
The Impact of Requirements on Software Quality Across Three Product

Generations

John Terzakis

Intel

Hudson, MA USA

john.terzakis@intel.com

Abstract— In a previous case study, we presented data

demonstrating the impact that a well-written and well-

reviewed set of requirements had on software defects and other

quality indicators between two generations of an Intel product.

Quality indicators for the second software product all

improved dramatically even with the increased complexity of

the newer product. This paper will recap that study and then

present data from a subsequent Intel case study revealing that

quality enhancements continued on the third generation of the

product. Key product differentiators included changes to

operate with a new Intel processor, the introduction of new

hardware platforms and the addition of approximately fifty

new features. Software development methodologies were

nearly identical, with only the change to a continuous build

process for source code check-in added. Despite the enhanced

functionality and complexity in the third generation software,

requirements defects, software defects, software sightings,

feature commit vs. delivery (feature variance), defect closure

efficiency rates, and number of days from project commit to

customer release all improved from the second to the third

generation of the software.

Keywords-requirements specification; requirements defects;

reviews; software defects; software quality; multi-generational

software products.

I. INTRODUCTION

This paper is a continuation of an earlier short paper [1]
that presented quality indicator data from a case study of two
generations of an Intel software product. The prior case
study compared the quality metrics for a first generation
software product (“Gen 1”) developed without a
requirements specification (e.g., Product Requirements
Document or Software Requirements Specification) versus a
second generation product (“Gen 2”) developed with one as
its foundation. This paper includes the background and
validation results from a third generation product (“Gen 3”)
that was designed and coded utilizing the set of requirements
for the Gen 2 product as its basis. All three products were
developed using traditional (i.e., waterfall) software
development methodologies.

This paper is organized into eight sections. Section I
provides an introduction. Section II gives the backgrounds
on the three product generations. Section III presents the
requirements defect rates in the three product requirements
documents by revision. Section IV analyzes the predicted
defect potential for the three products. Section V presents
the test results for the first versus the second generation
products. Section VI presents the test results for the second

versus the third generation products. Section VII describes
conclusions based on the data. Section VIII discusses
possible future work.

II. PRODUCT BACKGROUNDS

The requirements for Gen 1 that existed were scattered
across a variety of documents, spreadsheets, emails and web
sites and lacked a consistent syntax. They were under lax
revision and change control, which made determining the
most current set of requirements challenging. There was no
overall requirements specification; hence reviews were
sporadic and unstructured. Many of the legacy features were
not documented. As a result, testing had many gaps due to
missing and incorrect information.

The Gen 1 product was targeted to run on both desktop
and laptop platforms running on an Intel processor (CPU).
Code was developed across multiple sites in the United
States and other countries. Integration of the code bases and
testing occurred in the U.S. The Software Development
Lifecycle (SDLC) was approximately two years.

After analyzing the software defect data from the Gen 1
release, the Gen 2 team identified requirements as a key
improvement area. A requirements Subject Matter Expert
(SME) was assigned to assist the team in the elicitation,
analysis, writing, review and management of the
requirements for the second generation product. The SME
developed a plan to address three critical requirements areas:
a central repository, training, and reviews. A commercial
Requirements Management Tool (RMT) was used to store
all product requirements in a database. The data model for
the requirements was based on the Planguage keywords
created by Tom Gilb [2]. The RMT was configured to
generate a formatted Product Requirements Document
(PRD) under revision control. Architecture specifications,
design documents and test cases were developed from this
PRD. The SME provided training on best practices for
writing requirements, including a standardized syntax,
attributes of well written requirements and Planguage to the
primary authors (who were all located in United States).
Once the training was complete, the primary author
submitted early samples of his requirements to the SME for
review and constructive feedback. The requirements were
then rigorously reviewed by both technical content experts
and the SME at each major revision of the PRD.

The Gen 2 software product shared many of the same
characteristics of the first product: it ran on similar
platforms, was developed across multiple sites and had a two

45Copyright (c) IARIA and Intel, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

year SDLC. However, it was far more complex than the first
in that the software had to run with and implement
functionality for a next generation Intel processor with a new
microarchitecture. In addition, the multiple code bases were
combined into a single release.

The Gen 3 software utilized the final set of requirements
for Gen 2 as a basis for the initial PRD. The requirements
SME remained with the team and worked with a new
primary requirements author and later with four additional
authors, who were located outside of the United States. No
other requirements methods or practices changes were made.
With the exception of adding support for a new CPU and the
functionality it enabled (approximately 50 new software
features), the basic attributes of the Gen 3 software were
similar to those of Gen 2. The software development process
did change slightly; the team switched to a continuous build
for source code check-ins.

III. REQUIREMENTS DEFECT RATES

As mentioned previously, requirements for the first
generation product were spread across documents, emails
and web sites. Since the reviews were infrequent and
informal, no data was captured to quantify the requirements
defect levels. Furthermore, there was no one on the team
able to objectively assess and measure defect levels.

For the second generation product, the SME reviewed
each revision of the PRD, logged the defects and calculated
the defect rate (measured in defects/page or DPP) for each
revision. Requirements were evaluated using various
checklists including the ten attributes of a well written
requirement (complete, correct, concise, feasible, necessary,
prioritized, unambiguous, verifiable, consistent and
traceable), an ambiguity checklist (including vagueness,
subjectivity, passive voice, and weak words) and a checklist
to determine if a non-functional requirement is verifiable.
Non-conformance to any of the checklist items constituted a
requirement defect.

Initial requirements defect levels were high as this was
the first formal set of requirements written by the author.
However, with mentoring, peer reviews and stakeholder
feedback, the requirements defect density for the PRD was
reduced from about 10 DPP in an initial revision (0.3) to less
than 1 DPP in the final revision (1.0), a reduction of
approximately 98%. The results, published initially in
another short paper [3], appear in Table I below.

TABLE I: GEN 2 REQUIREMENTS DEFECT DENSITY

PRD

Revision

of

Defects

of

Pages

Defects/

Page (DPP)

%

Change

in DPP

0.3 312 31 10.06 -

0.5 209 44 4.75 -53%

0.6 247 60 4.12 -13%

0.7 114 33 3.45 -16%

0.8 45 38 1.18 -66%

1.0 10 45 0.22 -81%

Overall % change in DPP revision 0.3 to 1.0: -98%

The defect rate for each revision of the third generation
software PRD was also assessed and recorded by the SME.
In addition to a new primary author, four other authors
contributed after the initial revision. Their impact can be
observed at the release of revision 0.5, which shows an
increase of 20% in the number of defects per page. Due to
budgetary restrictions, these new authors had not been
previously trained in writing requirements like the U.S.
based author. They were mentored via phone by the SME
for subsequent revisions. From initial to final revision, there
was an approximate 80% decrease in the document defect
levels. The details are presented in Table II that follows.

TABLE II: GEN 3 REQUIREMENTS DEFECT DENSITY

PRD

Revision

of

Defects

of

Pages

Defects/

Page

(DPP)

%

Change

in DPP

0.3 275 60 4.58 -

0.4 350 78 4.49 -2%

0.5 675 125 5.40 +20%

0.7 421 116 3.63 -33%

0.75 357 119 3.00 -17%

1.0 115 122 0.94 -69%

Overall % change in DPP revision 0.3 to 1.0: -79%

Defect prevention practices involved early inspections of

requirements and a cross-functional review process. For
both Gen 2 and Gen 3, the primary authors submitted initial
samples of the requirements to the SME for inspection. The
SME provided detailed feedback on the requirements defects
and then mentored the authors on how to rewrite them so that
they have a clear, common and coherent understanding
amongst all stakeholders. Next, requirements were reviewed
by peers for technical correctness, completeness and
technical feasibility. Once the peer review was complete and
the changes incorporated, the PRD was circulated for cross-
functional feedback. To ensure better response rates, a
“differences” document was circulated (generated from the
RMT) that listed the changes between revisions. Also,
several review meetings were held to discuss key sections of
the PRD and obtain direct feedback on any issues.

This emphasis on minimizing requirements defects was
driven by industry data linking requirements defects to
software defects. Depending on the study [4], [5], [6],
requirements defects are responsible for between 50% and
75% of the total number of software defects. The Chaos
Reports by the Standish Group, including the one from 2009
[7], have identified requirements as one of the leading causes
of project failures. Also, there is industry data from multiple
sources [8], [9] indicating that the cost to fix a defect is at
least 100 times more expensive in production than in the
requirements definition phase. Consequently, there was
considerable effort expended on the Gen 2 and Gen 3
products to focus on defect prevention rather than the
traditional defect detection done by testing teams.

From a requirements perspective, the primary author for
the Gen 2 product would have continued to create

46Copyright (c) IARIA and Intel, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

requirements at a rate of about 10 DPP (or higher based on
the defects the initial samples) without mentoring from the
SME. Hence, the final revision of the PRD would have had
approximately 450 defects as opposed to the 10 defects
actually identified. Many of these defects would eventually
have been coded into the product. Similarly, the Gen 3
author would have potentially introduced about 560 defects
into the software without mentoring (vs. the 115 defects in
the final revision of the PRD). The key question became
whether this focused effort on requirements defect
prevention would have any impact on software defects and
other quality indicators.

IV. PREDICTING DEFECT POTENTIAL

To predict the defect potential [10] across the three
generations of the software, we must analyze the various
factors that impact the number and severity of software
defects including: maturity of the team (development and
validation), number of new features, the complexity of the
new features, test coverage and stability of the code base at
the start of the project. Comparing the three software
development efforts, the teams were of about equal size and
maturity and their development methodology was identical,
specifically traditional waterfall. The validation teams were
also of similar size and maturity. There was some overlap of
personnel between projects. Overall, team maturity was
consistent and thus should not influence software defect
levels.

From a feature perspective, each new generation added
features upon the base set of requirements from the previous
generation. These new features were more complex, as they
had to enable functionality in the newer Intel CPU that the
software ran on. The number of requirements continued to
grow since no requirements were removed for subsequent
versions of the product. Test coverage of the software
increased due to the introduction of formalized requirements
starting with Gen 2. These factors would normally
contribute to a rise in software defect rates.

The final factor to analyze is the stability of the code
bases. The first version of the software consisted of multiple
code bases with differing source code control systems
(SCCS) and build processes. Code stability across each of
the components was good. These code bases were merged
into a single, unified software release at the start of the
second project. After an initial period of instability due to
integration issues associated with the move to a common
SCCS and build process, the software should have reached
the same stability as the original components since the code
itself did not change. The impact of the continuous build
process introduced in the third generation project also needs
to be assessed. The smaller, incremental builds are likely to
improve factors such as defect closure efficiency, feature
variance and time from commit to product delivery since the
team is able to get new builds in a much more timely manner
(hours vs. days). As a result, issues can be resolved faster
and this could enhance code stability. However, the more
frequent build cycles can also lead to a higher number of
sightings and defects because the test team can perform more

testing. Thus, from a code stability perspective, software
defect and sighting rates should be relatively unaffected by
the code merge in Gen 2 and the continuous build process in
Gen 3.

When all factors are taken into consideration, the defect
potential should be higher for the second generation than the
first and for the third generation versus the second. The key
driver is number of features. Each of the subsequent
products has many more features than its predecessor, those
features are much more complex and the software runs on a
more advanced version Intel CPU. The other factors are
neutral relative to the defect potential.

V. TEST RESULTS: GEN 1 VS. GEN 2

The following data presents a comparison of the number

of software defects at release, requirements volatility at

major milestones, feature variance at major milestones, and

defect closure efficiency at release between the first

generation and second generation software products. One

additional set of data is now available: time from

committed product release date to actual product release

date. Note that all of this data was collected for the products

on two similarly configured mobile platforms only. The

primary difference between them was the generation of the

processor.

The most impressive set of test results is presented in

Table III: the total number of software defects by type per

product at the end of validation testing. SW defects rates

impact not only development times and efficiency, but also

customer satisfaction levels and brand reputation. The

results are dramatic: each severity of software defect

demonstrated a very precipitous decrease between

generations. Of particular note are the 86% reduction in

critical defects and over 50% drop in total defects. These

results are extraordinary given the increased complexity of

newer software.

TABLE III: NUMBER OF SW DEFECTS BY TYPE

Defect Type Gen 1 Gen 2 Delta

Critical 21 3 -86%

High 137 69 -50%

Medium 111 62 -44%

Low 24 6 -75%

Totals: 293 140 -52%

Table IV compares the requirements volatility (1) per

product at key milestones during development.

Requirements volatility is a measure of how much the

requirements are changing due to additions, modifications

or deletions. A stable product will have a lower volatility

index. At release, the second generation product had almost

half the volatility of the first. An analysis of the Gen 1

requirements volatility by the development team revealed

that most of it was due to changes needed to resolve

47Copyright (c) IARIA and Intel, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

customer reported defects. Customer-driven change is

evident from the tripling in the requirements volatility index

from Alpha to Beta and the more than fourfold increase

from Alpha to Release. For the Gen 2 product, customer

defect levels were much lower and hence the volatility index

increase from Alpha to Release was slightly over double.

TABLE IV: REQUIREMENTS VOLATILITY

Milestone Gen 1 Gen 2 Delta

Alpha 0.4 0.4 0%

Beta 1.2 0.7 -42%

Release 1.7 0.9 -47%

Volatility = # of added+changed+deleted requirements (1)

Total # of requirements

Feature variance (2) per product at key milestones during

development is displayed in Table V. This metric shows

how well the features delivered in final product matched

what was committed by the team to be delivered. At each

milestone, the second generation product team was able to

deliver between 1.67 times and 3 times as many

supplementary features as the first generation product team.

This is likely due to the efficiency gain of the Gen 2 team by

not having to debug as many defects as the Gen 1 team

(Table III).

TABLE V: FEATURE VARIANCE

Milestone Gen 1 Gen 2 Delta

Alpha 0.05 0.15 +3.00x

Beta 0.15 0.25 +1.67x

Release 0.15 0.35 +2.33x

 Feature Variance = (Current - Planned Features) (2)

Planned Features

Table VI shows the software Defect Closure Efficiency

(DCE) (3) at the end of validation testing for the first
software release versus the second. DCE is measured by
dividing the number of SW defects closed by the number of
SW defects submitted. The goal is to have this percentage
approach 100% (all defects closed) by release. A lower DCE
is an indication that the development and validation teams
are spending more time identifying, researching and
correcting software defects (likely due to high defect levels).
In this table, DCE at product release increased from about
69% in Gen 1 to about 87% in Gen 2, an improvement of
over 25%.

TABLE VI: SW DEFECT CLOSURE EFFICIENCY

Milestone Gen 1 Gen 2 Delta

Release 69% 87% +26%

 DCE = Cumulative SW defects closed (3)

Cumulative SW defects submitted

Finally, Table VII provides a comparison of the number

of days between the official project commit date and the
actual customer release date for the two products. As part of
project planning, the development team submits a full plan
consisting of the features, resources, schedule (including
release date), costs and risks. Once this project plan is
approved, the project is committed. Factors such as
inaccurate estimates, changing customer requirements, and
technical problems can cause the actual delivery date to slip.
The data shows that the second generation product was
released 123 days earlier (or about 22% faster) than the first
generation. The cost savings are substantial given the size of
the project team (in excess of 100 people).

TABLE VII: PROJECT COMMIT TO RELEASE TIMES

Milestone Gen 1 Gen 2 Delta

Project Commit

to Release

564 days 441 days -22%

In summary, all five quality indicators displayed

substantial improvements at release to customer from Gen 1
to Gen 2 of the software:

 Total software defects: -52%

 Requirements volatility: -47%

 Feature variance: +2.33x

 Software DCE: +26%

 Time from project commit to release: -22%

VI. TEST RESULTS: GEN 2 VS. GEN 3

The next set of data compares the total number of
software defects, total number of sightings, feature variance
at release, defect closure efficiency and the number of days
from project commit to product release between the second
and third generation software products. This data was
gathered from testing for the two products on all mobile and
desktop platforms. This is different from the data presented
in Section V, which was for the Gen 1 and Gen 2 products
on two specific mobile platforms. Unfortunately, there is no
way to extract the data for mobile platforms only from the
Gen 3 data as only the combined results for all mobile and
desktop platforms were available for that product. Access to
this would have allowed a direct comparison among the Gen
1, Gen 2, and Gen 3 products. However, the findings that
follow do demonstrate continued improvements on similarly
configured hardware.

The total number of software defects and total number of
sightings (open issues reported by the test team, not all are

48Copyright (c) IARIA and Intel, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

defects) at release for the second and third generation
software are shown in Table VII. The reduction in overall
defects that started from Gen 1 to Gen 2 continued from Gen
2 to Gen 3, with a decrease of 35%. Total sightings dropped
by 31% between releases. These figures are noteworthy due
to the increased functionality in the Gen 3 product. Despite
an almost tripling in the revision 1.0 PRD length (122 pages
vs. 45 pages), total software defects and sighting still
declined by sizable percentages.

TABLE VII: TOTAL # SW DEFECTS AND SIGHTINGS

AT RELEASE

Milestone Gen 2 Gen 3 Delta

Total Defects 1,060 690 -35%

Total Sightings 3,800 2,640 -31%

Table VIII displays the feature variance per product at

release. The Gen 3 product team was able to deliver about

1.23 times as many supplementary features as the Gen 2

product team at release. Some of this gain is attributable to

the continuous build process (and being able to respond to

and fix defects faster), but a good percentage is due to the

stability of the initial set of requirements. The Gen 3 team

could spend more time on newly arriving customer

requirements requests.

TABLE VIII: FEATURE VARIANCE AT RELEASE

Milestone Gen 2 Gen 3 Delta

Release 0.35 0.43 +1.23x

Table IX presents the software Defect Closure Efficiency

at first customer shipment for the second generation in
comparison to the third generation software. In this table,
DCE increased from slightly (about 7%) from 87% in Gen 2
to about 93% in Gen 3. This small gain is not totally
unexpected given already high DCE for the second
generation product. The quality of the requirements and
continuous build process both appear to be positively
affecting these figures.

TABLE IX: SW DEFECT CLOSURE EFFICIENCY

Milestone Gen 2 Gen 3 Delta

Release 87% 93% +7%

The next set of data in Table X provides a comparison of

the number of days between the project commit date to
delivery of the released product to the customer. Again,
improvements were made from the second to the third
generation as 84 days were removed from the schedule (a
reduction of about 19%). If the data from the first generation
product is included, there is a 207 day or an overall 37%
decrease in time from commit date to customer delivery from
Gen 1 to Gen 3. Again, this contributed to considerable cost
savings based on the team size.

TABLE X: PROJECT COMMIT TO RELEASE TIMES

Milestone Gen 2 Gen 3 Delta

Project Commit

to Release

441 days 357 days -19%

One final set of data involved customer satisfaction

levels. Within the first six months of release, customers
were asked to rate the quality of the software delivered
according to a four point scale: poor (0), fair (1), good (2)
and very good (3). Scores for Gen 1 software averaged
between the “fair” to “good” range. For the Gen 2 product,
they had moved into the “good” to “very good” range. The
Gen 3 product was also in this range, slightly higher than
Gen 2.

To summarize, five key quality indicators displayed

continued improvements at customer release from Gen 2 to
Gen 3 of the software:

 Total software defects: -35%

 Total sightings: -31%

 Feature variance: +1.23x

 Software DCE: +7%

 Time from commit to delivery: -19%

VII. CONCLUSIONS

The key quality result from this extended case study is
that the dramatic reductions in total software defects
observed from the first to the second generation software on
mobile platforms (-52%) continued for the second to the
third generation software on the combined mobile and
desktop platforms (-35%). A number of factors could have
had some impact in these results. They include applying
lessons learned from one project to the next, augmented
developer experience and maturity, enhanced code review
practices and more rigorous unit testing prior to the start of
validation. No doubt these factors had some influence on
improving software defect levels. However, given the
increased complexity of the second and third generation
products, these factors should have had a minimal effect on
total software defect density levels. Some other factor was
playing a dominant role in these extraordinary quality
results.

Based on these observations, the improved requirements
were the major contributing factor to these reductions in
software defects. The project participants noted that the
focus on requirements defect prevention appreciably
minimized requirements ambiguity, subjectivity and
misinterpretation. In addition, non-functional requirements
(quality and performance) were written to be more verifiable.
The net result was fewer requirement defects propagating to
downstream work products like architecture specifications,
design documents, code, and test cases. As a result, the
development team was able to release code to the test team
with fewer defects despite considerable increases in
functionality and complexity for the newer versions of the
software.

49Copyright (c) IARIA and Intel, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

 The focus on requirements defect prevention also
dramatically impacted other quality indicators including
feature variance, defect closure efficiency and project
duration. Since less time was spent fixing defects, the
developers could spend more time adding feature requests
arriving late in the software lifecycle. This is reflected in the
increases of feature variance from the first to the second
generation (2.33 times) and from the second to the third
generation (1.23 times). These late feature additions allowed
the teams to be more responsive to changing market
conditions, competitive pressures and customer requests.

Defect closure efficiency increased by 26% and 7%
respectively from Gen 1 to Gen 2 and from Gen 2 to Gen 3.
There are likely three dynamics here: having requirements
in a searchable database, better requirements quality and the
continuous build process. Determining the source of the
defect (e.g., requirement, code, or test case) was facilitated
by these good requirements engineering practices.

Another important quality measure improvement was
time from project commit to product delivery. From Gen 1
to Gen 3, a total of 207 days were removed from the
schedule. Several factors probably influenced these numbers
including the quality of the requirements, the requirements
database, the merge of the code bases and the continuous
build process. For a development team size of over a 100
people, the cost savings are measured in the millions of
dollars.

While more subjective, customer satisfaction levels
improved from Gen 1 to Gen 3. Scores for Gen 1 software
averaged between the “fair” to “good” range. For both the
Gen 2 and Gen 3 products, they had moved into to the
“good” to “very good” range. This increase in customer
satisfaction levels indicates that the focus on requirements
produced a software product that more closely met the
customer needs and expectations.

An analysis of the data presented in this paper confirms
that a well-written and well-reviewed set of requirements is a
major factor in overall software quality. They decrease the
total number of software defects, minimize rework, reduce
wasted effort, improve schedule predictability, and increase
team velocity and efficiency. Since test and development
teams are spending less time identifying and correcting
defects in the code, they can focus more time on productive
tasks such as adding functionality and being more responsive
to changing customer needs.

VIII. FUTURE WORK

A fourth generation product is currently in development.
The number and complexity of the new features continues to
grow and almost none of the existing Gen 3 functionality
will be removed. It will run on both desktop and mobile
platforms (including the new Ultrabook

TM
 products)

incorporating a more advanced Intel processor. Software
development methodologies remain essentially unchanged,
although the team is currently in the process of investigating
Scrum.

Similar to its predecessors, this project will leverage the
final set of requirements from the previous software (Gen 3).
The requirements engineering process is basically

unchanged: the requirements SME is still assigned to the
team, a requirements management tool is being utilized and
the PRD will undergo frequent and comprehensive reviews.
The largest variation in methods for this project is in the
number of contributors to the PRD. The Gen 3 product had
five primary authors, while this product already has over
twenty authors. These additional authors are scattered across
different sites and countries, making training and mentoring
more complicated. To date, the length of the PRD has
already tripled. How these requirements changes influence
the overall software quality will provide good data for a
subsequent paper.

REFERENCES

[1] J. Terzakis, “The impact of a requirements specification on
software quality and other quality indicators”, 19th IEEE
International Requirements Engineering Conference (RE ’11),
2011, Trento, Italy.

[2] J. Terzakis, “Requirements defect density reduction using
mentoring to supplement training”, Seventh International
Multi-Conference on Computing in the Global Information
Technology (ICCGI 2012), 2012, Venice, Italy.

[3] T. Gilb, Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software
Engineering Using Planguage, Butterworth-Heinemann, June
25, 2005.

[4] S. V and G. Nair T.R., “Defect management strategies in
software development” from Recent Advances in
Technologies, edited by M. Strangio, InTech, 2009

[5] T. King and J. Marasco, “What is the cost of a requirement
error?”, StickyMinds.com,
http://www.stickyminds.com/sitewide.asp?Function=edetail&
ObjectType=ART&ObjectId=12529&tth=DYN&tt=siteemail
&iDyn=2

[6] G. Tassey, “The economic impacts of inadequate
infrastructure for software testing”, prepared by RTI (project
Number: 7007.011), 2002

[7] “CHAOS summary 2009”, The Standish Group, 2009.

[8] B. Boehm and V. Basil, “Software defect reduction top 10
list”, IEEE Computer, January 2001

[9] D. Reifer, “Profiles of level 5 CMMI organizations.”
Crosstalk: The Journal of Defense Software Engineering,
January 2007

[10] C. Jones, Software Quality: Analysis and Guidelines for
Success, International Thomson Computer Press, June 14,
2000.

50Copyright (c) IARIA and Intel, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=12529&tth=DYN&tt=siteemail&iDyn=2
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=12529&tth=DYN&tt=siteemail&iDyn=2
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=12529&tth=DYN&tt=siteemail&iDyn=2

