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Abstract— Virtualization technology enables resource sharing 

and it can also improve system availability thanks to the 

continuous real-time migration mechanism. Highly available 

Internet Protocol communication systems are still expensive as 

there is no standard solution and customized software 

development is lengthy and expensive. In this paper, we 

analyze the continuous live replication mechanism of Xen 

hypervisor in the context of virtual machine hosting a Voice 

over Internet Protocol server processing both signalization and 

user data. We demonstrate that, nowadays, replication 

mechanism is unsuitable for soft real-time applications. The 

main drawbacks are jitter and packet bursts generated by the 

replication mechanism output buffering. To eliminate this, we 

propose to classify output packets and to let packets with real-

time data bypass the buffering. The results obtained confirm 

that the soft real-time application’s availability can be 

significantly improved by using virtual machine’s live 

replication.  

Keywords-VoIP; system availability; virtualization; live 

replication. 

I. INTRODUCTION 

Voice over Internet Protocol (VoIP) technology [1] is 
becoming omnipresent. Its rich set of services, low cost for 
operators and ease of integration with other technologies are 
the main reasons for its success. However, one of the 
drawbacks is lower availability compared to legacy systems. 
IP networks are designed to be fault tolerant for general use 
cases, for example client-server applications. Telephony is a 
soft real-time application requiring availability equal to 
99.999%, i.e., 5.26 minutes downtime per year. In order to 
achieve such requirements, specific network configuration 
and application design are needed. Replication enabled 
applications are complex and, therefore, expensive; thus, 
other solutions are under research. 

Virtualization is widely used for its advantages such as 
better resource usage, flexibility and scalability. Moreover, it 
can also be employed to improve system availability using 
live migration techniques. The main advantage of 
virtualization consists in the fact that the migration is 
completely transparent for applications. Live migration 
mechanisms are still in development. The main challenges 
include scheduling of virtual machines [2] and network 
bandwidth optimization [3]. Other issues are latency, jitter 
and packet bursts introduced by the replication process itself. 

In this paper, we propose a modification of the network 
buffer used by the replication mechanism. This buffer 
enables saving of all outbound data between two successive 
replication steps to ensure data consistency in case of failure. 
Our proposition consists in network packet inspection and 
classification, where only Transmission Control Protocol 
(TCP) packets [4] are buffered. User Datagram Protocol 
(UDP) and Real-time Transport Protocol (RTP) packets 
[5][6] are forwarded, bypassing the live replication 
buffering. This way, the latency and jitter for RTP packets 
are minimized and the voice quality of calls is improved. Our 
modification minimizes virtualization’s impacts on real-time 
data flows. 

The rest of this paper is organized as follows. Section II 
provides an overview of related work. Section III presents 
the main virtualization principles followed by an analysis of 
virtualization’s impact on voice quality. Section IV describes 
our proposition and outlines a potential implementation. In 
Section V, we present the testbed used and the results 
obtained. Finally, Section VI concludes our work. 

II. RELATED WORK 

The problem of VoIP system’s availability is addressed 
in many proprietary or standardized approaches but none of 
them really fits all real scenarios. In this work, we focus on 
the VoIP server availability in the standard server/client 
architecture; peer-to-peer networks are not taken into 
account in our study. 

A common point of the solutions described below is the 
use of the Internet Protocol (IP) failover mechanism [7]; the 
active server uses a virtual IP address that is taken by the 
backup server when the active one fails. Thanks to that, the 
process is entirely transparent to the clients. 

A. Application Dependent Solutions 

Application level replication is described by A. Gorti [8]. 
The proposed solution requires a specific software 
development, which is expensive and long. Replication 
enabled applications based on software frameworks for high 
availability (e.g., Terracota) are hard to configure and 
maintain. Furthermore, there are several requirements on the 
software architecture such as thread safety [9]. G. 
Kambourakis et al. propose a database-based state sharing 
mechanism [10]. Contexts are saved in a database and the 
replication is done by the database engine. This solution is 
relatively easy to implement as only a database connector 
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needs to be developed instead of a complex replicated 
system preserving data consistency. Nevertheless, the 
architecture remains complex and hard to integrate with 
existing applications. 

A common problem to all application dependent 
solutions is the breakdown of TCP and Transport Layer 
Security (TLS) connections when taking over the IP address. 
These connections can't be migrated without specialized 
operating systems or replication aware clients. 

B. Application-Transparent Solutions 

Application transparent solutions usually require more 
resources, but it is compensated by easier development and 
maintenance of applications. One of the recommended 
methods to ensure service continuity in case of server failure 
is the use of the Domain Name System Service Record (DNS 
SRV) mechanism [11][12]. In this method, a single point of 
failure is the DNS server itself. A secondary DNS server is 
usually present but the timeout and takeover adds some 
seconds to the call establishment. Furthermore, the context 
replication issue is not addressed and thus this solution is 
suitable only for stateless servers.  

Virtualization techniques are nowadays very popular, 
mainly because of their better hardware resources usage. 
These techniques are also employed to facilitate hardware 
maintenance and fault tolerance. A special use case is 
continuous live migration of running Virtual Machine (VM) 
used for high available systems. The principle of the 
continuous live migration is to replicate the primary machine 
state to the backup machine continuously and to start the 
backup machine if the primary one fails. However, this 
technique is resource demanding. It also introduces a 
periodic short interruption necessary for synchronization to 
the primary machine execution. Two ways of machine’s 
replication exist. The first way is based on replay of non-
deterministic events received by the primary machine on the 
backup one [13]. This technique is used for example by 
VMware [14]. The deterministic replay is not adapted to the 
Symmetric Multi Processing (SMP) environments since 
ordered memory access is needed [15]. The second 
machine’s replication approach is based on periodic 
replication of checkpoints, i.e., processor and memory states, 
with a high frequency [16]. This replication method is 
appropriate for SMP environments, but requires more 
bandwidth for the replication process. 

Virtualization also reduces virtual machine 
performances. A detailed analysis of XEN hypervisor’s 
scheduler identifying bottlenecks for media applications is 
presented by M. Lee et al. [17]. Modifications aiming at a 
better adaptation of the XEN scheduler for media 
applications are presented by M. Lee et al. [2]. These two 
works show that virtualization supports performance 
requirements of VoIP servers. Adaptation of virtualized 
environment for high available VoIP servers is proposed by 
D. Patnaik et al. [18], where authors show that real-time 
replication without network buffering performs well enough 
to run a VoIP server. Nevertheless, data consistency isn’t 
preserved without network buffering; primary and backup 
machine states can become desynchronized. The main 

virtualization’s advantage is its transparency at the 
application level, i.e., any VoIP server implementation can 
be used.  

In order to support complex VoIP services, servers are 
composed of many different modules. Therefore, the 
application level replication approach becomes too complex 
and security requirements are hard to meet [9]. On the other 
hand, the migration of virtualized machines is transparent at 
the application level and preserves TCP/TLS connections. 

III. PROBLEM ANALYSIS 

Virtualization [19] is a new challenging mechanism and 
its use for real-time and multimedia applications is being 
actively investigated by researchers. In our study, we focused 
on network metrics such as jitter and burst generation, as 
these aspects are strengthened by the replication mechanism 
itself. 

A. Virtualization Basics 

Virtualization allows one or more virtual machines to run 
simultaneously on one hardware platform. Hardware sharing 
is ensured by a specific layer between the hardware and 
virtualized machines called the hypervisor. Each machine 
disposes of several resources that are attributed by the 
hypervisor and the machine can be unaware of being 
virtualized. Hypervisors often allow migration of virtual 
machines between different hardware servers in a shutdown 
state. Current hypervisor implementations improved the 
migration mechanisms and enable a real-time migration 
without virtual machine shutdown. This approach is called 
live migration. The live migration is useful to change the 
server hosting the VM to obtain more resources or to enable 
hardware maintenance. Another usage is to build high 
availability systems. The live migration process can be 
described as follows. The virtual machine execution is 
paused by the hypervisor; the virtual machine’s state 
(including memory content and processor state) is transferred 
to the backup server where the virtual machine is resumed. 

B. Live Migration 

To overcome hardware faults, live migration has been 
improved to support continuous live migration. This type of 
migration allows immediate resuming of a backup virtual 
machine when the primary server goes down or becomes 
unreachable. The execution of the primary virtual machine is 
divided into small periods of time and the state of the 
primary machine is entirely replicated on the secondary 
server at the end of each period. These periods are called 
epochs. The backup machine on the secondary server waits 
in a paused state. The replication period depends on the 
machine purpose and typically ranges from 40ms to 200ms 
[16]. In case of failure, the backup machine on the secondary 
server is resumed at the last completed checkpoint. This 
means that a packet loss will be observed from the user’s 
perspective. 

C. Data Consistency 

The challenge of live migration mechanism is to ensure 
data consistency in case of primary server failure. To 
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minimize the interruption and to preserve performances, the 
replication is being done continuously. A synchronization 
checkpoint ensuring the consistency is introduced at the end 
of each replication cycle. Synchronization checkpoint 
consists of stopping the execution, synchronization and 
consistency verification and resuming the execution [16].  

 

Figure 1.  Network buffering during continuous live migration. 

To integrate such a system into the real environment, 
network outputs need to be saved in a buffer between each 
checkpoint and released once the state of virtual machine is 
successfully replicated on the backup server. This buffering 
process introduces jitter and packets burst. This mechanism 
is depicted in Fig. 1. Although these events can be tolerated 
in interactive client/server applications, it is a significant 
issue for real-time applications such as VoIP services. In 
certain cases, the buffering impact can be accepted for 
signalization, but needs to be definitively eliminated for user 
data like RTP flows. 

IV. PROPOSED SOLUTION 

This section details the proposed solution to the problem 
described above, including a possible way of its 
implementation. 

A. Principle 

Current replication implementation buffers all outgoing 
packets (signaling, data). The buffering of real-time transport 
protocol packets has a negative impact on real-time 
applications. Thus, the replication mechanism needs to be 
enhanced by inspecting packets and classifying them in two 
categories: i) packets that need to be buffered and ii) packets 
that can be sent without being buffered. As we focus on the 
VoIP service, we simplify this classification as follows. All 
TCP packets are buffered in order to ensure TCP state 
consistency and to avoid signaling packet loss when using 
TCP or TLS protocol. Non-TCP packets are sent to the 
network without any processing by hypervisor. This 
approach minimizes a negative impact on network 
forwarding such as latency increase, jitter introduction or 
burst generation. The classification needs to be refined to 
match only packets with real-time data. 

B. Implementation 

In our testbed, we use the latest XEN hypervisor version 
4.2-unstable [20]. A server with XEN hypervisor includes 
the following components: 

• XEN hypervisor. 

• Domain 0 – the XEN’s terminology for privileged 
domain with direct hardware access run by the 
hypervisor to manage the server and control other 
virtual machines. 

• Domain U – the XEN’s terminology for unprivileged 
domains hosting virtualized machines. 

The XEN hypervisor live migration implementation is 
provided by Remus project [16]. Remus provides fault 
detection, virtual machine state (memory and processor state) 
replication and network buffering. The network buffer 
implementation is based on Linux traffic control together 
with Intermediate Functional Block [21]. This component 
allows ingress traffic queuing. The traffic sent by virtual 
machines is buffered at the Domain 0. Standard Linux traffic 
control tools are used to redirect all incoming traffic from the 
replicated machine to the buffer. We analyze all passing 
packets and redirect to the buffer only TCP packets. The 
traffic classification can be done directly by the Linux 
kernel. Thus, the kernel code doesn’t need to be modified. 
Our implementation proposal consists of the following 3 
steps: 

• Packet classification using Linux packet inspection. 

• Introduction of redirection rules to buffer only non-
real time packets. 

• Real-time packets are transmitted without any 
buffering. 

V. OBTAINED RESULTS 

This section presents the results of the measurements 
performed. 

A. Testbed Description 

The testbed platform with low performance machines 
and 100 Mbit/s network switch is considered. One server 
includes a double core Intel Pentium-M processor running at 
1.8 GHz (3 GB RAM), whereas the second server is built on 
a single core AMD Duron processor running at 900 MHz (1 
GB RAM). Both servers are running XEN hypervisor, 
version 4.2-unstable and Linux Ubuntu 12.04 [22] with 
3.2.0-24-pae kernel in Domain 0 and the same kernel in 
Domain U. Fig. 2 illustrates the testbed network 
configuration. Additionally, Freeswitch [23] version 1.0.7 as 
a SIP (Session Initiation Protocol) server is used together 
with one SIP VoIP phone and one SIP softphone. The voice 
signal processing is done using G.711 A-law codec with 20 
ms packetization time (ptime). 

 

Figure 2.  Testbed configuration. 
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B. Jitter calculation 

As there is no packet loss except during the effective 
migration, we consider jitter values to evaluate the impact of 
virtualization. Jitter calculation is implemented as described 
in [24]. It is a first-order estimator with noise reduction using 
a gain parameter. 

C. Virtualization Impact 

Figs. 2 to 6 show the jitter observed under different 
conditions. The horizontal axes represent time and vertical 
axes jitter. As shown in Fig. 3, when running a SIP server 
without virtualization, the jitter is about 100µs with a 
minimal variation. Performances of Freeswitch running on a 
virtualized machine (Fig. 4) are not as good as without the 
virtualization, but still lower than 500µs, which is usually the 
limit in the Service Level Agreement among operators. 

D. Live Replication Impact 

Fig. 5 illustrates the impact of continuous live migration 
process on the machine performances. Without any 
modifications, network buffering introduces an important 
jitter and packet bursts at each checkpoint. A peak can be 
observed approximately every 400 ms, which equals to the 
checkpoint interval.  

 
Figure 3.  Jitter without virtualization. 

 

Figure 4.  Jitter measured calling via a virtualized Freeswitch server. 

 

Figure 5.  Jitter using unmodified replication mechanism. 

 

Figure 6.  Jitter using modified replication mechanism. 

These peaks correspond to a burst of data released from 
the buffer. With a 20 ms packetization time, each peak 
represents abound 20 RTP packets by call and direction. The 
observed degradation of network characteristics deteriorates 
quality of VoIP calls. Such packet bursts can overload 
network equipments and cause packet loss. The impact of the 
continuous live replication is studied in more detail in [25]. 

Our proposal’s impact is shown in Fig. 6. Contrary to the 
unmodified replication mechanism, RTP packets are 
forwarded as long as the virtual machine runs. The observed 
jitter is more important with continuous live replication 
because of performance impact generated by the continuous 
VM state replication. This effect is emphasized by the low-
performance CPU. Execution interruptions can be observed 
every 300ms, which corresponds to the configured 
checkpointing interval. 

The considered testbed is composed of relatively low 
performance machines and a single 100 Mbit/s network, 
while a 1 Gbit/s network dedicated to replication is 
recommended. Used low performance testbed allows us to 
verify the behavior of the proposed modification with limited 
resources.  
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Measured jitter and interruption length are therefore quite 
high, but fully rectified by jitter buffer and the impact on the 
call quality is unnoticeable from the user’s point of view. 
Note that the calculation method defined in [24] considers 
the previous packet jitter; therefore we can observe a 
descending trend following each interruption.  

 

 

Figure 7.  Jitter and packet loss during the migration following a failure. 

The objective of the continuous live migration is to 
maintain established calls and connections in case of 
hardware or network failure. Once a fault is detected, the 
replicated machine resumes on the backup server without 
call interruption. To announce the new location of the virtual 
IP address, a gratuitous Address Resolution Protocol (ARP) 
request is used. The jitter observed during the migration is 
depicted in Fig. 7. On the left side we observe the system in 
a stable state, continuous VM replication running. The 
failure of the primary server is represented by a period 
without packets, which lasts about 1s. The detection of the 
primary server’s failure, generation of the gratuitous ARP 
and its processing by network components is time 
consuming. In our configuration it’s almost 1s, but the time 
strongly depends on network hardware. Users of the VoIP 
service perceive the failover as a short interruption. As the 
second virtual machine runs without continuous live 
replication, the jitter observed after the migration is stable 
without interruption. The descending trend is due to the used 
calculation method discussed above. 

VI. CONCLUSION AND FUTURE WORK 

Recent VoIP systems are complex and often 
interconnected with external services. The possibility of 
implementing a high availability system with no impact on 
the application is therefore a very challenging task. In this 
article, we study the jitter as a major drawback of virtual 
machine’s live migration. We propose a modification to 
improve networking properties of this mechanism without 
impact on data consistency. The proposition is easy to 
implement and its impact on the system performance is 
negligible compared to the unmodified system. Our 
measurements demonstrate that the modification is beneficial 

for VoIP and other soft real-time applications. Contrary to 
the conventional implementation, our implementation does 
not introduce any jitter to the real-time packet flow except 
the jitter caused by the interruption required to synchronize 
replicated virtual machines. 

The remaining jitter is caused by the interruption 
necessary for checkpointing. In our future work, we will 
focus on reducing the necessary interruption time. The 
optimal length of checkpointing interval is another point that 
is worth to be investigated as well as better packet 
classification. 
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