
Live Replication of Virtualized VoIP Servers

Jiri Hlavacek, Robert Bestak

Department of Telecommunications

Faculty of Electrical Engineering, CVUT Prague

Prague, Czech Republic

e-mail: hlavaji1@fel.cvut.cz, robert.bestak@fel.cvut.cz

Abstract— Virtualization technology enables resource sharing

and it can also improve system availability thanks to the

continuous real-time migration mechanism. Highly available

Internet Protocol communication systems are still expensive as

there is no standard solution and customized software

development is lengthy and expensive. In this paper, we

analyze the continuous live replication mechanism of Xen

hypervisor in the context of virtual machine hosting a Voice

over Internet Protocol server processing both signalization and

user data. We demonstrate that, nowadays, replication

mechanism is unsuitable for soft real-time applications. The

main drawbacks are jitter and packet bursts generated by the

replication mechanism output buffering. To eliminate this, we

propose to classify output packets and to let packets with real-

time data bypass the buffering. The results obtained confirm

that the soft real-time application’s availability can be

significantly improved by using virtual machine’s live

replication.

Keywords-VoIP; system availability; virtualization; live

replication.

I. INTRODUCTION

Voice over Internet Protocol (VoIP) technology [1] is
becoming omnipresent. Its rich set of services, low cost for
operators and ease of integration with other technologies are
the main reasons for its success. However, one of the
drawbacks is lower availability compared to legacy systems.
IP networks are designed to be fault tolerant for general use
cases, for example client-server applications. Telephony is a
soft real-time application requiring availability equal to
99.999%, i.e., 5.26 minutes downtime per year. In order to
achieve such requirements, specific network configuration
and application design are needed. Replication enabled
applications are complex and, therefore, expensive; thus,
other solutions are under research.

Virtualization is widely used for its advantages such as
better resource usage, flexibility and scalability. Moreover, it
can also be employed to improve system availability using
live migration techniques. The main advantage of
virtualization consists in the fact that the migration is
completely transparent for applications. Live migration
mechanisms are still in development. The main challenges
include scheduling of virtual machines [2] and network
bandwidth optimization [3]. Other issues are latency, jitter
and packet bursts introduced by the replication process itself.

In this paper, we propose a modification of the network
buffer used by the replication mechanism. This buffer
enables saving of all outbound data between two successive
replication steps to ensure data consistency in case of failure.
Our proposition consists in network packet inspection and
classification, where only Transmission Control Protocol
(TCP) packets [4] are buffered. User Datagram Protocol
(UDP) and Real-time Transport Protocol (RTP) packets
[5][6] are forwarded, bypassing the live replication
buffering. This way, the latency and jitter for RTP packets
are minimized and the voice quality of calls is improved. Our
modification minimizes virtualization’s impacts on real-time
data flows.

The rest of this paper is organized as follows. Section II
provides an overview of related work. Section III presents
the main virtualization principles followed by an analysis of
virtualization’s impact on voice quality. Section IV describes
our proposition and outlines a potential implementation. In
Section V, we present the testbed used and the results
obtained. Finally, Section VI concludes our work.

II. RELATED WORK

The problem of VoIP system’s availability is addressed
in many proprietary or standardized approaches but none of
them really fits all real scenarios. In this work, we focus on
the VoIP server availability in the standard server/client
architecture; peer-to-peer networks are not taken into
account in our study.

A common point of the solutions described below is the
use of the Internet Protocol (IP) failover mechanism [7]; the
active server uses a virtual IP address that is taken by the
backup server when the active one fails. Thanks to that, the
process is entirely transparent to the clients.

A. Application Dependent Solutions

Application level replication is described by A. Gorti [8].
The proposed solution requires a specific software
development, which is expensive and long. Replication
enabled applications based on software frameworks for high
availability (e.g., Terracota) are hard to configure and
maintain. Furthermore, there are several requirements on the
software architecture such as thread safety [9]. G.
Kambourakis et al. propose a database-based state sharing
mechanism [10]. Contexts are saved in a database and the
replication is done by the database engine. This solution is
relatively easy to implement as only a database connector

277Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

needs to be developed instead of a complex replicated
system preserving data consistency. Nevertheless, the
architecture remains complex and hard to integrate with
existing applications.

A common problem to all application dependent
solutions is the breakdown of TCP and Transport Layer
Security (TLS) connections when taking over the IP address.
These connections can't be migrated without specialized
operating systems or replication aware clients.

B. Application-Transparent Solutions

Application transparent solutions usually require more
resources, but it is compensated by easier development and
maintenance of applications. One of the recommended
methods to ensure service continuity in case of server failure
is the use of the Domain Name System Service Record (DNS
SRV) mechanism [11][12]. In this method, a single point of
failure is the DNS server itself. A secondary DNS server is
usually present but the timeout and takeover adds some
seconds to the call establishment. Furthermore, the context
replication issue is not addressed and thus this solution is
suitable only for stateless servers.

Virtualization techniques are nowadays very popular,
mainly because of their better hardware resources usage.
These techniques are also employed to facilitate hardware
maintenance and fault tolerance. A special use case is
continuous live migration of running Virtual Machine (VM)
used for high available systems. The principle of the
continuous live migration is to replicate the primary machine
state to the backup machine continuously and to start the
backup machine if the primary one fails. However, this
technique is resource demanding. It also introduces a
periodic short interruption necessary for synchronization to
the primary machine execution. Two ways of machine’s
replication exist. The first way is based on replay of non-
deterministic events received by the primary machine on the
backup one [13]. This technique is used for example by
VMware [14]. The deterministic replay is not adapted to the
Symmetric Multi Processing (SMP) environments since
ordered memory access is needed [15]. The second
machine’s replication approach is based on periodic
replication of checkpoints, i.e., processor and memory states,
with a high frequency [16]. This replication method is
appropriate for SMP environments, but requires more
bandwidth for the replication process.

Virtualization also reduces virtual machine
performances. A detailed analysis of XEN hypervisor’s
scheduler identifying bottlenecks for media applications is
presented by M. Lee et al. [17]. Modifications aiming at a
better adaptation of the XEN scheduler for media
applications are presented by M. Lee et al. [2]. These two
works show that virtualization supports performance
requirements of VoIP servers. Adaptation of virtualized
environment for high available VoIP servers is proposed by
D. Patnaik et al. [18], where authors show that real-time
replication without network buffering performs well enough
to run a VoIP server. Nevertheless, data consistency isn’t
preserved without network buffering; primary and backup
machine states can become desynchronized. The main

virtualization’s advantage is its transparency at the
application level, i.e., any VoIP server implementation can
be used.

In order to support complex VoIP services, servers are
composed of many different modules. Therefore, the
application level replication approach becomes too complex
and security requirements are hard to meet [9]. On the other
hand, the migration of virtualized machines is transparent at
the application level and preserves TCP/TLS connections.

III. PROBLEM ANALYSIS

Virtualization [19] is a new challenging mechanism and
its use for real-time and multimedia applications is being
actively investigated by researchers. In our study, we focused
on network metrics such as jitter and burst generation, as
these aspects are strengthened by the replication mechanism
itself.

A. Virtualization Basics

Virtualization allows one or more virtual machines to run
simultaneously on one hardware platform. Hardware sharing
is ensured by a specific layer between the hardware and
virtualized machines called the hypervisor. Each machine
disposes of several resources that are attributed by the
hypervisor and the machine can be unaware of being
virtualized. Hypervisors often allow migration of virtual
machines between different hardware servers in a shutdown
state. Current hypervisor implementations improved the
migration mechanisms and enable a real-time migration
without virtual machine shutdown. This approach is called
live migration. The live migration is useful to change the
server hosting the VM to obtain more resources or to enable
hardware maintenance. Another usage is to build high
availability systems. The live migration process can be
described as follows. The virtual machine execution is
paused by the hypervisor; the virtual machine’s state
(including memory content and processor state) is transferred
to the backup server where the virtual machine is resumed.

B. Live Migration

To overcome hardware faults, live migration has been
improved to support continuous live migration. This type of
migration allows immediate resuming of a backup virtual
machine when the primary server goes down or becomes
unreachable. The execution of the primary virtual machine is
divided into small periods of time and the state of the
primary machine is entirely replicated on the secondary
server at the end of each period. These periods are called
epochs. The backup machine on the secondary server waits
in a paused state. The replication period depends on the
machine purpose and typically ranges from 40ms to 200ms
[16]. In case of failure, the backup machine on the secondary
server is resumed at the last completed checkpoint. This
means that a packet loss will be observed from the user’s
perspective.

C. Data Consistency

The challenge of live migration mechanism is to ensure
data consistency in case of primary server failure. To

278Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

minimize the interruption and to preserve performances, the
replication is being done continuously. A synchronization
checkpoint ensuring the consistency is introduced at the end
of each replication cycle. Synchronization checkpoint
consists of stopping the execution, synchronization and
consistency verification and resuming the execution [16].

Figure 1. Network buffering during continuous live migration.

To integrate such a system into the real environment,
network outputs need to be saved in a buffer between each
checkpoint and released once the state of virtual machine is
successfully replicated on the backup server. This buffering
process introduces jitter and packets burst. This mechanism
is depicted in Fig. 1. Although these events can be tolerated
in interactive client/server applications, it is a significant
issue for real-time applications such as VoIP services. In
certain cases, the buffering impact can be accepted for
signalization, but needs to be definitively eliminated for user
data like RTP flows.

IV. PROPOSED SOLUTION

This section details the proposed solution to the problem
described above, including a possible way of its
implementation.

A. Principle

Current replication implementation buffers all outgoing
packets (signaling, data). The buffering of real-time transport
protocol packets has a negative impact on real-time
applications. Thus, the replication mechanism needs to be
enhanced by inspecting packets and classifying them in two
categories: i) packets that need to be buffered and ii) packets
that can be sent without being buffered. As we focus on the
VoIP service, we simplify this classification as follows. All
TCP packets are buffered in order to ensure TCP state
consistency and to avoid signaling packet loss when using
TCP or TLS protocol. Non-TCP packets are sent to the
network without any processing by hypervisor. This
approach minimizes a negative impact on network
forwarding such as latency increase, jitter introduction or
burst generation. The classification needs to be refined to
match only packets with real-time data.

B. Implementation

In our testbed, we use the latest XEN hypervisor version
4.2-unstable [20]. A server with XEN hypervisor includes
the following components:

• XEN hypervisor.

• Domain 0 – the XEN’s terminology for privileged
domain with direct hardware access run by the
hypervisor to manage the server and control other
virtual machines.

• Domain U – the XEN’s terminology for unprivileged
domains hosting virtualized machines.

The XEN hypervisor live migration implementation is
provided by Remus project [16]. Remus provides fault
detection, virtual machine state (memory and processor state)
replication and network buffering. The network buffer
implementation is based on Linux traffic control together
with Intermediate Functional Block [21]. This component
allows ingress traffic queuing. The traffic sent by virtual
machines is buffered at the Domain 0. Standard Linux traffic
control tools are used to redirect all incoming traffic from the
replicated machine to the buffer. We analyze all passing
packets and redirect to the buffer only TCP packets. The
traffic classification can be done directly by the Linux
kernel. Thus, the kernel code doesn’t need to be modified.
Our implementation proposal consists of the following 3
steps:

• Packet classification using Linux packet inspection.

• Introduction of redirection rules to buffer only non-
real time packets.

• Real-time packets are transmitted without any
buffering.

V. OBTAINED RESULTS

This section presents the results of the measurements
performed.

A. Testbed Description

The testbed platform with low performance machines
and 100 Mbit/s network switch is considered. One server
includes a double core Intel Pentium-M processor running at
1.8 GHz (3 GB RAM), whereas the second server is built on
a single core AMD Duron processor running at 900 MHz (1
GB RAM). Both servers are running XEN hypervisor,
version 4.2-unstable and Linux Ubuntu 12.04 [22] with
3.2.0-24-pae kernel in Domain 0 and the same kernel in
Domain U. Fig. 2 illustrates the testbed network
configuration. Additionally, Freeswitch [23] version 1.0.7 as
a SIP (Session Initiation Protocol) server is used together
with one SIP VoIP phone and one SIP softphone. The voice
signal processing is done using G.711 A-law codec with 20
ms packetization time (ptime).

Figure 2. Testbed configuration.

100Mbps

Ethernet Switch

SIP phone
PC Softphone

Packet sniffer

Server with

virtualized

SIP server

Backup server

with virtualized

replicated SIP server

Epoch 3Epoch 2Epoch 1

Buffering S
y
n
c
h

ro
n

iz
a

ti
o
n

S
y
n
c
h

ro
n

iz
a

ti
o
n

S
y
n

c
h

ro
n
iz

a
ti
o

n

Execution time

Running Running RunningStop Stop Stop

Network output

buffer

Network output

buffer

Network output

buffer

Data are released to the network after successful synchronization

Buffering Buffering

Output

network

data

Epoch 3Epoch 2Epoch 1

Buffering S
y
n
c
h

ro
n

iz
a

ti
o
n

S
y
n
c
h

ro
n

iz
a

ti
o
n

S
y
n

c
h

ro
n
iz

a
ti
o

n

Execution time

Running Running RunningStop Stop Stop

Network output

buffer

Network output

buffer

Network output

buffer

Data are released to the network after successful synchronization

Buffering Buffering

Output

network

data

279Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

B. Jitter calculation

As there is no packet loss except during the effective
migration, we consider jitter values to evaluate the impact of
virtualization. Jitter calculation is implemented as described
in [24]. It is a first-order estimator with noise reduction using
a gain parameter.

C. Virtualization Impact

Figs. 2 to 6 show the jitter observed under different
conditions. The horizontal axes represent time and vertical
axes jitter. As shown in Fig. 3, when running a SIP server
without virtualization, the jitter is about 100µs with a
minimal variation. Performances of Freeswitch running on a
virtualized machine (Fig. 4) are not as good as without the
virtualization, but still lower than 500µs, which is usually the
limit in the Service Level Agreement among operators.

D. Live Replication Impact

Fig. 5 illustrates the impact of continuous live migration
process on the machine performances. Without any
modifications, network buffering introduces an important
jitter and packet bursts at each checkpoint. A peak can be
observed approximately every 400 ms, which equals to the
checkpoint interval.

Figure 3. Jitter without virtualization.

Figure 4. Jitter measured calling via a virtualized Freeswitch server.

Figure 5. Jitter using unmodified replication mechanism.

Figure 6. Jitter using modified replication mechanism.

These peaks correspond to a burst of data released from
the buffer. With a 20 ms packetization time, each peak
represents abound 20 RTP packets by call and direction. The
observed degradation of network characteristics deteriorates
quality of VoIP calls. Such packet bursts can overload
network equipments and cause packet loss. The impact of the
continuous live replication is studied in more detail in [25].

Our proposal’s impact is shown in Fig. 6. Contrary to the
unmodified replication mechanism, RTP packets are
forwarded as long as the virtual machine runs. The observed
jitter is more important with continuous live replication
because of performance impact generated by the continuous
VM state replication. This effect is emphasized by the low-
performance CPU. Execution interruptions can be observed
every 300ms, which corresponds to the configured
checkpointing interval.

The considered testbed is composed of relatively low
performance machines and a single 100 Mbit/s network,
while a 1 Gbit/s network dedicated to replication is
recommended. Used low performance testbed allows us to
verify the behavior of the proposed modification with limited
resources.

Jitter

Jitter

Jitter

Time

Time

Time

Jitter

Time

280Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Measured jitter and interruption length are therefore quite
high, but fully rectified by jitter buffer and the impact on the
call quality is unnoticeable from the user’s point of view.
Note that the calculation method defined in [24] considers
the previous packet jitter; therefore we can observe a
descending trend following each interruption.

Figure 7. Jitter and packet loss during the migration following a failure.

The objective of the continuous live migration is to
maintain established calls and connections in case of
hardware or network failure. Once a fault is detected, the
replicated machine resumes on the backup server without
call interruption. To announce the new location of the virtual
IP address, a gratuitous Address Resolution Protocol (ARP)
request is used. The jitter observed during the migration is
depicted in Fig. 7. On the left side we observe the system in
a stable state, continuous VM replication running. The
failure of the primary server is represented by a period
without packets, which lasts about 1s. The detection of the
primary server’s failure, generation of the gratuitous ARP
and its processing by network components is time
consuming. In our configuration it’s almost 1s, but the time
strongly depends on network hardware. Users of the VoIP
service perceive the failover as a short interruption. As the
second virtual machine runs without continuous live
replication, the jitter observed after the migration is stable
without interruption. The descending trend is due to the used
calculation method discussed above.

VI. CONCLUSION AND FUTURE WORK

Recent VoIP systems are complex and often
interconnected with external services. The possibility of
implementing a high availability system with no impact on
the application is therefore a very challenging task. In this
article, we study the jitter as a major drawback of virtual
machine’s live migration. We propose a modification to
improve networking properties of this mechanism without
impact on data consistency. The proposition is easy to
implement and its impact on the system performance is
negligible compared to the unmodified system. Our
measurements demonstrate that the modification is beneficial

for VoIP and other soft real-time applications. Contrary to
the conventional implementation, our implementation does
not introduce any jitter to the real-time packet flow except
the jitter caused by the interruption required to synchronize
replicated virtual machines.

The remaining jitter is caused by the interruption
necessary for checkpointing. In our future work, we will
focus on reducing the necessary interruption time. The
optimal length of checkpointing interval is another point that
is worth to be investigated as well as better packet
classification.

ACKNOWLEDGMENT

This research work was supported by the Grant Agency
of the Czech Technical University in Prague, grant no.
SGS13/199/OHK3/3T/13.

REFERENCES

[1] P. Mehta and S. Udani, “Voice over IP”, IEEE Potentials, vol.
20, issue 4, November 2001, pp. 36-40.

[2] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S.
Yajnik, “Supporting soft real-time tasks in the Xen
hypervisor,” VEE 2010, Pittsburgh, PA, March, 2010, pp. 97-
108.

[3] Ch. Clark et al., “Live migration of virtual machines,” In
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, vol. 2,
USENIX Association, Berkeley, CA, USA, 2005, pp. 273-
286.

[4] J. Postel, “Transmission Control Protocol”, RFC 793, Internet
Engineering Task Force, September 1981.

[5] J. Postel, “User Datagram Protocol”, RFC 768, Internet
Engineering Task Force, August 1980.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: A Transport Protocol for Real-Time Applications”,
RFC 3550, Internet Engineering Task Force, July 2003.

[7] K. Singh and H. Schulzrinne, “Failover, load sharing and
server architecture in SIP telephony,” Comput. Commun. 30,
5, March 2007, pp. 927-942.

[8] A. Gorti, “A fault tolerant VoIP implementation based on
open standards,” In Proceedings of the IEEE Dependable
Computing Conference, Dependable Computing Conference,
2006, pp. 35–38.

[9] J. Hlavacek and R. Bestak, “Improvements in the availability
of SIP networks,” In Proceedings of the 2010 Networking and
Electronic Commerce Research Conference, Dallas, TX:
American Telecommunications Systems Management
Association Inc., 2010, pp. 109-117.

[10] G. Kambourakis et al., “High availability for SIP: Solutions
and real-time measurement performance evaluation,”
International Journal of Disaster Recovery and Business
Continuity, vol. 1, no. 1, 2010, pp. 11-30.

[11] J. Rosenberg and H. Schulzrinne, “Session Initiation Protocol
(SIP): Locating SIP servers,” RFC3263, Internet Engineering
Task Force, June 2002.

[12] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for
specifying the location of services (DNS SRV),” RFC2782,
Internet Engineering Task Force, February 2000.

[13] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design
of a practical system for fault-tolerant virtual machines,”
SIGOPS Operating Systems Review, vol. 44, issue 4,
December 2010, pp. 30-39.

[14] VMware, VMware Incorporation, http://www.vmware.com,
[retrieved: March, 2013].

Jitter

Time

281Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

[15] G. Kambourakis et al., “Hardware and Software Approaches
for Deterministic Multi-Processor Replay of Concurrent
Programs,” In Intel Technology Journal, vol. 13, issue 4,
2009, pp. 20–41.

[16] B. Cully et al., “Remus: High availability via asynchronous
virtual machine replication,” In Proc. Symp. Network
Systems Design and Implementation (NSDI), 2008, pp. 161–
174.

[17] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S.
Yajnik, “XenTune: Detecting Xen Scheduling Bottlenecks for
Media Applications,” IEEE Globecom 2010
(Communications Software, Services and Multimedia
Applications Symposium), Miami, FL, Dec 6-10, 2010, pp. 1-
6.

[18] D. Patnaik, A. Bijlani, and V. K. Singh, “Towards high-
availability for IP telephony using virtual machines,” IEEE
4th International Conference on Internet Multimedia Services
Architecture and Application (IMSAA), December 2010, pp.
1-6.

[19] S. Crosby and D. Brown, “The Virtualization Reality”,
Queue, vol.4, issue 10, December 2006, pp. 34-41.

[20] XEN, Xen hypervisor, http://xen.org, [retrieved: March,
2013].

[21] IFB, The Intermediate Functional Block device,
http://www.linuxfoundation.org/collaborate/workgroups/netw
orking/ifb, [retrieved: March, 2013].

[22] Ubuntu, Open Source Linux operating system,
http://www.ubuntu.com, [retrieved: April, 2013].

[23] Freeswitch, Open Source Multi-Protocol Soft Switch,
http://www.freeswitch.org, [retrieved: April, 2013].

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
"RTP: A transport protocol for real-time applications," RFC
3550, Internet Engineering Task Force, July 2003.

[25] J. Hlavacek and R. Bestak, “Configuration of Live Migration
for VoIP Applications,” In Proceedings of 15th Mechatronika
2012, Praha, Czech Technical University in Prague, 2012, pp.
187-190.

282Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

