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Abstract—The problem of a quadratic functional minimization 
in the configuration space of N binary states is considered. In 
order to increase the efficiency of the random-search 
algorithm, we suggest to vary the attraction area of the deepest 
minima of the functional by changing the matrix T it is based 
on. The new matrix M, called mix-matrix, is a mixture of T and 
T2. We demonstrate that this brings about changes of the 
energy surface: deep minima displace very slightly in the space 
(the Hemming distance of the shift is of about 0.01*N ), they 
become still deeper and their attraction areas grow 
significantly. The experiment shows that use of the approach 
results in a considerable displacement of the spectrum of 
sought-for minima to the area of greater depths, while the 
probability of finding the global minimum increases abruptly 
(by a factor of 103 in the case of a two-dimensional Ising model) 

Keywords-quadratic optimization; binary optimization; 
combinatorial optimization; area of attraction; local search; 
random search; energy landscape transformation; mix-matrix 

I.  INTRODUCTION 
The goal of this paper is to improve the efficiency of a 

random search procedure used to solve binary minimization 
problems. In this class of problems, the solution is reduced 
to the minimization of the quadratic functional 

constructed from a given N matrix  in the 
dimensional configuration space of states 

with discrete variables 

( )E S N× T
N

1 2( , ,..., )NS s s s= 1is = ± , 
. Many discrete programming problems, such 

as graph partitioning, graph coloring, traveling salesman 
problem etc., are reduced to this problem [1-2]. In addition, 
this problem arises in condensed matter physics where the 
search of the ground state is important for understanding of 
a disordered system structure [2]. 

1, 2,...,i = N

It is well known that there is no polynomial algorithm for 
solving this problem, i.e., it is impossible to find a global 
minimum in polynomial time (the problem is NP-hard).  
Attempts are usually made to improve the efficiency of the 
random search procedure by modifying the dynamics of a 
descent over the landscape [1–3] described by . In 
contrast to this approach, we propose not to change the 
dynamics of landscape descent but rather to transform the 
energy landscape itself so as to increase the radius of the 
attraction domain of the global minimum (and of other 
minima comparable in depth with the global one).  

( )E S

In previous work [9], we consider the simplest 
transformation, namely, the raising of T  to the power 

2,3,...k = . This approach was found to be productive: due 
to the landscape transformation, the spectrum of found 
minima is strongly shifted towards the deep side and the 
probability of finding the global minimum increases by  
times. It was shown that the optimal value of power is 

310
3k = . 

But the algorithm is unstable at : for the most part 
(about 70% of instances) the probability of finding global 
minima increases more than by 3 orders of magnitude in 
average, but sometimes (the rest 30%) it may decrease up to 
zero.  

3k ≥

In present paper, we suggest to use a mix-matrix M , i.e., 
a mixture of  T  and . We claim that this yields a more 
reliable approach.  

2T

The efficiency of the algorithm proposed is rigorously 
substantiated only for “random” matrices, whose elements 
generated as independent random variables. The application 
of the algorithm to matrices of other types is heuristic.  

The paper is constructed as follows. Section 2 includes 
the problem definition. Some preliminaries concerned the 
energy landscape of quadratic functional are given in Section 
3. We describe the suggested idea regarding mix-matrix in 
Section 4.  In Section 5, it is shown how the mix-matrix 
transforms the energy landscape of quadratic functional.  
Section 6 contains the obtained results for matrices of two 
types (uniform matrices and matrices of 2D Ising model).  

II. PROBLEM DEFINITION AND MINIMIZATION PROCEDURE  
The standard statement of the binary minimization 

problem is as follows. Given an N  matrix T , find an 
-dimensional configuration vector , 

N×
N 1 2( , ,..., )m m m mNS s s s=

1mis = ± , 1, 2,...,i N= , that minimizes the energy 
functional : ( )E S

  2
1 1

1( )
N N

ij i j
i jT

E S T s s
Nσ = =

= − ∑∑ , (1) 

where Tσ  is the standard deviation of the matrix elements 
. Functional (1) can be symmetrized. For this reason, 

without loss of generality, we assume that the matrix  is 
symmetric and its diagonal elements are zero (

ijT

ijT
0iiT = ).  
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The minimization procedure is based on the Hopfield 
model [4], which is the core of most binary minimization 
algorithms. This is a one-dimensional system of N  spins, 
whose interaction is defined by the energy functional . 
The standard (asynchronous) dynamics of the model can be 
described as follows (The full description is shown in Listing 
1). The local field acting on the arbitrarily 
chosen i-th spin is calculated as  

( )E S

( ) /ih E S= −∂ ∂ is

  2

1 N

i
j iT

h
Nσ ≠

= ∑ ij jT s

i

 (2) 

If  , the state of the spin is updated according to 
the decision rule 

0i ih s <

is sign h= . This procedure is sequentially 
applied to all the neurons until the network converges to a 
stable state . This dynamics is a descent over the energy 
landscape , which is a complete analogue of the 
coordinate-wise gradient descent in a real space. 

mS
( )E S

 
Listing 1. The program code of the dynamics. 

≠

=

∑

1 2 N i

i ij j
j i

i i

i i

Asynchronous Neural Network Dynamics
Initialize S = (s ,s...s ) s = ±1

 i = 1 : N
h = T s         %

flip 1
(flip > 0)

flip = 0
 i = 1 : N

(h s < 0) then
s = -s       

calculate local fields

algorithm

begin
for

end for

while

for
if

≠
j j ij i

     %
 j = 1 : N,  j i
h = h + 2T s  %

flip = flip + 1

reverse spin

refresh fields
for

end for

end if
end for

end while
end

 

NP-complete problems are known to have a huge number 
of local minima. In order to find a global one we have to use 
the random search. The random search procedure is 
described as follows. Given an arbitrarily initial state of the 
network, the nearest local minimum is found. This procedure 
is repeated until a minimum with an acceptable depth is 
found. The efficiency of the random search procedure is 
evaluated by the probability of finding the global minimum, 
by the rate of finding a minimum with a given depth, or by 
the mean depth of the minima found.  

III. PRELIMINARIES 
Before transforming the energy landscape, we establish 

the basic relations associated with the depth of the global 
(local) minimum, which underlie the subsequent argument.  

The first relation is a constraint on the depth of the 
minimum. Let  be the configuration 
corresponding to the global minimum . We 

extract from T  the term  that is responsible for the 
formation of this minimum. To this end, T  is represented as  

0 01 02 0( , ,..., )NS s s s=

0 ( )E E S= 0

1

0T

  0T T T= +    ,    T r  (3) 0 0 0 0S Sσ += T

The statistical weight  is found from the condition that 
the elements of  and  do not correlate. Calculating the 
covariance of the matrix elements and setting it equal to 
zero, we obtain 

0r

0T 1T

  0
0 21

E T
r

δ
δ

+
= − ,   

2

02
1

1 N

i
i

s N
N

δ
=

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦
∑ , (4) 

−

where T  is the mean of the elements of T  and δ  is a 
variable with a zero mean and a small standard deviation 

2 / Nδσ = . For simplicity, we set 0T =  and 0δ =  (the 
generalization to other cases is obvious). Then (4) yields the 
relation 

   (5) 0E = − 0r

2

The variances of the elements of  and  are 0T 1T
2 2
0 0 Trσ σ=  and 0T

2 2
1

2σ = σ σ− . Therefore, we have managed 
to present the random matrix T  as the sum of two 
independent random matrices  and . Moreover, (3) and 
(4) imply that 

0T 1T

0 1 0 0S T S + = , which suggests that the 
contribution of  to  is strictly zero; i.e., the minimum in 

 is caused only by the contribution of .  
1T 0E

0S 0T
Following [5], we continue decomposition (3) and 

represent the matrix as a weighted sum of exterior products 
of random vectors:  

0T m m mT r Sσ ∞ += ∑ S ,  2 1mr =∑ . 

For this type of matrices, it was shown in [6] that any of 
the vectors  present in the decomposition of T  is a 
minimizer of functional (1) if and only if its weight  is 
larger than the critical value  

mS

mr

  
1

2 0.138cr N
=  (6) 

This assertion is concerned primarily with the point , 
which by definition is a minimizer of functional (1) and 
satisfies the relations 

0S

  , ,     01 cr r≥ ≥ 0 1cE E≥ ≥ − cE cr= −   
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The second necessary relation obtained in [7] is that, as 
the depth of minimum 0  increases, its width increases as 
well and, accordingly, the probability of finding this 
minimum grows as   

E

( )2 2
0 0( ) ~ exp /cP E NE E−

As a result, we have established the following two 
relations:  

− For a larger weight , the minimum  is deeper and 
the probability of finding it is higher. 

0r 0E

−  can be a minimum only if ; i.e., the depth of 
the minimum is larger than the critical value 

0S 0 cr r≥

cE .  
These relations suggest the direction of improving the 

efficiency of the random search algorithm: the energy 
landscape (1) has to be transformed so as to increase the 
depth of the global minimum and, accordingly, to increase 
the probability of finding it.  

IV. THE ALGORITHM 
In this section we describe the proposed minimization 

algorithm. The main idea underlying the algorithm is the 
transformation of energy landscape of the functional. The 
surface described by the quadratic form  can be 
transformed only by transforming the underlying matrix.  

( )E S

Let us define the mix-matrix M as: 

  2

2

1

T T

z zM T T
σ σ
−

= + ,  (7) 

where  is obtained by raising T  to the second power and 
setting the diagonal elements equal to zero, 

2T
Tσ  and 2Tσ  are 

the standard deviations of matrices T  and  respectively. 
Substitute the new matrix into (1). Changing the parameter 

 from  to , we pass from the matrix T  to . 
Accordingly, the landscape described by  is 
transformed into that described by:  

2T

z 0 1 2T
( )E S

  2
1

1( )
N N

z ij i j
i j iM

E S M s s
Nσ = ≠

= − ∑∑  (8) 

where  Mσ  is the standard deviation of ijM . Obviously, 
under the landscape transformation, the global minimum is 
shifted in space and its depth and the width of the attraction 
domain change as well.  

Accordingly, we propose the following minimization 
algorithm. Firstly, we choose a value z , then construct the 
mix-matrix (7) and accordingly the functional . Then 
we start the minimization procedure consisting of two steps: 

( )zE S

− At the first step, a descent over  is performed and a 
configuration 

( )zE S

zmS  is found that minimizes .  ( )zE S
− The second step involves correction, namely, from the 

point zmS , we descend over  to the nearest 
minimum  of .  

( )E S

mS ( )E S

 
Listing 2. The program code of the proposed algorithm. 

≠
∑

1 2 N i

i ij j
j i

Mix - matrix algorithm
Initialize S = (s ,s...s ) s = ±1
Initialize the mix - matrix  with certain 

     %
 i = 1 : N
h = s         %

M z

1.Descent over transformed landscape

M calculate local fie

algorithm

begin

for

=

≠

i i

i i

j j ij i

flip 1
(flip > 0)

flip = 0
 i = 1 : N

(h s < 0) then
s = -s            %

 j = 1 : N,  j i
h = h + 2 s  %

flip = flip + 1

     %

lds

reverse spin

M refresh fields

2.Descent over initial 

end for

while

for
if

for

end for

end if
end for

end while

≠

=

≠

∑i ij j
j i

i i

i i

j j ij i

 i = 1 : N
h = T s         %

flip 1
(flip > 0)

flip = 0
 i = 1 : N

(h s < 0) then
s = -s            %

 j = 1 : N,  j i
h = h + 2T s  %

fl

landscape

calculate local fields

reverse spin

refresh fields

for

end for

while

for
if

for

end for
ip = flip + 1

end if
end for

end while
end

 

The descent over  is performed as described 
above: we calculate the local field of the ith spin 

( )zE S

( ) ( ) /z
i zh E S is= −∂ ∂  and, if , the state of the spin is 

updated according to the decision rule 

( ) 0z
i ih s <

( )z
i is sign h= . The 

full description of the algorithm is given in Listing 2. 
In previous work [9] we consider the simplest 

transformation, namely, when kM T= , . It was 
shown that the optimal value of power is 

2,3,4,5k =
3k = . In this case 

the probability of finding global minima increases by 3  
orders of magnitude for the most part (about 70%  of 
instances). But sometimes (the rest 30 ones) it may 
decrease up to zero due to vanishing a minimum near .  

%
0S

As a result of this, in present paper, we introduce a mix-
matrix (7), i.e., a mixture of T  and , and vary the 
parameter  from  to . This yields a more reliable 
approach. 

2T
z 0 1

We will show that at  the proposed 
transformation leads to significant increase of the global 
minimum depth, while the shift from the minimum is smaller 
(1 2

0.5z ≈

%−  of ) than  in case N 3M T= ( 3%  of ). N

220Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology



 
 

V. CORRECTNESS OF THE ALGORITHM  
The algorithm is substantiated only for “random” 

matrices, whose elements are independent random variables. 
The application of the algorithm to matrices of other types is 
heuristic. 
A. The deepening of the minima. 

Let us show that the landscape transformation leads to a 
deeper minimum. Consider the energy  at the 
point . Following (3), the mix-matrix 

0 ( )z zE E S= 0

0S M  is represented as 

2 2
0 1 0 0 1 1 0 1

2

(1 )
T T

T T T T T T T T
M z z

σ σ
+ + + +

= − +  

In view of   and , we then 
derive from (8) that  

0 1 0 0S T S + = 2 2(1 )
M

z zσ = − + 2

  00 zzE E= + R  (9) 

where 

 
2

0 0
0 2 2

(1 )

(1 )
z

z r zr N
E

z z

− +
= −

− +
 

 
2

1 1
0 02 2 2

1 2

(1 )1

(1 )

N N

i j
i j i T T ij

z T zT
R s s

N z z σ σ= ≠

⎛ ⎞−
= +⎜ ⎟

− + ⎝ ⎠
∑∑

>>

 

In the limit of N , 1 0zE  can be viewed as a normally 
distributed quantity with the mean value 0zE  and the 
relatively small noise R  of standard deviation 1/R Nσ = . 
The ratio: 

    0

2 2
0

(1 )

(1 )
zE z z

E
0Nr

z z

− +
=

− +
 (10) 

shows how many times the average value of the modified 
functional at point S  more than the initial functional value 

at the same point. Taking into account
0

0 1.35N r ≈ , it is 
obvious that at any value of expression (10) is larger than 
unit, hence when N  one can be sure that the minimum 
becomes deeper. Fig. 1 confirms this. The largest deepening 
( ) is observed at . 

z
1>>

0E

( )
0 0Pr{ 0 | 0}z

i i i iP s h s h

0 1.6zE ≈ 0.6z ≈

 

 

0

0

zE
E

z

Figure 1.  The decrease of energy in the point (global minimum) due to 

energy landscape transformation (mix-matrix with T ). The dashed line is 
theoretical (10). Other lines are experimental for 50 random instances with 
uniform matrices.  

0S
2

B. The shift of the minima. 
Let us estimate the shift of the minimum under the 

landscape transformation. The mean shift can be represented 
as  

  ,  d N P= ⋅

where = < >  is the probability that the 
directions of the spin 0is  and the local field ( )z

ih  do not 
coincide. Omitting the unnecessary constants, the value 

)( z
0i ih can be represented as  s

 ( ) 3/ 2 2
0 0 0(1 )z

i ih s z Nr zN r H= − + +  (11) 

where 

 
2

0 1 11
0 0

1 2

( )(1 )N
T

i j
i T T ij

z Nr T Tz T
H s s

σ
σ σ=

⎛ ⎞+−
= +⎜ ⎟

⎝ ⎠
∑  

In view of (11), P  is expressed in terms of the error 
function: 

 ( )(
21 ( )

2

0

1 1
2 ( ) 2

x
P dx e

γ
ασ

γ π

∞
− −

=
Φ ∫ )x− Φ , (12) 

where ( )Φ ⋅  is the probability integral and  

 0 / 1.N rγ σ= ≈ 9  , 

 2
2

1

1 0.7
N

i
iT

h
N

σ
σ =

= ≈∑  , 

 0
1 z N r

z
α −

= +   
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.  
Figure 2.  The shift (in bits) of the global minimum as a function of  (mix 
with ).  The curves with error bars were obtained by experiment for two 
types of matrices: matrix with uniformly distributed elements (solid line) 
and 2D Ising matrices (dashed lines). The dash-dot line is theoretical (12). 

z
2T

Note that at  the functional coincides with 
initial  and therefore the shift is absent, this agrees 
( ) with (12).  

0z = 0 ( )zE S=

( )E S
0d N P= ⋅ =

The formula (12) describes a monotone increase of the 
minimum shift with growing z  in view of enlarging 
functional transformation. This corresponds to a common 
sense and is proved by experiment (see fig. 2). 

Expressions (9)–(12) suggest the following conclusions. 
With a high probability, the landscape transformation leads 
to deeper minima and, as a result, to a higher probability of 
finding them. Moreover, the depth increase (10) is larger for 
a larger initial depth 0E r≈ 0

N = …

 

Figure 3. of energy of local minima found with the 

. Th

In addition, some part of the running time is spent on 
ma

runsN =  runs. Each run 
res

. In other words, deep minima 
become even deeper and the probability of finding them 
increases, while shallow minima become shallower (or 
disappear at all) and the probability of finding them is 
reduced. This means that the spectrum of minima found by 
the algorithm shifts considerably toward the global 
minimum, and the probability of finding the latter increases 
considerably. The spatial minima displacements caused by 
the transformation are relatively small: it follows from (12) 
that the smallest shifts are expected for the deepest minima. 

VI. RESULTS 
The efficiency of the two-step descent algorithm was 

verified for z  ranging from  to  for matrices of size 
 of two types:  

0 1
100, 500

− matrices with random elements uniformly distributed 
within ; ( 1;1)−

− matrices of 2-dimensional Ising model with [2].  
During numerical experiments we built a mix-matrix for 

different values of z  from  to  equally spaced with 
. The results were averaged over 50 random 

instances of each size and type.  

0 1
0.05zΔ =

The computational complexity of the algorithm is 
. In experiments, we used the same algorithm 

realization both for sparse and dense matrices, although it is 
possible to reduce the complexity up to  in case of 2D 
Ising matrices.  

2( )O N

( )O N

 
 The mean value 

0/meanE Ed
N

z z

2d Ising

uniform

meanE  

proposed two-step algorithm e solid lines are for mix-matrices with 2T . 
The dashed lines are for mix-matrices with 3T . The curves are drawn r 
two types of matrices: uniform matrices (on top) and 2D Ising matrices. 
The value of meanE is divided by the energy of global minimum 0E  and 
does not depen  the problem dimension N . 

fo

d on

trix multiplication. Nevertheless, each our experiment 
took no more than one hour for 500N . 

Each experiment included 061
ulted in a local minimum. We chose two parameters to 

trace: the mean energy meanE of the minima found and the 
probability of finding a m um in the interval of energy 
close to global one [ 1; 0.99]E

inim
∈ − − , where 1− corresponds 

to 0E . 
 experimIn e nly x-matrix (7) 

but

merical results are shown in Fi  and 4. 

of 

 comes near  with 
inc

nts, we try to use not o  the mi
 also mix with 3T . In this case the mix-matrix was 

constructed in the s e manner (7) but 2T  was replaced 
with 3T .  

The nu

am

gs. 3
Fig. 3 demonstrates how the mean value of energy meanE  

minima found for different z changes. It is interesting that 
the value 0/meanE E  does not depend on the problem 
dimension bu  of the matrix. 

As we can see from Fig. 3, meanE
t the type

0E
reasing z . We observe the m um of 0meanE E  at 
0.7z

axim /
≈ for mix-matrix with 2T  and the monoton of 

0E  for mix-matrix wit 3T  up to 1z = . 
 shows how many tim s the probabilit

e growth 

y of finding 
min

/meanE h 
Fig. 4 e
ima with energy differed from the global one less than 

1%  increases. For demonstration purpose, we chose the 
imal possible problem dimensions, which we can cope 

with. For 2D Ising matrices the probability of finding 
minima of energy [ 1; 0.99]E

max

∈ − −  is not greater than 
7

1 3 10P −= ⋅  for N 12 12= × . For 
sion is 

uniform matrices the 
dimen 500N =  (the probability 

5
1 3 10P

maximal 
−= ⋅ ). The probability with t e proposed 

as denoted by newP . As we can see from fig. 4, 
obtained h

algorithm w
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the difference between  and  turned out to be 
enormous – approximately 3 orders of magnitude. 

newP 1P

An interesting fact is that for uniform matrices the  
and  curves almost coincide (see. fig. 3-4), and they start 
to diverge when  only. For Ising matrices, we have 
another picture: mix with  prevails over mix with  up 
to  and after that vice versa.  

2T
3T

0.7z >
2T 3T

0.8z ≈
It can be also seen from Fig. 4 that with increasing  the 

dispersion rises, and this can lead to the instability of the 
algorithm, i.e., the transformation may change the search 
procedure for the worse in some cases.  

z

VII. CONCLUSION 
Finally, we formulate the minimization algorithm 

proposed.  
The preliminary phase consists of the following steps. 

The original matrix T  is symmetrized (if it is initially not 
symmetric) and its diagonal elements are set to zero. The 
matrix is raised to the kth power (  or ) and the 
diagonal elements in the resulting matrix  are set to zero. 
Afterwards the matrices T  and are normalized on unit 
dispersion and mixed in accordance with (7), and the mix-
matrix 

2k = 3
kT

kT

M is obtained. It depends on the chosen parameter 
. The functional  is constructed from (0,1)z ∈ ( )zE S M  

according to (8).  
After the preliminary phase, the random search procedure 

based on the two-step descent algorithm is executed. 
Specifically, at the first step, a descent over surface  is 
performed from a random initial configuration to the nearest 
local minimum 

( )zE S

zmS  of . The second step involves 
correction: from the point we descend over surface  to 
the nearest local minimum  of , which is, as a rule, 
located near 

( )zE S
( )E S

mS ( )E S

zmS . 
The simplest Hopfield neural network dynamics [4] was 

chosen as a descent dynamics (nevertheless, it can be 
arbitrary). 

A comparison shows that the efficiency of the 
minimization algorithm is improved substantially due to the 
landscape transformation.  

It was shown that we succeeded in decreasing the value 
(difference between the mean energy of 

found minima and global one) by half when 
0( )meanE E E− 0/

2k = and 
 (see fig. 3).  0.7z =

Due to the proposed method the probability of finding 
suboptimal solutions with energy differed from the optimum 
less than 1%  increases by  orders of magnitude for 

uniform (full) matrices of dimension  and by more 
than  orders for (sparse) matrices of Ising model of 
dimension 

2.5

500N =
3

12 12N = × . 
Finally, it seems to be attractive to use the proposed 

algorithm as a preliminary stage of any sort of genetic 
algorithms. Indeed, one can run our algorithm with different 
values of z  to obtain a set of minima. Most of the minima 
must be deep and some of them may lie near the global 
minimum. Therefore, they are the good candidates for being 
parents. 
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Figure 4.  The common logarithm of the ratio of probabilities of hitting the energy interval [ 1, 0.99]E ∈ − − . The solid lines are for mix-matrices with . 

The dashed lines are for mix-matrices with . In the left panel the results for uniform matrices of  (. ). In the right panel the results for 

2D Ising matrices of  (. ). Note,  that when is too small, the algorithm does not find the global minimum in some instances, so the 
points are missed. 
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