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Université Paris-Sud XI,
Bâtiment 650, Orsay Cedex, France

Email: abdel.lisser@lri.fr

Abstract—In this paper, we propose a distributionally robust
formulation for packet transmission allocation in CDMA/TDMA
networks. In particular, we adopt a utility-based framework
where channel bit rates and packet experienced delays conditions
are considered. Consequently, the total utility of the network
subject to capacity and packet assignment constraints is max-
imized. For this purpose, we first formulate the problem as a
(0-1) stochastic integer linear programming problem. Then, we
transform the stochastic model into an equivalent deterministic
formulation. Subsequently, we use the deterministic model to
derive the distributionally robust counterpart. This is achieved
while taking into account the set of all possible probability dis-
tributions for the input random parameters. Finally, we compare
the optimal solutions of the stochastic and robust models. Our
preliminary numerical results indicate that slight conservative
solutions can be obtained when the instances dimensions increase.

Keywords—Stochastic programming; distributionally robust op-
timization; code division and time division multiple access, wireless
networks.

I. INTRODUCTION

Code division and time division multiple access (resp.
CDMA, TDMA) are two wireless multi-carrier transmission
schemes currently embedded into modern technologies such
as Wifi and Wimax [14]. By multiple access, we mean several
users can send signals simultaneously over a single wireless
communication channel. In particular, CDMA uses a spread
spectrum technology combined with coding schemes to allow
multiple users on the same physical channel. On the other
side, TDMA has the property of scheduling users in time by
assigning all bandwidth channel capacity to only one user
at a given time slot in order to transmit signals. Although,
these transmission schemes work differently, the underlying
purpose in both of them is nearly the same, i.e., to make
an efficient use of resources such as power and bandwidth
channel capacity of the network. Hybrid transmission schemes
do also exist such as CDMA/TDMA [14]. In this paper,
we use a utility-based framework and formulate a stochastic
resource allocation model for a CDMA/TDMA network. Thus,
we associate for each packet transmitted by a base station, a
utility function depending on the corresponding channel bit
rates and experienced delays according to a CDMA/TDMA
network. Consequently, we maximize the total utility of the
network subject to capacity and packet assignment constraints.
The capacity constraint appears as a technological constraint
in these type of networks since a particular base station can

not transmit packets in more than “M” frames within a given
time slot [11]. We derive a distributionally robust formulation
for this stochastic problem. For this purpose, we first formulate
the problem as a (0-1) stochastic integer linear programming
problem. Next, we transform the stochastic model into an
equivalent deterministic formulation. In particular, we trans-
form the probabilistic constraints using the approach proposed
by [1]. Afterward, we use the deterministic formulation to de-
rive the robust counterpart [16]. This is achieved while taking
into account the set of all possible probability distributions for
the input random parameters. Finally, we compare the optimal
solutions of the stochastic and robust models. Preliminary
numerical comparisons are given.

The paper is organized as follows. In section II, we
provide a brief state of the art concerning resource allocation
in wireless CDMA/TDMA networks, stochastic programming
and robust optimization. Section III presents the stochastic
CDMA/TDMA model under study and its equivalent de-
terministic formulation. Then, in section IV, we derive the
distributionally robust formulation. In section V, we provide
preliminary numerical comparisons. Finally, in section VI, we
conclude the paper.

II. RELATED WORK

Resource allocation for wireless CDMA and TDMA net-
works has been studied separately (see e.g. [5], [12]) and
jointly as well [11]. The latter approach, which we refer
to as hybrid CDMA/TDMA transmission scheme, exploits
delay tolerance of non-real time traffic in order to improve
the use of bandwidth channel capacity of the network [17],
[18]. This is possible since the base stations, which transmit
signals to users, may have the possibility to choose different
subchannels to transmit their signals. The resulting bit rate
improvement is referred to as a multi-user diversity gain.
Due to the inherent random nature of wireless channels in
CDMA/TDMA networks, there have been proposed some few
attempts while considering general stochastic approaches, e.g.,
[19]. However, to the best of our knowledge, none of them
has yet considered stochastic programming as in [7] and/or
distributionally robust optimization [16] approaches to deal
with the inherent uncertainty of the problem.

Stochastic programming (SP) and robust optimization (RO)
are two well known optimization techniques to cope with
mathematical optimization problems involving uncertainty in
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the input parameters. In SP, one often assumes that the proba-
bility distributions are discrete and known [2]. Two well known
scenario SP approaches are the recourse model and the prob-
abilistic constrained approaches [7], [15]. Different from SP,
the RO framework assumes that the input random parameters
lie within a convex uncertainty set and that the robust solutions
must remain feasible for all possible realizations of the input
parameters. Thus, the optimization is performed over the worst
case realization of the input parameters. In compensation, we
obtain robust solutions, which are protected from undesired
fluctuations of the input parameters. In practice, this means that
the objective function provides more conservative solutions.
We refer the reader to [3], [4] for a more general understanding
on RO. In particular, the distributionally robust optimization
approach bridges the gap between the conservatism level of
robust optimization and the stochastic programming approach.
The conservatism can be measured by the loss in optimality
in exchange for a robust solution which is more protected
against uncertainty [3]. This means, the less conservative
the robust solutions are, the better the RO approach. Thus,
the distributionally robust approach optimizes the worst-case
objective over a family of possible distributions. This approach
was pioneered in [6], [9]. In particular, Scarf [6] proposes an
application for a news-vendor problem while in [8], Yue et al.
minimizes the worst case absolute regret for all distributions
with certain mean and variance. In a similar vein, ElGhaoui
et al. [13] proposed worst-case value at risk bounds for a
robust portfolio optimization problem using only bounds on
the means of the assets and their covariance matrix. Similarly,
Natarajan et al. [10] derived a distributionally robust model for
portfolio optimization, where the investor maximizes his worst
case expected utility over a set of ambiguous distributions
described by the knowledge of the mean, covariance and
support information.

In this paper, we propose a (0-1) stochastic integer linear
programming problem for wireless CDMA/TDMA networks.
Next, we transform the stochastic model into an equivalent
deterministic formulation we use to derive a novel distribu-
tionally robust counterpart [16]. This is achieved while taking
into account the set of all possible probability distributions for
the input random parameters.

III. STOCHASTIC FORMULATION

We consider a wireless CDMA/TDMA network composed
of a set of base stations B = {1, .., B} and a set of packets
N = {1, .., N} waiting to be scheduled and transmitted by the
different base stations in B. We assume that the CDMA/TDMA
network supports only non-realtime traffic. In practice, this
means that the system can tolerate packet transmission delays.
We also assume that the system is time slotted with each
slot containing M frames. We consider the following (0-1)
stochastic integer linear programming model for this problem
and denote it hereby P0 as

max
{x,y}

Eξ


N∑
i=1

ui(ξ)yi +
N∑
i=1

B∑
j=1

vij(ξ)xij

 (1)

s.t.: Pξ

{
N∑
i=1

mij(ξ)xij ≤ M

}
≥ 1− α;∀j ∈ B (2)

yi +

B∑
j=1

xij = 1;∀i ∈ N (3)

yi, xij ∈ {0, 1},∀i, j (4)

where the term E{·} denotes mathematical expectation and
P{·} represents a probability constraint which should be
satisfied at least for (1− α)% of the cases where α ∈ (0, 0.5]
represents the risk. The matrix v = v(i, j) represents the utility
gained by the system while transmitting packet i ∈ N through
the base station j ∈ B. Similarly, the vector u = u(i) denotes
the gained achieved by the system when packet i ∈ N is
not transmitted during a particular time slot. This is possible
as we assume non-realtime traffic in the network. Finally,
let matrix m = m(i, j) represent the number of required
frames for transmission of packet i ∈ N by base station
j ∈ B in a particular time slot. In P0, y ∈ {0, 1}N and
x ∈ {0, 1}NB are binary decision variables we define as
follows. Variable yi equals one if packet i is not scheduled
to be transmitted in the current time slot and equals zero
otherwise. Similarly, variable xij equals one if packet i is
scheduled to be transmitted within the current time slot by
the base station j and equals zero otherwise. The objective
function (1) maximizes the total utility of the system while
constraint (2) imposes a maximum number of M frames for
each j ∈ B. Finally, constraint (3) indicates that each packet
i ∈ N must be transmitted or not by a unique base station
in the system. Without loss of generality we assume that the
matrix v = v(ξ) and the vectors u = u(ξ), and m = m(ξ) are
random variables distributed according to a discrete probability
distribution Ω. As such, one may suppose that v = v(ξ),
u = u(ξ) and m = m(ξ) are concentrated on a finite set of
scenarios as vij(ξ) = {v1ij , .., vKij }, ui(ξ) = {u1

i , .., u
K
i } and

mij(ξ) = {m1
ij , ..,m

K
ij } respectively, with probability vector

pT = (p1, .., pK) such that
∑K

k=1 pk = 1 and pk ≥ 0. This
allows us to formulate a deterministic equivalent formulation
for P0 as follows [1]

max
{x,y,z}

K∑
k=1

pk

 N∑
i=1

uk
i yi +

N∑
i=1

B∑
j=1

vkijxij

 (5)

s.t.:
N∑
i=1

mk
ijxij ≤ M + zjkL;∀j ∈ B; k = 1 : K (6)

K∑
k=1

pkzjk ≤ α;∀j ∈ B (7)

yi +
B∑

j=1

xij = 1;∀i ∈ N (8)

yi, xij , zjk ∈ {0, 1},∀i, j, k (9)

where constraints (6)-(7) are the deterministic constraints re-
placing the probabilistic constraint (2) in P0. Hereafter, we
denote by P1 problem (5)-(9).

IV. ROBUST FORMULATION

In this section, we derive a distributionally robust model for
P1. To this purpose, we assume that the probability distribution
of the random vector pT = (p1, .., pK) is not known and that it
can be estimated by some statistical mean from some available

245Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology



historical data. Thus, we consider the maximum likelihood
estimator of the probability vector pT to be the observed
frequency vector.

In order to formulate a robust model for P1, we write its
objective function as follows

min
{x,y}

max
{π∈Hβ}

K∑
k=1

πk

−
N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

 (10)

and the left hand side of constraint (7) as the maximization
problem

max
{π∈Hβ}

K∑
k=1

πkzjk, ∀j (11)

where the set Hβ is defined as

Hβ =

{
πk ≥ 0,∀k :

K∑
k=1

πk = 1,

K∑
k=1

|πk − pk|√
pk

≤ β

}
(12)

and β ∈ [0,∞). Now, let δk = πk − pk, then the inner max
problem in (10) can be written as

max
{δ}

K∑
k=1

(δk + pk)

−
N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

(13)

s.t.
K∑

k=1

|δk|√
pk

≤ β (14)

K∑
k=1

δk = 0 (15)

δk ≥ −pk, k = 1 : K (16)

The associated dual problem is

min
{w1,φ1,v1}

K∑
k=1

pk

−
N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

+

K∑
k=1

pkw
1
k + βφ1 (17)

s.t. φ1 ≥ √
pk

v1 + w1
k −

N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

 ,

∀k (18)

φ1 ≥ −√
pk

v1 + w1
k −

N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

 ,

∀k (19)
w1

k ≥ 0, ∀k (20)

and φ1, v1, w1 are Lagrangian multipliers for constraints (14)-
(16), respectively. Similarly, we obtain a dual formulation for

each j in (11) as follows

min
{w2,φ2,v2}

K∑
k=1

pkzjk +

K∑
k=1

pkw
2
k + βφ2 (21)

s.t. φ2 ≥ √
pk

(
v2 + w2

k + zjk
)
,∀k (22)

φ2 ≥ −√
pk

(
v2 + w2

k + zjk
)
,∀k (23)

w2
k ≥ 0, ∀k (24)

where φ2, v2, w2 are Lagrangian multipliers associated with
its respective primal constraints. Now, replacing these dual
problems in P1 gives rise to the following distributionally
robust formulation we denote by PR

max
{w1,φ1,v1,w2,φ2,v2,x,y,z}

K∑
k=1

pk

 N∑
i=1

uk
i yi +

N∑
i=1

B∑
j=1

vkijxij


−

K∑
k=1

pkw
1
k − βφ1 (25)

s.t.φ1 ≥ √
pk

v1 + w1
k −

N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

 ,

∀k (26)

φ1 ≥ −√
pk

v1 + w1
k −

N∑
i=1

uk
i yi −

N∑
i=1

B∑
j=1

vkijxij

 ,

∀k (27)
w1

k ≥ 0, ∀k (28)
N∑
i=1

mk
ijxij ≤ M + zjkL;∀j ∈ B; k = 1 : K (29)

zjk ∈ {0, 1} ∀j, k (30)
K∑

k=1

pkzjk +

K∑
k=1

pkw
2
k + βφ2 ≤ α, ∀j ∈ B (31)

φ2 ≥ √
pk(zjk + v2 + w2

k), ∀j, k (32)
φ2 ≥ −√

pk(zjk + v2 + w2
k), ∀j, k (33)

w2
k ≥ 0, ∀k (34)

yi +

B∑
j=1

xij = 1;∀i ∈ N (35)

yi, xij , zjk ∈ {0, 1},∀i, j, k (36)

In the next section, we provide numerical comparisons between
P1 and PR. This allows measuring the conservatism level of
PR w.r.t. P1.

V. NUMERICAL RESULTS

In this section, we present preliminary numerical results.
A Matlab program is developed using Cplex 12.3 for solving
P1 and PR. The numerical experiments have been carried out
on a Pentium IV, 1.9 GHz with 2 GB of RAM under windows
XP. The input data is generated as follows. The probability
vectors pT is uniformly distributed in [0,1] such that the
sum is equal to one. The parameter α is set to 0.1. So far,
each entry uk

i , vkij and mk
ij ,∀i, j, k is generated randomly and

uniformly distributed in [0,10], [0,20] and [1,5], respectively.
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The value of M is computed as M =
(∑N

i=1 m
1
i1

)
∗ 0.5. So

far, these random intervals are basically motivated on the range
these parameters might be in realistic CDMA/TDMA systems.
Nevertheless, more realistic input data will be used in a larger
version of this paper.

In Table 1, the columns 1-3 give the size of the instances.
Columns 4-5 provide the average optimal solutions over 25
different sample instances for P1 and PR, respectively. Finally,
column 6 gives the average gaps we compute for each instance
as P1−PR

P1
∗ 100 %. These results are calculated for different

values of β. From Table 1, we mainly observe that the solutions
tend to be less conservative when the instances dimensions
increase. In particular, we observe slight conservative solutions
when the number of packets to be sent by the different base
stations b ∈ B increases. This is an interesting observation
since the number of packets in real CDMA/TDMA networks
is usually larger than the number of required base stations.
Finally, we observe that by increasing the number of scenarios
K in the robust model slightly affects the conservatism level. In

TABLE I. AVERAGE COMPARISONS OVER 25 INSTANCES.

Instance size Avg. Opt. Sol. Avg. GapRN B K P1 PR

β = 5
10 5 10 121.4334 104.9270 13.54 %
20 10 20 245.7756 221.4753 9.87 %
50 10 30 593.6139 554.9500 6.51 %
50 10 40 580.7174 544.7319 6.19 %
100 20 50 1175.4 1128.4 3.99 %

β = 10
10 5 10 120.3395 102.9955 14.37 %
20 10 20 245.1590 215.7783 11.97 %
50 10 30 595.3698 550.1536 7.59 %
50 10 40 582.5017 534.8705 8.17 %
100 20 50 1175.9 1111.1 5.50 %

β = 50
10 5 10 123.6391 106.1063 14.14 %
20 10 20 245.5830 218.0361 11.20 %
50 10 30 594.9709 549.7108 7.60 %
50 10 40 579.8950 530.8381 8.45 %
100 20 50 1174.7 1110.7 5.44 %

β = 500
10 5 10 122.7709 105.1106 14.34 %
20 10 20 245.7271 217.3286 11.52 %
50 10 30 594.5845 545.0882 8.32 %
50 10 40 579.4147 529.8945 8.54 %
100 20 50 1173.8 1105.4 5.82 %

order to see how the parameter β affects the optimal solutions
given by PR, in Figures 1, 2 and 3 we solve a small, a medium
and a large size instance, respectively. These figures present
the same information in their respective horizontal and vertical
axes. In the horizontal axes, we give the value of beta while
in vertical axes, we present the optimal solutions of P1, PR,
and the gaps obtained in each of these figure. These gaps are
computed as P1−PR

P1
∗ 100 %. From these figures, we first

confirm the fact that less conservative gaps are obtained for
larger instances. In figure 1, we obtain a gap between 10 and
15% while in figures 2 and 3, they are between 6 and 8 %,
and 4 and 6 %, respectively. Secondly, that the increase of
parameter β affects the optimal solutions of PR only when
β ∈ [0, 30]. In view of this observation, in figure 4 we solve
a new small size instance for these values of β. This table
presents the same information as for figures 1, 2 and 3. Here,
we mainly observe that the major fluctuations of the optimal
solutions of PR are due to small values of β ∈ [0, 5]. While
small fluctuations are observed for values of β ∈ [5, 30]. For
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Fig. 1. INSTANCE # 1: N = 10, B = 5, K = 10.
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Fig. 2. INSTANCE # 2: N = 50, B = 10, K = 30.

example, when β goes from 0 to 5, we have a conservatism
level gap increment of approximately 9% while for values
of β that goes from 5 to 30, we obtain a gap increment of
approximately 2,5%.

Finally, in figures 1, 2, 3 and 4 we observe similar gaps as
in Table I. We recall that the gaps in these figures are obtained
when using only one sample of the input data in PR. This
reflects, somehow, the accuracy of the gaps obtained with the
proposed distributionally robust model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a distributionally robust for-
mulation for packet transmission allocation in CDMA/TDMA
networks where a utility function depending on channel bit
rates and experienced delays is considered. Consequently, the
total utility of the network subject to capacity and packet
assignment constraints is maximized. To this purpose, we
formulate the problem as a (0-1) stochastic integer linear
programming problem which we transform into an equivalent
deterministic model. Then, we use the deterministic model to
derive the distributionally robust counterpart. This is achieved
while taking into account the set of all possible probability dis-
tributions for the input random parameters. Then, we compared
the optimal solutions of the stochastic and robust models. Pre-
liminary numerical results indicate that the optimal solutions
of the proposed robust model are much less conservative when
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Fig. 3. INSTANCE # 3: N = 100, B = 20, K = 50.
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Fig. 4. INSTANCE # 4: N = 10, B = 5, K = 10.

the size of the instances increase. In particular, we emphasize
the fact that slight conservative solutions are obtained when
the number of packets to be sent by the different base stations
increases w.r.t the number of bases stations. This is very
important result in realistic CDMA/TDMA networks since the
number of required base stations is often lower compared to
the required bit rates throughput of the networks. Finally, we
also highlight that by increasing the number of scenarios K in
the robust model slightly affects the conservatism level. This
is also another interesting result as one may use a much larger
number of scenarios, which would allow approaching more
realistic wireless networks.

As future research, we plan to consider other stochastic
programming approaches while using continuous probability
distributions and more realistic input data for CDMA/TDMA
networks and also for different kinds of wireless networks such
as orthogonal frequency division and space division multiple
access transmissions schemes.
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