest composite score of 0.9485, this indicates a good
similarity between the two datasets. The results suggest that
using longer training times with low to moderate Batch
Sizes are best for learning the distribution of the data. The
poorest performers were models trained with only 100
Epochs, the composite score decreased as the Batch Size
increased from 50 to 500. A larger batch size can speed up
the training process but it results in fewer updates to the
Generator’s weights per epoch. Smaller batch sizes allow
for more updates per epoch but they also increase training
times. The composite scores are visualized in Figure 4, the
bar chart shows the results of all 20 models for each of the
key metrics. The visualization ranks the models from best to
worst, with the best performing model ranked first.

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

V. CONCLUSION

In this paper, we discussed integrating a data generation
pipeline into the MAPE-K loop, with the goal of alleviating
data scarcity in autonomous space missions. Training a
CTGAN often involves trial and error, making the
integration of an evaluation component vital. Training
parameters can greatly influence the quality of the synthetic
data produced so it is important to evaluate the quality of the
synthetic data produced. The results demonstrated that
synthetic data generated by a CTGAN can closely mimic the
real data in terms of feature relationships and distributions.
Training the CTGAN for a high number of Epochs
combined with a low Batch Size (2000 Epochs, Batch Size
50) produced the highest quality synthetic data. Future work
will focus on the data interpolation component to generate
new configurations of the swarm not present in the original
dataset.

While synthetic data can offer a solution to the problem
of data scarcity, it is vital that the practical utility of the data
is evaluated. This presents a new challenge that requires a
suite of metrics to give a comprehensive evaluation of
quality. In addition to post-training evaluation metrics, it is
important to pre-process the training dataset to remove errors
and biases that could be propagated into the synthetic data.

This paper demonstrates the utility of using synthetic
data to increase the size of an existing dataset. However, it
does not address the practical constraints associated with
equipping craft with hardware capable of performing the
data generation. Generating synthetic data requires
significant computational resources which may not be
practical when operating in a constrained environment.
Future work will look at solutions such as distributing
computational load across the swarm or extending
processing times to simulate hardware limitations, and
increase system resilience by distributing the reliance of the
Swarm away from one AM in case of damage or
malfunction.

REFERENCES

[1] NASA. Autonomous Nano Technology Swarm ANTS, 2010
[Online]. Available from:

https://attic.gsfc.nasa.gov/ants/ArchandAI.html 2025.01.23

[2] S. A. Curtis, W. Truszkowski, M. L. Rilee, and P. E. Clark,
“ANTS for Human Exploration and Development of Space,”
IEEE Aerosp. Conf. Proc., vol. 1, pp.255–261, June 2003,
doi:10.1109/AERO.2003.1235057.

[3] P. A. Oche, G. A. Ewa, and N. Ibekwe, “Applications and
Challenges of Artificial Intelligence in Space Missions,”
IEEE Access, vol. 12, pp. 44481–44509, Mar. 2024, doi:
10.1109/ACCESS.2021.3132500.

[4] IBM, An Architectural Blueprint for Autonomic Computing,
IBM, 2003. [Online]. Available from:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf
&doi=0e99837d9b1e70bb35d516e32ecfc345cd30e795
2025.01.23

[5] R. Sterritt, “Autonomic Computing,” Innov. Syst. Softw.
Eng., vol. 1, pp. 79–88, Apr. 2005, doi: 10.1007/s11334-005-
0001-5.

[6] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” vol. 36, no. 1, pp. 41-50, Jan. 2003, doi:
10.1109/MC.2003.1160055.

[7] D. Werner, Big data, advanced algorithms and new
approaches for space missions. [Online]. Available from:
https://spacenews.com/big-data-advanced-algorithms-and-
new-approaches-for-space-missions/ 2025.01.23

[8] I. Goodfellow et al., “Generative adversarial networks,”
Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020, doi:
10.1145/3422622.

[9] L. Alzubaidi et al., “A survey on deep learning tools dealing
with data scarcity: definitions, challenges, solutions, tips, and
applications,” J. Big Data, vol. 10, no. 1, Apr. 2023, doi:
10.1186/s40537-023-00727-2.

[10] M. S. Hedayati, A. Barzegar, and A. Rahimi, “Mitigating
Data Scarcity for Satellite Reaction Wheel Fault Diagnosis
with Wasserstein Generative Adversarial Networks,” 2024
IEEE Int. Conf. Progn. Heal. Manag. ICPHM 2024, pp. 367–
376, June 2024, doi: 10.1109/ICPHM61352.2024.10627589.

[11] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K.
Veeramachaneni, “Modeling tabular data using conditional
GAN,” Adv. Neural Inf. Process. Syst. NeurIPS, Dec. 2019.

[12] C. Saunders, R. Sterritt, and G. Wilkie, “Collective
communication strategies for space exploration,” JBIS - J. Br.
Interplanet. Soc., vol. 72, no. 12, pp. 416–430, 2019.

[13] A. Figueira and B. Vaz, “Survey on Synthetic Data
Generation, Evaluation Methods and GANs,” Mathematics,
vol. 10, no. 15, pp. 1–41, 2022, doi:10.3390/math10152733.

[14] J. Jordon et al., Synthetic Data -- what, why and how?,
[Online]. Available from: https://arxiv.org/pdf/2205.03257
2025.01.23

[15] A. Goncalves, P. Ray, B. Soper, J. Stevens, L. Coyle, and A.
P. Sales, “Generation and evaluation of synthetic patient
data,” BMC Med. Res. Methodol., vol. 20, no. 1, pp. 1–40,
May 2020, doi:10.1186/s12874-020-00977-1.

[16] DataCebo. The Synthetic Data Vault, March 2023. [Online].
Available from: https://sdv.dev/SDV/index.html 2025.01.23

[17] A. Paszke, “Pytorch: An imperative style, high-performance
deep learning library,” Adv. Neural Inf. Process. Syst., vol.
32, Dec. 2019. doi:10.48550/arXiv.1912.01703

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-241-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICAS 2025 : The Twenty-First International Conference on Autonomic and Autonomous Systems

