
The Design and Implementation of Bare PC Graphics

 Alexander Peter Ramesh K. Karne Alexander L. Wijesinha Patrick Appiah-kubi

 Computer Science Computer Science Computer Science Computer Science

Towson University Towson University Towson University Towson University

 Towson, MD 21252 Towson, MD 21252 Towson, MD 21252 Towson, MD 21252

 apeter9@students.towson.edu rkarne@towson.edu awijesinha@towson.edu appiahkubi@towson.edu

Abstract—Most multimedia applications today run with the

support of an operating system, a graphics driver and related

libraries. We present a lean graphics architecture for a bare PC

that has no operating system or kernel running in the machine.

The architecture enables a multimedia application to be

independent of any computing environment and avoids

dependencies on other software. To maintain simplicity, the

graphics implementation uses the basic primitives to display a

pixel, line, circle and a bitmap image. It can be used to implement

complex graphics in spite of its simplicity. The bare PC graphics

implementation is small in size, extensible and easy to maintain.

This design allows graphics programmers to achieve higher

performance by eliminating operating system overhead and using

direct interfaces to the hardware.

 Keywords-Bare Machine Computing (BMC); Multimedia

Graphics; Bare PC Graphics; Graphics Design; Application

Graphics Object (AGO).

I. MOTIVATION

The bare machine computing (BMC) paradigm has been

demonstrated using applications such as Web servers, Web

mail servers, Email servers and clients, SIP servers [1], secure

applications [13], and VoIP soft-phones [2, 14]. These

applications used text-only interfaces for user interactions.

The availability of a bare graphics interface will enrich these

applications and make them more convenient for users. BMC

applications are self-contained and independent of any

operating system (OS), kernel, or execution environment. The

work presented is a first step towards building bare PC

graphics interfaces and lays a foundation for future

multimedia applications that can run on bare devices.

II. INTRODUCTION

 Current multimedia and graphics applications are built on

graphics, video and audio drivers that are accessible through

some platform such as Windows or Linux. In handheld

devices, multimedia software is embedded in the devices to

allow graphics capabilities. These embedded systems rely on

some lean OS or kernel. In most cases, multimedia or graphics

applications are dependent on the device platform. Modern

multimedia applications use a graphics processing unit (GPU)

along with video memory to provide parallel processing power

before rendering to screen or storage. The video card’s

processing power and technological advancements in

hardware pave the way for new software architectures that

exploit the capabilities of modern systems. For example, since

video cards provide gigabytes of low cost memory, paging and

virtual memory are unnecessary, and multiple address spaces

can be avoided by using a single monolithic executable code

with real memory [15]. Today’s high definition video cards

can stream well over 60 frames per second, and are even over-

clocked to higher speeds for 3D simulation using the Wiggle

effect [4].

However, the above technological trends and techniques

are platform-dependent and are not easily ported from one

environment to another. The paper considers the design and

implementation of a bare graphics architecture that is self-

contained and does not require any operating system, kernel or

environment to run. It is written in C/C++ and accesses video

memory directly from its application program. This paper

describes our approach in detail with some preliminary data.

The remainder of the paper is organized as follows. Section

III presents related work; Section IV describes the architecture

of bare PC graphics; Section V discusses its design and

implementation; Section VI presents the results; and Section

VII contains the conclusion.

III. RELATED WORK

The BMC concept also known as dispersed operating

system computing (DOSC) [10] enables computer applications

to run on a bare machine or a bare PC. Eliminating operating

system abstractions [6] has been studied by many authors and

the benefits include significant performance improvements as

shown in Exokernel [7], Micro-kernel [9], lean kernel [18] and

OS-Kit [19]. The BMC approach in contrast completely

avoids any centralized OS or kernel. This results in the BMC

paradigm wherein an application programmer has sole control

of the application and its execution environment. Multimedia

applications can also be built using the BMC paradigm by

extending the Application Object (AO) [12] concept to

develop an application graphics object (AGO) model

comprising graphics, voice and video. The AGO run on a bare

PC without the support of any OS or kernel. The AGO

provides direct hardware communication interfaces to AO

programmers thus eliminating all the abstraction layers

introduced by OSs and their environments. Direct BMC

hardware interfaces for C/C++ applications are described in

[11]. These interfaces enable program load, screen display,

mouse and keyboard access, process management, and

network and audio card control. This paper describes new

BMC interfaces constituting a hardware API for graphics

applications.

There has been considerable research and significant

advances in the areas of graphics and multimedia. In [5], an

OpenGL-based scalable parallel rending framework that

provides a graphics API was discussed. In [20], two user

interfaces for interactive control of dynamically-simulated

character using embedded system platforms were

demonstrated. A lean mapping graphics interfaces that uses a

method for real-time filtering of specular highlights in bump

and normal maps was described in [16]. All such approaches

require conventional OS-based platform support. A

comprehensive low-level graphics design and implementation

was described in [17]. However, these graphics interfaces use

DOS (Microsoft Disk Operating System) primitives and

315Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

mailto:apeter9@students.towson.edu
mailto:rkarne@towson.edu
mailto:awijesinha@towson.edu
mailto:appiahkubi@towson.edu

interrupt 21h, which require DOS environment. In bare PC

applications, only required interrupts are used and included

with the application. At present, there appears to be no direct

hardware API for multimedia applications that can run on a

bare PC with no OS support.

IV. ARCHITECTURE

A. Architectural Decription

The BMC Graphics architecture differs in many aspects

from that of conventional or embedded graphics systems as

the interfaces are directly accessible by the AO programmer.

A given interface executes without any interruption as a single

thread of execution. The AO programmer can control

activation, suspension and resumption of this thread at

program time. Figure 1 illustrates our graphics architecture

that is suitable for any IBM PC based system. Currently, this

architecture has been implemented using only Intel IA32

processor-based PCs.

An application programmer writes a graphics application

(e.g., animation, visualization) application object (AO) in C++

or C using the direct hardware graphics interfaces (API).

These interfaces are provided by the application graphics

object (AGO). The AGO implements high level application

logic if needed and sets up parameter passing for shared

memory. The AGO invokes “C” language interfaces (using

extern “C” {}) to invoke C calls from C++. The C calls in

turn will invoke assembly calls for a given graphics interface.

The assembly call then calls a graphics API software interrupt

(int 0xfa). The AO, AGO, C, assembly calls have full access

through a memory interface to read or write data in shared

memory. This is accomplished by using a MEMDataSel

selector that allows access to shared memory in real and

protected modes using zero base select value. All of this code

is executed in protected mode.

The software interrupt above is an interrupt gate that takes

the call to real mode. The graphics interfaces are implemented

in assembly code that run in real mode. These interfaces in

real mode have access to video memory as shown in Figure 1.

PC BIOS interrupts are also used to control video memory and

graphics modes. Interrupt descriptor table (IDT), global

descriptor table (GDT), local descriptor table (LDT), task state

segment (TSS), boot, loader, interrupt service routines are all

part of an AO. The AO is a self-contained, self-managed and

self-executable module. The AO programmer has sole control

of the facilities that are needed to run a given application.

The graphics architecture views the screen as just a multi-

dimensional array of pixels that can be represented using

vector-based mathematical models. This differs from

conventional approaches that deal with each pixel every time

the graphic changes.

The BMC graphics interfaces reduce complexity by

providing a pointer to video memory that dynamically binds

the interfaces at the hardware level to the video memory

buffer. In this approach, there is no need to synchronize the

GPU with the CPU functions [4] as done in a conventional

system.

The AGO architectural design is classified into eight

broader categories:

 Application Program (AO) Protected Mode: actual

user program main() executes here.

 Application Graphics Object (AGO): software and

hardware API used by AO.

 C-Programming Interface: used as a gateway

between C++ and ASM language abstracts.

 PC Assembly Interface: used to interact with real-

mode shared memory.

 Software Interrupt: Interrupt to bridge between real

and protected mode dynamically.

 Interrupt Gate to Real Mode: used in real-mode to

interact directly with the Hardware Video Memory.

 Graphics Operations Real Mode: used to invoke low-

level graphics primitives including screen access,

screen framework, font/symbol, and other attributes as

outlined in section V.

Figure 1. BMC Graphics Architecture

B. Architecural Novelties

The lean graphics architecture has many novel

characteristics. The interfaces developed here can be directly

invoked from standard C or C++ programs and are fully

controlled by the programmer. The architecture is very generic

and can be implemented on any pervasive device. As this

316Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

approach uses only video memory instead of graphics card

interfaces, a given graphics application can be ported easily to

many types of devices. The current AGO does not use any

graphics accelerators and hardware support, bare interfaces to

audio, video and graphics cards can be written if necessary to

resolve any performance issues. When more sophisticated bare

graphics and multimedia becomes feasible, users can carry

their own USB with a Web client and browse the Web on any

bare device without carrying any hardware and with no

reliance on any OS, kernel or environment. In addition to

being convenient for users, this graphics architecture

eliminates overhead and may be easier to secure due to its

simplicity.

V. DESIGN AND IMPLEMENTATION

A Bare PC graphics system is designed to perform

graphics functions, such as drawing geometric figures with

fraction (fractal) primitives, displaying text characters, and

performing other attributes such as color, pixel, line, circle and

displaying a bitmap image.

The following graphics functions are implemented using

standard C and Intel assembly language. They are based on the

design and implementation principles in [17] and modified to

work with a bare PC system as described below:

 Screen access: clear screen, set the entire screen to a

color or attribute, save the screen image in memory,

and restore a saved screen image.

 Screen framework: set a shape screen area to a given

color or attribute, save and retrieve a screen area in

video memory.

 Font/Symbols: based on Vector / ASCII

 Images/video: based on pixel and compression

 Shapes: based on Vector/Pixel Mathematical

Algorithms.

 Attributes: set the current drawing color, set the

current fill color, set the current shading attribute, set

the current text color, set the current text font, set the

current line type (continuous, dotted, dashed, etc.),

and set the current drawing thickness.

 Image transformation: scale, rotate, translate, and

clip image.

 Bit operations for performance: BIT Shifters; XOR,

OR, NOT and AND bitwise operations.

In order to illustrate our implementation, we describe five
basic direct graphics APIs:

 (1) draw_pixel(): This interface takes x and y coordinates
of a given pixel and computes its video memory location. The
video memory address, location of a pixel, color of a pixel and
its “opcode” are stored in shared memory. As illustrated in
Figure 1, this interface goes from protected mode to real mode
to the graphics operations code. It then obtains the pixel
parameters from shared memory and places the pixel in the
video memory. After displaying the pixel on the screen, it will
return to its AO. The entire API process is executed as a single
thread of execution. More optimal approaches to drawing a
pixel on the screen will be considered later.

(2) draw_line(): This is simply drawing many pixels to draw
a line using Bresenham's algorithm [3].

 (3) draw_box(): This API uses draw_line() API repeatedly
to plot a box.

 (4) draw_circle(): The circle is implemented without using
the sine and/or cosine functions. It uses the algorithm described
in [8] and uses draw_pixel() API.

 (5) draw_bitmap(): First, the bitmap file is read from the
removable device (USB) during the program load and stored in
main memory. Second, the bitmap file header is parsed for
size, color and image data offset location parameters as shown
in Figure 3. Third, the display mode is setup to match
minimum color palette requirements for the image as shown on
Figure 2. Fourth, the video memory address, pointer to the
bitmap image data and its opcodes are stored in shared memory
as illustrated in Figure 1. Finally, the AGO will copy the
image data from shared memory to video memory for display
as shown in Figure 3. After placing the bitmap on the screen, it
will return to its AO.

Figure 2. Video Memory Layout

Video memory is a contiguous linear addressing model,
which differs from the x and y coordinates of the computer
screen. To plot a pixel, the offset is calculated from the
beginning of the video memory as follows: y coordinate
multiplied by the total width of the screen and the x coordinate
added to it.

In the example shown in Figure 2, we use the VGA Mode
0x13 with screen dimension of 320 pixels in width and 200
pixels in height. This translates to 0 to 319 on the x axis
(width) and 0 to 199 on the y axis (height). The top left corner
starts at coordinate (0, 0). Each pixel represents 8 bits (1 byte).
Thus, the memory needed to store images of this size
(320x200) is 64,000 bytes.

Figure 3 shows the Bitmap Image structure. It consists of
several components that are described below.

The File Header in Figure 3 contains the FileType which
starts with 4D42h ("BM"). FileSize is the Size of the image file
in bytes. Reserved fields are used for future enhancements,
with default values set to 0. The BitmapOffset stores the
starting position of image data in bytes. The total size of the
File Header is 14-bytes.

“Size” is the size of this header in bytes, and Width and
Height are the Image width and height in pixels. A plane is the
number of color planes and BitsPerPixel is the number of bits
per pixel. The total size of the Bitmap Header is 40-bytes.

317Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 3. Bitmap Image Format

The BMC Color Palette specifies the red, green, and blue
values of each pixel in the bitmap data by storing a single value
used as an index into the color palette. In the newer versions of
the BMP standard, the Color Palette and Image Data are
merged together. In our example, we are using the Image Data
directly, since we have pre-defined our palette to 256-colors.
The total size of the Color Palette is 1024-bytes.

The pseudo-code in Figure 4 is used to display a 64x64
bitmap to video memory; since video memory is linear, a
simple computation based on the x and y values can be used.

void draw_bitmap(AO, AGO Object Reference)
Initialize Memory Locations;
Initialize Variables;

Loop While screen_height < 200
{
 For (y=0; y < image_width; y++) {
 For (x=0; x < image_height; x++){
 //AGO Implementation, copy to Video Memory

 Video_Memory_Pointer [x+y*320]=
 Shared_Memory_Pointer[x+y*64] } }
}

Figure 4. Bitmap to Video Memory Pseudo-Code

VI. TESTING

The testing was conducted on a standard VGA graphics
card and VESA enabled BIOS on VGA Mode 13, with 320-by-
200 pixel resolution in 256-Colors. The graphics was tested on
a Dell Optiplex GX260 PC with 512 MB memory.

The preliminary response time in Table I was conducted
using the UNIX system time; it is an end-to-end measurement,
which includes other components such as the VGA hardware
device and other display intermediaries.

Below, we illustrate five basic primitives as described in
Section V. Each API is a direct hardware interface available to
the AO programmer that can be invoked directly from C or
C++ code.

TABLE I. BMC GRAPHICS – PRELIMINARY RESPONSE TIME

AGO Object Response Time (Microseconds)

draw_pixel() graph

Figure 5

2.25

 draw_line() graph
Figure 6

83.25

draw_ circle() graph

Figure 7
250

draw_bitmap() graph

Figure 8
5

A. Pixels

Using the draw_pixel() AGO API, 5000 pixels were plotted
as shown in Figure 5. The x, y coordinates and color were
chosen randomly. Preliminary performance tests shows a
response time of 2.25 microseconds.

Figure 5. BMC Graphics - 5,000 Random Pixels and Colors

Figure 6. BMC Graphics - 5,000 Random Lines and Colors

318Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

B. Line

Using the draw_line() AGO API, 5000 lines were rendered
as shown in Figure 6. The x1, x2, y1, y2 coordinates and color
where chosen randomly. The draw_circle API is a direct
hardware interface inherited from the draw_pixel() AGO.
Preliminary performance tests shows a response time of 83.25
microseconds.

C. Circle

Using the draw_circle() AGO API, 5,000 circles were
rendered as shown in Figure 7. The x, y coordinates, radius
size and color were chosen randomly. The draw_circle API is a
direct hardware interface inherited from the draw_pixel()
AGO. Preliminary performance tests shows a response time of
250 microseconds.

Figure 7. BMC Graphics - 5,000 Circle with Random Size and Color

Figure 8. BMC Graphics – Bitmap

D. Bitmap

The bitmap used in this example is a 64 by 64 256-color

bitmap with 8 bits per pixel, the file format is Windows RGB-

encoded BMP format uncompressed. For a 256-color bitmap,

there is a 54-byte header and a 1024-byte palette table in

addition to the actual bitmap data.

Using the draw_bitmap() AGO API, the bitmap image was

loaded into video memory directly for display. The bitmap was

loaded three times with different orientation to show rotation

and animation. This can be achieved by changing the pixel

loading order while copying to memory as shown on Figure 8.

Preliminary performance tests shows a response time of 5

microseconds.

VII. CONCLUSION

We presented the architectural design for building graphics

applications that can run on bare devices with no operating

system, kernel or environment support. We also gave details

of its implementation model using C/C++. The AGO API

illustrates some of the fundamental graphics elements and

their functionality. The preliminary performance data indicates

applicability of bare machine graphics for complex graphics

applications. The direct hardware graphics API can be used in

a variety of pervasive devices to achieve common graphics

operations. We have also presented the benefits of running

graphic applications on a bare PC including simplicity,

elimination of abstraction layers, and self-containment. With

bare PC graphics, the programmer has direct access to the

video graphics device and complete control of all hardware

resources enabling autonomy with performance advantages

due to elimination of system overhead.

ACKNOWLEDGMENT

We sincerely thank NSF and in particular the late Dr.

Frank Anger, who initially supported this work by funding

through SGER grant CCR-0120155. Without his

encouragement, bare machine computing concept and

explorations could not have been possible.

REFERENCES

[1] A. Alexander, A. L. Wijesinha, and R. Karne, "A Study of Bare
PC SIP Server Performance," The Fifth International
Conference on Systems and Networks Communications,
ICSNC, Nice, France, pp. 392 – 397, August 2010.

[2] A. Alexander, A. L. Wijesinha, and R. Karne, "Implementing a
VOIP Server and a User Agent on a Bare PC," The Second
International Conference on Future Computational Technologies
and Applications, Future Computing, Portugal, Lisbon, pp. 8 –
13, November 2010.

[3] D. Brackeen, Developing Games in Java. Berkeley, CA: New
Riders Games, pp. 63-70, 2003.

[4] D. Salomon, The Computer Graphics Manual, Ithaca, NY:
Springer-Verlag Publisher, pp. 200 – 240, 2011.

[5] S. Eilemann, M. Makhinya and R. Pajarola. “Equalizer: A
Scalable parallel rending framework,” IEEE Transactions on
Visualization and Computer Graphics, pp. 436 – 452, June
2008.

[6] R. Engler and M.F. Kaashoek, "Exterminate all operating
system abstractions," In Fifth Workshop on Hot Topics in
Operating Systems, pp. 78, May 1995.

[7] D. Engler, "The Exokernel Operating System Architecture,"
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Ph.D. Thesis, 1998.

[8] J. E. Frith. “Fast Circle Algorithm,”
http://www.tutego.de/aufgaben/j/insel/additives/base/fcircle.txt,
Copyright (c) 1996 James E. Frith, Email:
jfrith@compumedia.com [Retrieved: March, 2011].

319Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

[9] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullman,
“Interface and execution models in the Fluke Kernel,”
Proceedings of the Third Symposium on Operating Systems
Design and Implementation, USENIX Technical Program, New
Orleans, LA, pp. 101-115, February 1999.

[10] R. K. Karne, K.V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing,” OOPSLA, 20th
Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Onward Track,
Sandiego, CA, pp. 55-61, October 2005.

[11] R. K. Karne, K. Venkatasamy and T. Ahmed, "How to run C++
applications on a bare PC," In proceeding of 6th ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel / Distributed Computing
(SNPD), pp. 50 – 55, May 2005.

[12] R. K. Karne, "Application-oriented Object Architecture: A
Revolutionary Approach," In 6th International Conference, HPC
Asia, Poster presentation, December 2002.

[13] N. Kazemi, A. L. Wijesinha, and R. Karne, "Evaluation of IPsec
Overhead for VoIP using a Bare PC," 2nd International
Conference on Computer Engineering and Technology
(TCCET), vol. 2, pp. 586 – 589, April 2010.

[14] G. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S.
Girumala, “A Peer-to-Peer Bare PC VoIP Application,” IEEE
Consumer Communications and Networking Conference,
Seamless Consumer Connectivity, CCNC, Las Vegas, Nevada,
pp. 803 – 807, January 2007.

[15] P. Kovach and J. Richter, Inside Direct3D, Redmond, WA:
Microsoft Press, 2000.

[16] M. Olana, and D. Baker, “Lean Mapping,” Proceedings of 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pp. 181-188, February 2010.

[17] J. Sanchez and C. Maria, Computer Animation Programming
Methods & Techniques, McGraw-Hill, 1995.

[18] “Tiny OS,” Tiny OS Open Technology Alliance, University of
California, Berkeley, CA, 2004, http://www.tinyos.net/
[Retrieved: June, 2007].

[19] "The OS Kit Project," School of Computing, University of Utah,
Salt Lake City, UT, June 2002,
http://www.cs.utah.edu/flux/oskit [Retrieved: May, 2009].

[20] P. Zhao and M. Van de Panne, “User interfaces for interactive
control of physics-based 3D characters,” Proceeding of the 2005
symposium on Interactive 3D graphics and games, pp. 87 – 94,
April 2005.

320Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

