
Comparing Travelling Design Patterns for Mobile Agent Development Using JADE

Nikolaos Karagiannis

Dept. of Informatics

Technological Educational Institute (T.E.I.) of Athens

Athens, Greece

ms09056@teiath.gr

Konstantinos Giannakos

Dept. of Informatics

University of Piraeus

Piraeus, Greece

kon.giannakos@gmail.com

Konstantinos Antonis

Dept. of Informatics and Computer Technology

Technological Educational Institute (T.E.I.) of Lamia

Lamia, Greece

k_antonis@teilam.gr

Abstract - Mobile agents are autonomous processes that are

used to assign various tasks. Those processes are migrating to

several nodes to execute those tasks locally, instead of RPCs.

Their migration way may be different according to the

application type and it is based on a design pattern. Here, we

present comparative results of three different travelling design

patterns for mobile agents (Itinerary, Branching and Star-

shaped) with the use of an application that we developed.

Derived results showed that the branching pattern performs

better than the other two in terms of turnaround times,

whether we use constant size or variable size of answers to

mobile agent requests to servers.

Keywords - Mobile Agents; Travelling Design Patterns;

JADE Application

I. INTRODUCTION

An agent is a special software component providing an
interoperable interface to an arbitrary system and/or
behaving like a human agent working for some clients in
pursuit of its own agenda. Some common tasks for such
software components are monitoring of systems, searching
for specific information, managing a system, etc. Agent –
based methods are becoming more and more popular as time
goes by and they are used in many different fields (like
economics, e.g., [22]). Some common characteristics of
agents are autonomy, sociality, intelligence and mobility [5].

Agents can have a combination of various characteristics.
Mobile agents (having as basic characteristic the mobility)
are able to migrate from one computer to another
autonomously and continue its execution on the destination
computer. They are used instead of RPCs (Remote Procedure
Calls), exchanging remotely various data. The most basic
advantage of mobile agents is the reduction of the used
bandwidth, because the agent migrates itself and there is no
data exchange between different procedures hosted on
different computers (Figure 1) [5].

Also, these procedures are asynchronous and
autonomous, so their function depends on network
connectivity. That means that there is no need for continuous

connection between nodes for data exchange. In the RPC
model, if the connection stops when the processes are
exchanging data, then the connection has to be restarted. In
the meantime, a process waits for a response from the other
process aimlessly. But, with the use of a mobile agent a job
can be completed locally while the connection is down, and
finally waits to migrate until the connection is established
again (Figure 2). This is also useful in mobile phones in
cases of unstable connections [5].

Figure 1. Agent migration vs data migration in RPC.

Figure 2. There is no need of continious network connection.

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

mailto:ms09056@teiath.gr
mailto:kon.giannakos@gmail.com
mailto:k_antonis@teilam.gr

But also, it must also be considered that there are several
difficulties/disadvantages of the mobile agent technology
application into the internet infrastructures. The most
important difficulties are various security problems, the high
computation cost required by a server in order to host and
serve a lot of mobile agents concurrently and the high
difficulty of the creation and the application of those
infrastructures.

Multi Agent Systems (MAS) are systems in which many
agents interact in order to solve a common problem. The
problem is divided into several sub problems distributing
each one to different agents in the MAS system. A MAS
system works on a set of various computers connected via a
specific network (LAN or WAN, etc). A MAS system is
very appealing for building open and distributed applications
[13]. Various MAS systems can communicate in order to
achieve several user needs [5].

It should also be stated that software agents, which bring
together the two concepts “process” and “object”, are
interesting building blocks for flexible system architectures,
even if they are not always mobile. On the one hand, mobile
agents provide a novel and useful example for an open and
distributed MAS ([14], [15], [16]). On the other hand, static
agents (non-mobile) are probably as important as mobile
agents: they encapsulate autonomous activities in a stronger
way than classical objects, they communicate with other
(mobile) agents via the same protocols and interfaces, and
they provide (with mobile agents) a uniform way to structure
large distributed systems [2].

A variety of design patterns for mobile agents have been
proposed in the past organized in different categories [6]. A
basic task pattern is the Master-Slave pattern. On this
pattern, a master agent delegates a task to be done on a given
agency to a slave agent(s). The slave agent visits the
indicated agency where it accomplishes the task, and then
returns to the source agency carrying the results. The master
agent receives the results and then the slave destroys itself.
The migration procedure of an agent varies also, creating the
category of travelling design patterns [6]. The itinerary
pattern (Figure 3) provides a way to execute the migration of
an agent, which will be responsible for executing a given
task in remote hosts. The agent receives an itinerary on the
source agency, indicating the sequence of agencies it should
visit. Once in an agency, the agent executes its task locally
and then continues on its itinerary. After visiting the last
agency, the agent goes back to its source agency [1].

On the branching travelling pattern (Figure 4), the agent
receives a list of agencies to visit and clones itself according
to the number of agencies in the itinerary. Then, all clones
will visit an agency of the received list. Each clone has to
execute its corresponding task and notify the source agency
when the task is completed. The importance of this pattern is
that it splits the tasks that can be executed in parallel [1]. A
typical example would be a search agent that sends out slave
agents to visit multiple machines in parallel. Of course,
mechanisms to control the high degree of dynamism of such
agent-enabled parallel computations then become a necessity
[2].

So, we can imagine the World Wide Web consisting of
servers and clients working on mobile agent platforms
exchanging mobile agents. Also, by integrating extra
characteristics like intelligence and sociality we will have
smarter applications offering high level services (e.g., auto-
learning) and achieving better and more specific results.

On the Star-Shaped travelling pattern (Figure 5) the agent
receives a list of agencies that it has to visit. So, it migrates
to the first destination agency, where it executes a task, going
back to the source agency. The agent repeats this cycle until
visiting the last agency on its list [1].

In this paper we compare the three above mentioned
design patterns with the use of a mobile MAS application
that we have implemented. The application contains two
static agents representing a web client and a web server
(hosted on different machines). Both client and server
exchange mobile agents. We developed all those agents
using the JADE platform and we execute them in many
nodes. A lot of implementations for different design patterns
have been proposed in the past (e.g., [1], [6], [8]), but it is
not our purpose to present another alternative
implementation on the same subject. The contribution of our
work is the presentation of comparative results for those
patterns in terms of turnaround times, for constant and
variable sizes of answers to mobile agent requests from the
implemented servers.

Figure 3. Itinerary pattern.

Figure 4. Branching pattern.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 5. Star-shaped pattern.

II. RELATED WORK

Aridor and Lange [6] reported on several design patterns
for mobile agencies classified in three different categories:
travelling, task and interaction patterns. Travelling patterns
encapsulate mobility management of an agent for one or
more destinations. Task patterns are concerned with the
breakdown of a task and how these tasks are delegated to one
or more agents. Interaction patterns are concerned with
locating agents and facilitating their interactions. They also
implemented three of them (master-slave, meeting and
itinerary) and shared their experiences with it. Eight different
agent design patterns are implemented in [1] in JADE:
Itinerary, Star-Shaped, Branching, Master-Slave, MoProxy,
Meeting, Facilitator, and Mutual Itinerary Recording. The
itinerary, branching and star-shaped patterns were proposed
in [11].

Kendall et al. [17] present several patterns of intelligent
and mobile agents based on a layered architecture
considering mobility and intelligence separately. A set of
seven patterns related to agent communication mechanisms
are discussed in [18], but they do not take into account the
intelligence and mobility together.

Eshtay [7] proposed the Hierarchal Traveling design
pattern, which is a combination of the itinerary pattern and
the depth first algorithm. This pattern was implemented in
JADE, too. Wang et al. [9] uses the branching pattern to
develop in JADE an agile supply chain management model.

 Ojha et al. [12] propose a design pattern for intelligent
mobile agents. It helps in efficient mobility of these agents,
which are more often fatty. It enables dynamic on-demand
behaviour specific to a network host environment. It
describes the pattern using a suitable pattern template and
reported the results of its implementation (using JADE) in a
prototype multi-agent system for e-commerce domain.

Maamar and Labbe [10] described two strategies (servlet
and applet) that could enhance the operations of software
agents and showed that both strategies could suit them.

Agents should be embedded with mechanisms that allow
them to make the correct decision: either move or invite.

There are also a lot of design patterns proposed in the
past, that they do not consider mobility of agents, but they
are based on social and intentional characteristics of an agent
(e.g., [19],[20], [21]).

III. OUR APPLICATION: A WEB AGENT EXPLORER

We developed a web application that informs the client
about the latest registrations that are added to various e-news
sites that interests him. Several mobile agents (each one
representing a user) are migrating to various servers to
retrieve information that the user is interested in.

The application developed with the use of the JADE
platform. It was developed to help us compare the itinerary,
star-shaped and branching design patterns under various
circumstances and extract useful conclusions. We chose to
compare only these three patterns because, one the one hand,
they are of the most famous patterns in the research
community. On the other hand, our application is too simple
and does not involve collaboration or interactions between
agents and does not check permissions. So, patterns like the
Meeting, or MoProxy, etc, are not suitable for it. The
application obeys the master – slave model containing two
static agents (masters) representing a web client and a web
server. Both client and server exchange mobile agents
(slaves) obeying the three above mentioned design patterns,
alternatively and we execute them in many nodes. We
mention here, that our system is still in prototype level.

IV. The JADE Platform/Framework

JADE (Java Agent Development Framework) is a
platform supporting agent processes and also offers libraries
(framework) for multi agent application development written
in JAVA. It is ideal for distributed application development
based on multi agent systems. For application development,
JADE has an IDE with useful tools and a GUI for platform
administration. The platform offers all the necessary services
to the agents that they are installed on it. With some of those
services, agents can identify and communicate each other,
and they can search each other after they have registered on
specific platform catalogues [3].

Each platform constitutes a MAS with at least one
container. Each container is installed to a computer and it
can support agents and offer them all the necessary services.
Consequently, a platform can constitute a network of
containers (e.g., a LAN) (Figure 6). Two basic services are
the AMS (Agent Management System) and DF (Directory
Facilitator) directories that are local agents [3], [4].

Agents are java classes inheriting the Agent class of
JADE libraries. The actual job, or jobs, an agent has to do is
carried out within ‘behaviours’. A behaviour represents a
task that an agent can carry out. An agent can execute several
behaviours concurrently. The scheduling of behaviours in an
agent is not pre-emptive (as for Java threads), but
cooperative. This means that when a behaviour is scheduled
for execution its method is called and runs until it returns.

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 6. JADE architecture overview.

Therefore, it is the programmer who defines when an
agent switches from the execution of a behaviour to the
execution of another [3]. Here, we use three different
behaviour types:

 OneShotBehaviour: executes once and dies.

 CyclicBehaviour: stays active as long as its agent is
alive and is called repeatedly after every event.

 TickerBehaviour: periodically executes some user-
defined piece of code.

V. Functional Description

Each user interacts with a local agent via a GUI. User
enters to GUI the web domains he is interested in.
Consequently, the local agent sends mobile agent(s)
according to the mobility pattern that has been set. When the
above mobile agent(s) returns having the available pages of
each domain, the user is able to select the pages he wants to
retrieve the latest updates of them. Next, the user declares the
frequency for a mobile agent(s) to visit the selected domains
in order to check if the selected pages have been updated.
For instance, a user may want the mobile agent(s) to migrate
to check those pages every 5 minutes. For the first time, a
mobile agent returns the latest registrations from those pages,
and only when there have been updates since his latest visit
for all the other times. When a mobile agent arrives at a
server, it is served by a local agent that “lives” there.

VI. Architecture

Client and Server processes are hosted in different JADE
platforms and each one constitutes a different MAS (JADE
platforms). Until now, JADE does not support agent mobility
between containers that belong to different platforms (inter
platform mobility). We used the IPMS addon that provides
this feature [23]. The client corresponds to one container
(computer) and the server may be distributed to many
containers, but in our approach it is constituted by one
container.

1) Client Components Description: The client side
container hosts a local agent except the basic JADE agents
(like AMS) (Figure 7). When the application starts, AMS
creates an object of this agent. This local agent is static and
provides the user a GUI to enter his preferences and receive
the results. It also checks and manages the information that
mobile agents return. So, according to the Master-Slave
pattern, the local agent forwards tasks to a mobile agent(s).
It is able to save data to disk, while a mobile agent is not.
The mobile agent sends data to a local agent. We created
those mechanisms for system security reasons. The static
agent has to be capable to authenticate the returned mobile
agent preventing from malware attacks. The local agent
creates different types of mobile agents classes for each
migration pattern. When a mobile agent returns back to the
client host, it sends the data collected during migration to
the local agent and then destroys itself.

2) Server components description (Figure 8): The
server side container hosts a local agent too, except the basic
JADE agents (like AMS and DF). When the application
starts, AMS creates an object of this agent. The local agent
publishes in DF the services provided. Those services
correspond to the pages that mobile agents can retrieve
updates. The local agent is static and serves the incoming
mobile agents. The arrived agents send requests to the local
server about the info a user is interested. So, the role of this
agent is to provide an interface between the arriving agents
and the database and to protect the system from malware
attacks.

VII. EXPERIMENTAL RESULTS

We compared the three travelling patterns which were
mentioned before using our application. We set up one client
and three servers into a LAN network. The client was set up
on a four core 64bit CPU at 3.3 GHZ with 8GB RAM.
Servers were created as 4 virtual machines. One of the
servers was set up in a virtual machine of the client’s
machine having 512 MB RAM, while the others were set up
on another machine containing a CPU at 2 GHZ with
512MB RAM.

Throughout the paper we use the term task to refer to the
trip of a mobile agent to the 4 servers mentioned above in
order to collect data. Specifically, the client agent keeps a
hash table, where each key corresponds to the name of a site
the user is interested (e.g., e-news.com, games.com, e-
shop.gr). Each key indexes a data structure containing the
specific pages inside a site, as well as the date and time of
the last visit. All data exchanged between a server and a
client, are encrypted with SSL. An instance of a mobile agent
is created in the client side for each task, containing the
appropriate records from this table. The server receives those
records and registers the data collected into a message, along
with other information like the structure of the page,
formatting of the page, etc. Since the information exchanged
is in text format, there is no significant overhead for the
server to serve a mobile agent.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 7. Client MAS Architecture.

Figure 8. Server MAS Architecture.

Using itinerary and star-shaped patterns we have one
mobile agent for each task. Each task starts when a mobile
agent is created and ends after having visited all the nodes
and returning to client sending the results to the Master
Agent. The turnaround time of an agent depends on the
workload of the server and the number of the exchanged
messages. In the branching pattern case, a mobile agent is
sent in parallel for each task. The turnaround time of the task
ends when the last mobile agent returns back. The size of the
answer to a query imposed by a Server Agent, corresponding
to a mobile agent request, is small because their content is in
text format. We consider constant and variable size of an
answer to measure the turnaround time (in seconds) for each
task for the three travelling patterns (itinerary, branching and
star-shaped).

A. Constant Size of Answers

We consider 20 tasks arriving sequentially. Upon the
arrival of a task, a mobile agent(s) migrates automatically,
from the client to the above servers and retrieves 28 database
records of the same size from each server. We run the
application for each pattern separately.

Figure 9. Comparing the three design patterns with constant size of

answers.

Figure 10. Comparing the three design patterns with variable size of

answers.

Figure 9 presents the derived results of turnaround times
per task for constant size of answers. Results show that the
branching pattern achieves the best turnaround times for all
tasks. The itinerary pattern performs a bit better than star-
shaped on the average, but results are comparable. This is
due to that some servers are hosted on the same machine as
different virtual machines, although the star-shaped pattern
sends more messages (48 messages vs 42, respectively). This
performance difference would be greater if servers could be
hosted in different machines.

B. Variable Size of Answers

We consider again 20 tasks arriving sequentially. But in
this case we have different sizes of answers in each task. We
developed a simple application (News Generator) in JAVA
that runs in each server and adds some fake news updates
(text format) to the database for various categories (like
sports, weather news, politics, etc). The database update
frequency varies, but it is less or equal to the task arrival
time frequency in any case. We run again the application for
each migration pattern separately and Figure 10 illustrates
the derived results. Results show that the branching pattern
achieves the best turnaround times for all tasks. The itinerary
pattern performs better than star-shaped on the average.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

VIII. CONCLUSIONS AND FUTURE WORK

A lot of design patterns for mobile agents have been
proposed in the past. In this paper, we focus only on
travelling design patterns and we try to compare three of the
most commonly used of them: itinerary, branching and star-
shaped, with the use of a mobile MAS application that we
have implemented. The application contains two static
agents representing a web client and a web server (hosted on
different platforms). Both client and server exchange mobile
agents. We developed all those agents using the JADE
platform and we execute them in many nodes. The above
mentioned design patterns are compared in terms of
turnaround times, for constant and variable sizes of answers
to mobile agent requests from the implemented servers. The
derived results show very clearly that the branching pattern
performs better under both circumstances.

In our future work, we intend to investigate hybrid
implementations of design patterns and evaluate them on our
platform. Derived results will be compared with the
evaluation results of the current work and with other results
assuming hybrid implementations.

REFERENCES

[1] Emerson Ferreira de Araújo Lima, Patrícia Duarte de Lima
Machado, Jorge César Abrantes de Figueiredo, and Flávio
Ronison Sampaio, “Implementing Mobile Agent Design
Patterns in the JADE framework”, EXP in Search of
Innovation,Vol.-3, No.-3, September 2003.

[2] Stefan Funfrocken and Friedemann Mattern, “Mobile Agents
as an Architectural Concept for Internet-based Distributed
Applications The WASP approach”, Proceedings of the
KiVS’99, Springer-Verlag, pp. 32-43, 1999.

[3] Fabio Bellifemine, Giovanni Caire, and Dominic
Greenwood, “Developing Multi Agent Systems with JADE”,
John Wiley & Sons, Ltd, 2007.

[4] http://jade.tilab.com/doc/tutorials/JADEAdmin/
jadeArchitecture.html [retrieved: January, 2012]

[5] Michael Wooldridge, “Introduction to Multi Agent
Systems”, The MIT Press, 1999.

[6] Yariv Aridor and Danny B. Lange, “Agent Design Patterns:
Elements of Agent Application Design”, In proceeding of the
2th ACM international conference on Autonomous Agents
(Agents '98), p. 108-115, 1998.

[7] Mohammed Eshtay, “Hierarchal Traveling Design Pattern
for Mobile Agents in JADE Framework”, 4

th
 International

Conference On Information Technology (ICIT), 2009.

[8] Ajay Kr. Singh, Ravi Sankar , and Vikram Jamwal, “Design
Patterns for Mobile Agent Applications”, Workshop on
Ubiquitous Agents on embedded,
wearable, and mobile devices, Bologna 2002,
http://autonomousagents.org/ubiagents/2002/papers/papers/2
2.pdf, [retrieved: January, 2012].

[9] Wenjuan Wang, Weihui Dai, Weidong Zhao, and Tong Li,
“Research on Mobile Agent Systems for Agile Supply
Management”, Journal of Software, vol. 6, no. 8, Agust
2011, pp.1498-1505.

[10] Zakaria. Maamar, and Paul Labbé, “Moving vs. inviting
software agents: what is the best strategy to adopt?”
Communications of the ACM, Volume 46, Issue 7 (July
2003), pp. 143 – 144.

[11] Yasuyuki Tahara, Akihiko Ohsuga, and Shinichi. Honiden,
“Agent system development method based on agent
patterns”, In Proceedings of the 21st international conference
on Software engineering. IEEE Computer Society Press,
1999, pp. 356-367.

[12] Ananta Charan Ojha, Sateesh Kumar Pradhan, and Manas
Ranjan Patra, “Pattern-Based Design for Intelligent Mobile
Agents”, 4th International Conference on Innovations in
Information Technology (IIT '07), p. 501-505, 2007.

[13] Nicholas R. Jennings, “An Agent-Based Approach for
Building Complex Software Systems”, Communications of
the ACM, 44(4), April 2001, pp.35-41.

[14] Danny B. Lange and Mitsuru. Oshima, “Seven Good
Reasons for Mobile Agents”, Communications of the ACM,
42(3), March 1999, pp. 88-89.

[15] Rahul Jha and Sridhar lyar, “Performance Evaluation of
Mobile Agents for E-Commerce Applications”, In Proc. Of
the 8th Int. Conf: on High Performance Computing (HiPC
2001), LNCS, vol-2228, 2001, pp. 331-340.

[16] S.R. Mangalwade, K.K Tangod, U.P. Kulkarni and A.R.
Yardi, “Effectiveness and Suitability of Mobile Agents for
Distributed Computing Applications”, In Proc. Of the 2nd
Int. Conf: on Autonomous Robots and Agents, Dec 13-15,
New Zealand, 2004.

[17] Elizabeth A. Kendall, P. V. Murali Krishna, Chirag V.
Pathak, and C. B. Suresh, “Patterns of Intelligent and Mobile
Agents”, In Proc. of the 2nd Int. Conf: on Autonomous
Agents, ACM Press USA, 1998, pp. 92 - 99.

[18] Nuno Meira, Ivo Conde e Silva, and Alberto Silva, “A Set of
Agent Patterns for a More Expressive Approach”, In Proc. of
the 5th European Conf: on Pattern Languages of Programs
(EuroPLoP2000), 2000, pp. 331-346.

[19] Sylvain Sauvage, “Design Patterns for Multiagent System
Design", In Proc. of 3rd Mexican Int. Conf: on Artificial
Intelligence (MICAI 2004), Mexico City, LNCS, Springer
Berlin, 2004, pp.352-361.

[20] T. Tung Do, Manuel Kolp, and Alain Pirotte. “Social
Patterns for Designing Multi-Agent Systems”, In Proc. Of
the 15th Int. Conf: on Software Eng. And Knowledge Eng.
(SEKE 2003), USA, July 2003, pp.103-110.

[21] D. Deugo, M. Weiss, and E. Kendall, “Reusable Patterns for
Agent Coordination”, Coordination of Internet Agents:
Models, Technologies, and Applications, Springer-Verlag,
2001, pp. 347-368.

[22] Valentas Daniunas, Vygintas Gontis, and Aleksejus
Kononovicius, “Agent-based Versus Macroscopic Modeling
of Competition and Business Processes in Economics”, The
Sixth International Multi-Conference on Computing in the
Global Information Technology (ICCGI), Luxembourg, pp.
84-88, 2011.

[23] https://tao.uab.cat/ipmp/files/README [retrieved: January,
2012]

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

http://jade.tilab.com/doc/tutorials/JADEAdmin/%20jadeArchitecture.html
http://jade.tilab.com/doc/tutorials/JADEAdmin/%20jadeArchitecture.html
http://autonomousagents.org/ubiagents/2002/papers/papers/22.pdf
http://autonomousagents.org/ubiagents/2002/papers/papers/22.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4430361
https://tao.uab.cat/ipmp/files/README

