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Abstract—We propose a new technique which allows to es-
timate any random signal from a large set of noisy observed
data on the basis of information on only a few reference signals.
The conceptual device behind the proposed estimator is a linear
interpolation of an optimal incremental estimation applied to
random signal pairs interpreted an extension of the Least Squares
Linear (LSL) estimator. We consider the case of observations
corrupted by an arbitrary noise (not by an additive noise only)
and design the estimator in terms of the Moore-Penrose pseudo-
inverse matrix. Therefore, it is always well defined. The proposed
estimator is justified by establishing an upper bound for the
associated error and by showing that this upper bound is directly
related to the expected error for an incremental application of
the optimal LSL estimator. It is shown that such an estimator is
possible under quite unrestrictive assumptions.

Keywords–large signal sets; filtering; least squares linear esti-
mator.

I. I NTRODUCTION

A. Motivation

We write xω = xω(t) for a stochastic vectorxω(t) associ-
ated with a random outcomeω and timet ∈ T = [a, b] ⊂ R.
A rigorous notation is given in the section that follows.

In many applications associated with a difficult environ-
ment,a priori information on a large set of signals of interest,
Kx = {xω(t)}, can only be obtained for a few signals
{xω(tj)}p

1 ⊂ Kx wherep is a small number. Typical exam-
ples are devices and equipment exploited in the stratosphere,
underground and underwater such as those in defence and the
mining industry. Signalsxω(t1), . . . , xω(tp), are associated
with given times,t1, t2, . . . , tp, respectively, such that

a = t1 < t2 < · · · < tp−1 < tp = b. (1)

A choice of signalsxω(t1), . . . , xω(tp) might be beyond our
control (in geophysics and defence tasks, for instance). At the
same time, it is required to estimate each reference signal in
the setKx from the corresponding set of noisy observations.
Thus, all we can exploit to develop an associated filter is
observed noisy data and a sparse information on reference
signals.

Example 1:Suppose we need to process a setKy of N =
121 random signals over setT = [τ1, τ2, . . . , τN ] so that each
input signal from this set,y(t, ·), enters a filter at timet = τk
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(a) Observed signals from the setKy .
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(b) Samples of reference signals̃X(j) at timestj for j = 1, . . . , 11.

Fig. 1. Signals and samples considered in Example 1.

where τ1 = 0 and τk+1 = τk + 0.05, for k = 1, . . . , 120.
At time τk, for k = 1, . . . , N , the observed signaly(τk, ·), is
represented by its realizations as a4× 4 matrix

Y (k) = {y(k)
`,r }4`,r=1 = [y(τk, ω1), . . . ,y(τk, ω4)]. (2)

A column of matrixY (k), y(tk, ωi) ∈ R4, represents the real-
ization of the signaly(t, ωi) at time t = τk generated by the
random eventωi, for eachi = 1, 2, . . . , 4. Thus, all observed
signals are given by the4×484 matrixY = [Y (1), . . . , Y (121)]
represented in Fig. 1 (a).

Suppose that, forj = 1, . . . , p, information on the refer-
ences signals can only be obtained at some timest1 = τ1,
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tj+1 = τ12j+1 wherej = 1, . . . , 10 (see (1)) in the form of
samples given by4× 4 matrices

X̃(j) = [x̃(tj , ω1), . . . , x̃(tj , ω4)] = {x̃(k)
`,r }4`,r=1. (3)

Fig. 1 demonstrates a typical situation with noisy observed
signals and sparse information on the reference signals. In
Example 2 below we show that, under certain conditions, the
proposed technique allows us to estimate the signals of interest
with an acceptable accuracy.

B. Formalization of the problem

To formalize the problem, we write{Ω, Σ, µ} for a proba-
bility space whereΩ is the set of all experimental outcomes,
Σ ⊂ Ω is a sigma-algebra of measurable sets known as the
event space andµ is a non-negative probability measure with
µ(Ω) = 1. We denote byKx = {xω | ω ∈ Ω} a set of
reference stochastic signals and byKy = {yω | ω ∈ Ω} a set
of observed signals.

In an intuitive way,y can be regarded as a noise-corrupted
version ofx. For example,y can be interpreted asy = x+n
wheren is white noise. We do not restrict ourselves to this
simplest version ofy and assume that the dependence ofy
on x and n is arbitrary. Note that, theoretically,Kx andKy

are infinite signal sets. In practice, however, setsKx andKy

are finite and large, each with, say,N signals.
To each random outcomeω ∈ Ω we associate a unique

signal pair(xω, yω) wherexω : T → C0,1(T,Rm) and yω :
T → C0,1(T,Rn). The spaceC0,1(T,Rp) is the set of vector-
valued Ḧolder continuous functionsf of order1 with f(t) ∈
Rp and‖f(s)− f(t)‖ ≤ K|s− t| (see [1], p. 96.) Write

P = Kx ×Ky = {(xω, yω) | ω ∈ Ω} (4)

for the set of all such signal pairs. For eachω ∈ Ω,
the componentsxω = xω(t), yω = yω(t) are Lipschitz
continuous vector-valued functions onT [1].

We wish to construct an estimatorF (p−1) that estimates
each reference signalxω(t) in P from related observed input
yω(t) under the restriction thata priori information on only a
few reference signals,xω(t1), . . ., xω(tp), is available where
p ¿ N .

In more detail, this restriction implies the following. Let us
denote byK(p)

x a set ofp signalsxω(t1), . . ., xω(tp) for which
a priori information is available. A set of associated observed
signalsyω(t1), . . ., yω(tp) is denoted byK(p)

y . Then for all
yω(t) that do not belong toK(p)

y , yω(t) /∈ K(p)
y , estimator

F (p−1) is said to be theblind estimator [2], [3], [4], [5] since
no information onxω(t) /∈ K(p)

x is available. Ifyω(t) ∈ K(p)
y

thenF (p−1) becomes anonblind estimator since information
on xω(t) ∈ K(p)

x is available. Thus, depending onyω(t),
estimatorF (p−1) is classified differently. Therefore, such a
procedure of estimating reference signals inKx is here called
the almost blindestimation.

C. Differences from known techniques

We would like to note that thealmost blind estimation
is different from known methods such as nonblind [6]–[18],

semiblind and blind techniques [2]–[5], [19]–[22].Indeed, at
each particular timet ∈ T , the input of thealmost blind
estimatorF (p−1) developed below in this paper, is a random
vectoryω(t). Thus, for differentt ∈ T , the input is a different
random vectoryω(t) but we wish to keepthe same estimator
F (p−1) for any t ∈ T , i.e., for any observed signalyω(t) in
the setKy. The literature on these subjects is very abundant.
Here, we listed only some related references.

By known techniques in [2]–[16] and [19]–[22], an esti-
mator (here, we choose the united term ‘estimator’ to denote
an equalizer or a system) is specifically designed foreach
particular input–output pair represented by random vectors.
That is, for different inputs (observed signals)yω(t), known
techniques require different specified estimators and the num-
ber of estimators should be equal to a number of processed
signals. In the case oflarge signal sets, such approaches
become inconvenient because the number of signalsN can
be very large as it is supposed in this paper. For example, in
problems related to DNA analysis,N = O(104). Therefore,
the inconvenient restriction of usinga priori information on
only p reference signals, withp ¿ N , is quite significant. At
the same time, beside difficulties that this restriction imposes
on the estimation procedure, we use it in a way that allows
us to avoid the hard work associated with known techniques
applied to large signal sets. To the best of our knowledge, the
exception is the methodology in [17], [18], where, for estima-
tion of a set of signals, the single estimator is constructed. The
estimation techniques in [17], [18] exploit information in the
form of a vector obtained, in particular, from averaging over
signals inK(p)

x .
Further, the semiblind techniques are not applicable to the

considered problem because they require a knowledge of some
‘parts’ of each reference signal inKx (e.g., see [3], [5], [19])
but it is not the case here. Although the blind techniques
allow us to avoid this restriction, it is known that they have
difficulties related to accuracy and computational load. In the
problem under consideration, the advantage is a knowledge of
some (small) part of the set of reference signals. It is natural
to use this advantage in the estimator structure and we will do
it in Section II.

Nonblind estimators [6]–[16] are not applicable here be-
cause they requirea priori information on each reference
signal inKx (e.g., a knowledge of covariance matrixE[xωyT

ω ]
whereE is the expectation operator). In particular, it is known
that there are significant advantages in adaptive or recursive
estimators (e.g., associated with Kalman filtering approach
[23]) and it may well be possible to embed our estimator into
such an environment—but that is not our particular concern
here. Further, we note that much of the literature on piecewise
linear estimators [24]–[28] seems to benot directly relevant
to the estimator proposed here. In the first instance papers
such as [24]–[28] are mostly concerned with the theoretical
problems of approximation by piecewise linear functions on
multi-dimensional domains which isnot the case here.

Also, unlike many known techniques, we consider the case
of observations corrupted by an arbitrary noise (not by an

102Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology



additive noise only) and design the estimator in terms of
the Moore-Penrose pseudo-inverse matrix [29]. Therefore it
is always well defined.

II. T HE MAIN RESULTS

In this section, we outline the rationale for the proposed
estimator and state the main results.

A. Some preliminaries

The proposed estimatorF (p−1) is adaptive to a sparse set
K(p)

x .
The conceptual device behind the proposed estimator is

a linear interpolation of an optimal incremental estima-
tion applied to random signal pairs(xω(tj),yω(tj)) and
(xω(tj+1), yω(tj+1)), for j = 1, . . . , p − 1, interpreted an
extension of the Least Squares Linear (LSL) estimator (see,
for example, [6], [11], [16]). Although this idea may seem
reasonable, the detailed justification of the new estimator is
not straightforward and requires careful analysis. We shall do
this by establishing an upper bound for the associated error
and by showing that this upper bound is directly related to the
expected error for an incremental application of the optimal
LSL estimator. In Section II-B below, we will show that such
an estimator is possible under quite unrestrictive assumptions.

Since the estimator proposed below is based on an extension
of the LSL estimator it is convenient to sketch known
related results here. Consider asingle random signal pair
(x(ω),y(ω)) where x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn)
with zero mean(E[x], E[y]) = (0,0), where0 is the zero
vector. Note that here,x andy do not depend ont as above.
The estimatêx of the reference vectorx by the optimal least
squares linear estimator is given by

x̂(ω) = ExyE†
yy y(ω) (5)

where Exy = E[xyT ] and Eyy = E[yyT ] are known
covariance matrices andE†

yy is the Moore-Penrose pseudo-
inverse ofEyy. By the LSL estimator, matricesExy andE†

yy

should be specified for each signal pair(x(ω), y(ω)).
Further, for a justification of our estimator, we need some

more notation as follows. It is convenient to denotex(t, ω) =
xω(t) and y(t, ω) = yω(t) so that x(t, ω) ∈ Rm and
y(t, ω) ∈ Rn.

B. The piecewise LSL interpolation estimator

For each signal pair (or vector function pair) in the setP,
(x(t, ω), y(t, ω)), we assume that(E[x(t, ·)], E[y(t, ·)]) =
(0,0). To begin the estimation process we need to find an
initial estimatex̂(t1, ω). It is assumed this can be found by
some known method. Further, let us consider a signal estima-
tion procedure att2, · · · , tp. We use an inductive argument to
define an incremental estimation procedure. Consider a typical
interval [tj , tj+1] and define incremental random vectors

vj(ω) = x(tj+1, ω)− x(tj , ω) ∈ Rm, (6)

wj(ω) = y(tj+1, ω)− y(tj , ω) ∈ Rn (7)

and construct the optimal linear estimate

v̂j(ω) = Evjwj
E†

wjwj
wj(ω) (8)

of the incrementvj(ω) for eachj = 1, . . . , p − 1. We will
write

Bj = Evjwj
E†

wjwj
∈ Rm×n. (9)

Define the estimate at pointtj+1 by setting x̂(tj+1, ω) =
x̂(tj , ω) + v̂j(ω). Thus we have

x̂(tj+1, ω) = x̂(tj , ω) + Bj [y(tj+1, ω)− y(tj , ω)]
= εj(ω) + Bjy(tj+1, ω) (10)

where we write

εj(ω) = x̂(tj , ω)−Bjy(tj , ω). (11)

Note that this definition can be rewritten more suggestively as

x̂(tj , ω) = εj(ω) + Bjy(tj , ω) (12)

for eachj = 1, . . . , p− 1.
The formula (10) shows that on each subinterval[tj , tj+1]

the estimate of the reference signal attj+1 is obtained from
the initial estimate attj by adding the optimal LSL estimate
of the increment.

Now, consider a signal estimation at anyt ∈ [a, b]. The
first step is simply to extend the formulæ (10) and (12) to all
t ∈ [tj , tj+1] by defining

x̂(t, ω) = εj(ω) + Bjy(t, ω). (13)

Thus, the incremental estimation across each subinterval is
extended to every point within the subinterval. Because of
determining estimatêx(tj+1, ω) in the form (8)–(10) we
interpret this procedure as theLSL piecewise interpolation.

The incremental estimations are collected together in the
following way. For eachj = 1, 2, . . . , p− 1, write

Fj [y(t, ω)] = εj(ω) + Bjy(t, ω) (14)

for all t ∈ [tj , tj+1] and hence define thepiecewise LSL
interpolation estimatorby setting

F (p−1)[y(t, ω)] =
p−1∑

j=1

Fj [y(t, ω)][u(t− tj)− u(t− tj+1)]

(15)

for all t ∈ [a, b] whereu(t) =
{

1 for t > 0
0 otherwise.

is the unit

step function. Thus we can now use the estimate

x̂(t, ω) = F (p−1)[y(t, ω)] (16)

for all (t, ω) ∈ T × Ω. The idea of a piecewise LSL
interpolation estimator onT seems intuitively reasonable for
signals with a well defined gradient overT .

We note that by (9)-(16), the estimatorF (p−1) is adaptive
to a variation of signals inK(p)

x . A change of signals inK(p)
x

implies a change of determinations of sub-estimatorsBj in
(9) and keep the same structure of theF (p−1).
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C. Justification of the LSL interpolation estimator

We wish to justify the proposed estimator by establishing
an upper bound for the associated error.

To explain the technical details we introduce some further
terminology.

Let us denote‖x(t, ·)‖2Ω =
∫
Ω
‖x(t, ω)‖2dµ(ω). Assume

that for all t ∈ T , we have

‖x(t, ·)‖2Ω < ∞ and ‖y(t, ·)‖2Ω < ∞, (17)

where‖x(t, ω)‖ and ‖y(t, ω)‖ are the Euclidean norms for
x(t, ω) and y(t, ω) for each (t, ω) ∈ T × Ω, respectively.
Thus we will say that the signals are square integrable inω
and writex(t, ·) ∈ L2(Ω) andy(t, ·) ∈ L2(Ω) for each fixed
t ∈ T .

For eacht ∈ T , let F = {f : T × Ω → Rm | f(t, ·) ∈
L2(Ω,Rm)} and define

‖f‖T,Ω =
1

b− a

∫

T×Ω

‖f(t, ω)‖ dt dµ(ω)

=
1

b− a

∫

T

E[‖f(t, ·)‖] dt

for eachf ∈ F where ‖f(t, ω)‖ is the Euclidean norm of
f(t, ω) on Rm for all (t, ω) ∈ Rm. Suppose that for all
(x, y) ∈ P there exist constantsγj , δj > 0 such that

‖x(s, ω)− x(t, ω)‖ ≤ γj |s− t|, (18)

‖y(s, ω)− y(t, ω)‖ ≤ δj |s− t| (19)

for all (s, ω), (t, ω) ∈ [tj , tj+1] × Ω, i.e. we suppose that the
Lipschitz constants in (18) are independent ofω.

The error bound for the piecewise LSL interpolation esti-
mator is established in Theorem 1 below.

Theorem 1:If condition (18) is satisfied then the error
εp = ‖x− F (p−1)[y]‖T,Ω associated with the piecewise LSL
interpolation estimator satisfies the inequality

εp ≤ max
j=1,...,p−1

{(γj + ‖Bj‖2δj)|tj+1 − tj | (20)

+
[
‖E1/2

vj ,vj
‖2F − ‖Evjwj (E

1/2
wjwj

)†‖2F
]1/2

} (21)

where‖Bj‖2 denotes the2-norm given by the square root of
the largest eigenvalue ofBT

j Bj and‖·‖ denotes the Frobenius
norm.

Example 2:The time intervalT is the same as in Example
1. At each timeτk, for k = 1, . . . , N , the training reference
signal x(τk, ·) is represented by its realizations as a4 × 4
matrix

X(k) = [x(τk, ω1), . . . ,x(τk, ω4)] = {x̃(k)
`,r }4`,r=1. (22)

where x
(k)
1,1 = 0.918η

(k)
1 , x

(k)
1,2 = 1.02η

(k)
2 , x

(k)
1,3 =

1.122η
(k)
3 , x

(k)
1,4 = 0.918η

(k)
4 , η

(k)
1 = − cos(2k), η

(k)
2 =

sin(cos(k)), η(k)
3 = − cos(k), η(k)

4 = cos(sin(k)). All training
reference signals are simulated as a4 × 484 matrix X =
[X(1), . . . , X(121)] shown in Fig. 2 (a). Note that in (3), due
to measurement errors the values ofx̃

(k)
`,r are different from
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(a) Training reference signals.
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(b) Their estimates by filterF (10).

Fig. 2. Training signals and their estimates considered in Example 2.

the values ofx(k)
`,r . The observed signals in Example 1 were

simulated fromX by adding random noise.
The estimates of the reference signals by filterF (p−1), for

p = 11, obtained on the basis of the information represented
in Fig. 1 (b) are given in Fig. 2 (b). The covariance matrices
are estimated from samplesY (j) and X̃(j) taken at timestj ,
for j = 1, . . . , 11 (see Example 1). The averaging polynomial
filter [16] gives much worse accuracy.

III. C ONCLUSION

The piecewise least squares linear (LSL) interpolation esti-
mator was developed to estimate a large set of random signals
of interest from the set of observed data. The distinctive feature
is that a priori information can be obtained on only afew
reference signals in the form of samples. Since no information
of the major part of the set of reference signals is known, such
a procedure is calledalmost blindestimation.

The proposed estimator mitigates to some extent the diffi-
culties associated with existing estimation approaches such as
the necessity to know information (in the form of a sample,
for instance) oneach random reference signal; invertibility
of the matrices used to define the estimators; and demanding
computational work.
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