
Design and Simulation of Electronic Service Business Process

Peteris Stipravietis, Edzus Zeiris, Maris Ziema

ZZ Dats, SIA

41/43 Elizabetes street, Riga, Latvia, LV-1010

[peteris.stipravietis,edzus.zeiris,maris.ziema]@zzdats.lv

Abstract — The paper discusses the identification of common

business process design-time problems using Yet Another

Workflow Language (YAWL). The approach proposed by the

authors is based on the creation of business process in the

YAWL environment in order to simulate the process model

which could resolve some of the design-time problems, i.e.,

possible bottlenecks, as well as provide hints on how to correct

initial process. The simulation is done using process mining

software “ProM Framework” and the Colored Petri nets

simulation and analysis framework “CPN Tools”. The process

design with YAWL is done with respect to Business Process

Execution Language (BPEL) requirements, thus later allowing

the transformation from YAWL to BPEL via the intermediate

structure. The examples show that it is possible to identify

some of the possible faults of the process using the proposed

approach.

Keywords – Electronic service; YAWL; simulation.

I. INTRODUCTION

E-services are common in information society nowadays,
and even though they tend to become more and more
accessible and varied, the problems that occur during the
design phase of the service remain the same. These problems
include, for example, questions on how to facilitate the
creation of business process to the user with no specific
programming skills, how to define the process in a way that
creates the process description abstract but accurate enough
at the same time, how to check the created model – to
determine the weaknesses, perform the measurements based
tuning, and others.

The validation of the process is even more important
when the process being changed is already deployed and
used in production environment – one must make sure that
the changes are implemented correctly, that the new
instances of the process can run together with old instances
already running. The implementation and validation of
changed process also have to be simple and cost-effective
enough – hence the conclusion that the solutions of these
problems rely heavily on the choice of the language used to
describe the process – does it provide the possibilities to
validate and simulate the process.

Existing business process modeling languages can be
divided in two groups. The languages of the first group are
favored by the academic community, but rarely used in real-
life solutions. These languages are based on Petri nets,
process algebra; they have formal semantics, which allow the
validation of the models described by these languages. The
languages of the second group are used in real-life projects

much more than in academic researches. Business Process
Execution Language (BPEL) [1] and Web Services Flow
Language (WSFL) [2] are among these languages. These, so
called business languages, often lack proper semantics,
which could lead to debate on how to interpret the business
models described by these languages. The availability of
different implementations of these languages from different
vendors does not facilitate the situation either, yet they are
used much more, compared to rarely used models described
by academic languages. If a situation arises when business
process model described by business language needs to be
validated using Petri nets, one must either abandon the
validation or transform the process model to another model,
described in academic language, for example Yet Another
Workflow Language (YAWL) [3][4][5]. The authors
propose reverse approach – first, a process is created using
academic language. The design problems of the process
model can then be solved by mathematical means. Second,
the verified and updated model is transformed to model
described in business language. The advantages of the
approach described follows:

 If a model is created using academic language, it is
more readable and maintainable than the model,
which is a transformation result itself. It is also
easier to perform analysis of untransformed model,
because the transformation could lose some design
information.

 Model, transformed to business language, is already
validated and ready to be executed. Of course, the
model must be double-checked to make sure if it
needs any corrections. The alternatives of the
execution environment for the model are much more
than the environments for academic languages; in
addition to that, they have superior technical support.

The purpose of this paper is to examine the design and
simulation stages of the aforementioned approach – can it be
used during the design of simple e-service business project;
and to check if it helps to identify and resolve most common
design-time problems.

The rest of the paper is structured as follows – Section II
provides an overview of the proposed design approach. Next,
Section III defines the design-time restrictions of the YAWL
workflow which must be observed. The simulation phase of
the approach is discussed in Section IV, while Section V
shows the practical example of the simulation. Finally,
Section VI contains conclusion.

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

II. PROPOSED APPROACH

The approach proposed by authors consists of five
consecutive steps – the design, the simulation, the
transformation to ‘protostructure’ – simplified, yet fully
descriptive notation of the business process control flow –,
the optimization based on quality attributes of the service
and the transformation to BPEL. Some of these steps may be
omitted or repeated as necessary, as shown in Fig. 1 – solid
lines show the most common path, dashed lines show
alternative paths of execution, lighter boxes represent steps
which may be omitted.

A similar approach is proposed by authors of [6], but
their solution is based on straightforward conversion of
YAWL workflow to BPEL process (straight to step 5 from
step 1). While the straightforward transformation is more
efficient in terms of development cost and time, the authors’
approach includes simulation and optimization steps which
should reduce the costs of maintenance later on.

The first step is the design of the business process using
academic language. The initial business process model is
created during this phase. Authors use the YAWL as the
language of choice – it is based on Extended Workflow Nets
(EWF), the workflows described in YAWL can be
transformed to colored Petri nets to perform simulations and
formal semantic validation. It also supports all workflow
patterns [7] – parallel flow, branching, synchronizations and
others. Although YAWL supports all the patterns, the
business process model must take into account that the
process will later be transformed to BPEL – as such, it may
not contain patterns which do not translate to BPEL directly
or using non-solution specific workarounds.

The second step of the approach is the simulation of the
business process model. The analysis of the created business
process is very important part of the design – one needs to
find bottlenecks, when instance of the process or its part
could use up all available resources, thus forcing other
instances to wait for these resources; identify dead ends,
which could lead to infinite loops and never ending process
instances; find deadlocks, when process querying for the
same resources effectively block each other; define fault
handling and cancellation activities, which cancel all the
work done by previous activities.

Figure 1. Proposed approach, step by step.

During this step it is also possible to identify reusable
structures, for example, audit log activities. Such challenges
usually are solved with the simulation.

The third step provides the transformation to primitive
structure. Primitive structure is simplified definition of
business process control flow, although it can also be used to
maintain the data flow. The primitive structure serves as an
intermediate between academic and business languages and
can be used to create processes described by multiple
languages, not only BPEL. The primitive structure may be
changed and improved during this phase to facilitate the
transition to target language, i.e., restructure its control flow
in a way that it becomes well-formed and contains only
patterns supported by BPEL.

The fourth step provides the segmentation of primitive
structure using the Quality Attributes Driven Web Services
Design (QAD WS) method which offers the segmentation of
business process, represented as oriented graph. The
segmentation result depends on process quality attributes
selected by designer and their respective values. The result of
this method is Pareto optimality set – the method returns the
most suitable segmentations from all possible considering
the quality attributes given.

The business language selected by authors and used in
their proposed approach is BPEL, and using of QAD WS
method on primitive structure would provide the possible
structures of BPEL process – which parts of the process
would belong to orchestration and which ones would be
implemented as web service calls. The work in [8] also
discusses the partitioning of Web services into orchestrations
based on their Quality of Service (QoS) values, although that
approach do not use multicriterial optimization, but rather is
based on Petri nets and usage of statistical data.

The QAD WS method perceives the business process as
an oriented graph G, whose vertices corresponds to process
activities, but edges between them represents the control
flow. Using various quality attributes and the structure of
graph G, QAD WS method solves multi-criteria optimization
task, which results in the segmentation set of initial graph G:
G’=QAD(G). Criteria used by the method are:

 Costs of development C;

 Performance T;

 Maintenance costs E;

 Reusability R;

 Integrity I [9].
The segmentation set G’ consists of N most optimal

solutions designer can choose from – this method may
greatly reduce possible solutions of process architecture, thus
aiding the designer. For instance, if the main criterion for
segmentation is performance, then the segmented graph
should contain the Web service invokes as few as possible,
because every invoke adds to total execution time. On the
other hand, the reusability will lead to much more segmented
graph to allow the components to be reused. Preliminary
tests show that if a certain graph G consists of 11 vertices,
then, taking into account the segmentation restrictions
(mainly to preserve control- flow), one ends up with 1015
possible solutions. Applying the QAD WS method reduces

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

the count of possible solutions to 8 solutions. The total
solution count varies depending on the structure of the graph,
and resulting set solution count varies depending on the used
criteria and their respective weights.

The result of the 3rd step of authors proposed approach is
primitive structure – oriented graph P that corresponds to
initial YAWL workflow, which could be used as an input
graph G for QAD WS. Authors also note that P is more
complicated and restrictive as G – in addition to process
activities and links between them it also contains the process
control flow.

The last phase of proposed approach is the
transformation of primitive structure to business language
process which results in the business process defined in
business language. This process is not ready to be executed,
but its structure corresponds to initial process model
described by academic language and maintains its process
flow.

III. THE DESIGN OF THE BUSINESS PROCESS

To be able to transform the YAWL workflow
successfully, the workflow must conform to some
requirements. Firstly, it should not contain patterns, which
have no analog constructions in BPEL, for example, the
passing of process control to an activity residing outside the
synchronized block, i.e. – goto-like construction. BPEL
directly supports 13 patterns out of 20 [10], discussed in
[11]. The parallel flow with runtime-only knowledge is also
not supported.

Secondly, the incoming and outgoing messages are
associated with specific process instance using correlation
sets. YAWL lacks concept of correlation sets, because each
workflow instance (case) is started by its clients (users), thus
creating an instance in execution environment. This
environment manages the workflows and offers to users
corresponding options, based on the state of instance and its
specification [4]. The variable which could be used as a
correlation set variable must be created in the workflow or
during the transformation and finally added to each defined
data type used in BPEL messages.

Thirdly, support of human tasks – all BPEL activities
related to exchange of information with process partners are
perceived as web service operations, i.e., BPEL has no
concept of “Human interaction”. To fill this gap several
BPEL extensions are proposed, for example, BPEL4People
[12][13] – Organization for the Advancement of Structured
Information Standards (OASIS) is working on standardizing
this extension.

Last but not least, workflow definition must correctly
define all the branching conditions to avoid cases when
transformed BPEL process’ While, Repeat/Until and If
blocks contain incorrect values.

IV. THE SIMULATION

As already mentioned before, the developers and
architects may encounter the same kind of problems during
the development of the business process of electronic service
– bottlenecks, dead ends, and fault handling and cancellation

activities. Part of these problems may be identified using
simulation.

The authors of the paper [14] propose simulation which
uses process design data, historical data about executed
process instances from audit logs and state data of the
running process instances from the execution environment.
Data from all three sources are combined to create
simulation model – design data are used to define the
structure of the simulation model, historical data define
simulation parameters, state data are used to initialize the
simulation model.

Altering the simulation model allows to simulate
different situations, for example, to omit certain activities or
divert the process flow to other execution channels. Taking
into account the state data of running process instances, it is
possible to render the state of the system in near future and
use the information to make decisions regarding the
underlying business process.

The simulation of the workflow is carried out using
process data mining framework ProM [15]. To create
simulation model, following steps are performed:

 Workflow design, organizational and audit log data
are imported from execution environment;

 According to imported data a new YAWL workflow
model is created and state data are added;

 The new model is converted to Petri net;

 Resulting Petri net is exported to simulation
execution environment CPN Tools [16] as a colored
Petri net.

CPN Tools environment provides the process simulation
possibilities both in long and short-term, using the state data
of chosen process instance. This technique differs from
others with its degree of realism. For instance, the work [18]
shows the so called mediator approach based on Discrete
Event System Specification (DEVS) models, while the work
[19] exploits event-based approach on Service-oriented
Architecture (SOA) Both of these approaches, however, do
not use the statistical data of already finished instances to
take into account the availability of the resources; yet this
method creates artificial delays based on historical data from
audit logs and organizational model.

Returning to design-time problems, mentioned before –
the authors now will evaluate the simulation approach,
focusing on its capabilities to identify these problems.

A common mistake is to propose that the user of process
will provide all data when prompted, for example, fill out all
fields in a web form. Some fields could be left blank
because user is not interested in sharing particular
information (because of privacy concerns, etc.) or other
reasons. If a process needs such information to continue, but
user does not provide it, it enters in a waiting state and
theoretically may never be finished. As an example, a simple
YAWL workflow is provided, which expects the input of e-
mail address and phone number from the user. The workflow
contains AND-flow – it is finished when both branches are
finished – see Fig. 2.

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Figure 2. Simple YAWL workflow – parallel flow

The solution is to use OR-flow instead of AND, but the
simulation approach discussed is not applicable – Petri nets
does not support OR-flows; also the ProM Framework
generates syntactically incorrect Standard ML (SML) file, if
the net output variables have not been assigned value during
the flow – however, it is not possible to assign initial values
to them during the design. However, the problem can be
identified by analyzing the process execution log, using, for
example, ‘Basic Log Analysis’ module from ProM toolset.
Fig. 3 clearly shows the difference between activities
executed. Naturally, the question arises – why are there so
many processes in waiting state and why do the users register
their phone numbers far less than their e-mail addresses.

The simulation will not be helpful to identify the problem
even after the editing of the SML file – the generated Petri
net will contain AND-flow and the short-term simulation
will direct the token through both branches. It is not
reasonable to fix the net – the problem would be already
identified and there would not be need to carry out the
simulation once more. As mentioned before, such problem
could be fixed introducing the OR-flow, however, both Petri
net and BPEL lack the concept of OR-flow – it could be
replaced by subsequent XOR-flows (IF-THEN branching).

Another task is to identify possible situations which
could lead to infinite looping. The reason behind the looping
mostly is incorrectly defined loop exit condition or loop
variable does not have correct value assigned. This case can
also be identified using ProM tool ‘Basic Log Analysis’
(activities within loop would be far more than others), but
the simulation technique discussed can be used too.

Figure 3. Difference of activities

Figure 4. Simple YAWL workflow – possible infinite loop

Figure 5. Colored Petri net – infinite loop

Fig. 4 shows the example of loop. The workflow has one
local variable – “exitLoop” of Boolean data type, but its
value intentionally is not being changed. Fig. 5 shows
resulting Petri net – variables “loopCount” and “caseId”
were added for demonstrative purposes (token colset
NET_DATA is defined as product INT*BOOL*INT).
Examining the net simulation, one observes that incoming
tokens never leave loop.

The simulation performed to identify the bottlenecks
produces similar results. YAWL has mechanism to distribute
activities to resources defined in its organizational model –
these resources are tokens of different colorset in a colored
Petri net. A transition in Petri net may fire if all the places
leading to transition have tokens – if a ‘resource’ place has
no tokens, transition never fires, and all ‘data’ tokens
accumulate in ‘data’ place until resources are freed and
transition may fire again.

V. EXAMPLE

The example for simulation is quite simple process – the
user is prompted to enter both phone number and email. The
request is processed and notification to user is sent about the
availability of result. If the user does not retrieve the result
within some amount of time, the notification is sent again.
“Wait/Check” activity sleeps for some predefined time and
then checks the value of the element “exitLoop” of each
token to determine if it is possible to exit the loop and end
the process instance or does the instance send the reminder
once more. The example is not too complex because it
contains the possible simulation problems discussed
previously and there is no need to make it more complicated.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Figure 6. YAWL workflow - the simulation example

The example consists of three blocks – AND-flow,
proposed ‘bottleneck’ and possible infinite loop – Fig. 6. The
user of e-service is prompted to enter his/hers email address
and phone number – AND-flow. Then some worker/service
checks the data and prepares answer – possible ‘bottleneck’.
Finally the reminder to user is sent until he/she turns up for
the answer – possible infinite loop. The activity ‘Prepare
answer’ is assigned to YAWL resource “User1”.

There were 12 process instances created – in 6 of them
both e-mail address and phone number were provided, in
other 6 just the e-mail address. As mentioned before, CPN
Tools cannot simulate OR-flows – the only way to diagnose
waiting processes is using ‘Basic Log Analysis’ from ProM
toolset. Fig. 7 illustrates the measurements of the execution
count of each activity – the activity “Register_eMail_14” has
been executed in all 12 instances, while the activity
“Register_phone_15” has been executed only 6 times.

Figure 7. Basic Log Analysis – activity execution total count

After the tweaking the workflow – changing the OR-flow
to AND-flow, all instances of the process could complete
both activities. Fig. 8 shows the initial Petri net which
corresponds to YAWL workflow in example. It has one
token in place “Resources”, which means that all the
concurrent instances will be processed in order by the same
user, as seen in Fig. 9. The availability of only one resource
token forces a wait in other processes, illustrated by 5 tokens
in place “p4”, waiting for the resource “USER 1” to become
available again. Transition “Timeout” was created to add
artificial delay, which simulates the processing of the
application.

Of course, it could be implemented using timed data
types for all colsets used in net, but for the demonstrative
purposes timed net is not used.

Fig. 9 also shows 6 instances moving through loop block
– possible candidate for an infinite loop. The loop exit
variable “exitLoop” in each of the tokens holds value
“FALSE”, so until the transition “t3” can accept the token, it
is stuck in the loop.

Figure 8. The Petri net corresponding to the example

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Figure 9. The bottleneck and the infinite loop in the Petri net

Examining the net in Fig. 9, it is clear that the process
lacks an activity where the applicant can receive the results,
thereby changing the value of variable “exitLoop” in the
corresponding token.

VI. CONCLUSION

The proposed approach of business process modeling,
when initial business process model is created using
academic language and then transformed to the process
described in business language, is quite successful. The main
benefit of this approach is creation of primitive structure,
which would later allow the transformation from YAWL
workflow to any other hierarchical language (not only
BPEL), both academic and business.

After examining and simulating simple workflow
containing three possible problems, it is clear that the
approach can identify simpler design problems; for example,
the bottleneck and dead end identification can be achieved
with this approach. However, more complex problems, such
as deadlock identification or the operation of cancellation
region could not be resolved. The problem lies with Petri
nets, used in the simulation model, because they lack support
of multiple simultaneous process instances or cancellation
regions. One possible solution that could detect the
deadlocks in the process model would be to use XML
Process Definition Language (XPDL). Unfortunately, the
XPDL supports only 9 out of 20 workflow patterns, while
YAWL supports 19 [3][17].

On the other hand, the deadlock identification may be not
as important since the deadlock situations would not arise in
pure BPEL orchestration. The restrictions imposed upon
YAWL workflow would also prohibit the use of OR-flow –
another pattern which cannot be simulated. Taking into
account the restrictions, authors conclude that the proposed
simulation approach may be successfully applied during the
development of electronic services.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the research project “Information and Communication
Technology Competence Center” of EU Structural funds,
contract nr. L-KC-11-0003, signed between ICT
Competence Centre and Investment and Development
Agency of Latvia, Research No. 1.21 ”Research on effective
transformation of business processes to the architecture
conforming to cloud computing”.

REFERENCES

[1] Web Services Business Process Execution Language Version

2.0, Online. Available: http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, accessed on

the 19th of February, 2014

[2] Web Services Flow Language Version 1.0, Online. Available:

http://cin.ufpe.br/~redis/intranet/bibliography/standards/leyma

nn-wsfl01.pdf, accessed on the 19th of February, 2014

[3] W. M. P. van der Aalst and A. H. M. ter Hofstede, „YAWL:

Yet Another Workflow Language” Information Systems, vol.

30(4), 2005, pp. 245–275.

[4] W. M. P. van der Aalst, L. Aldred, M. Dumas, and T. A. H.

M. Hofstede, „Design and implementation of the YAWL

system”, Proc. of the 16th International Conference on

Advanced Information Systems Engineering (CAiSE 04),

LNCS, vol. 3084, 2004, pp. 142–159.

[5] M. Weske, "Business process management", Springer, 2007,

p. 169.

[6] S. Pornudomthap and W. Vatanawood, “Transforming

YAWL workflow to BPEL skeleton”, Proc. of the IEEE

Software Engineering and Service Science (ICSESS 11),

Beijing, China, July 2011, pp. 434-437.

[7] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst,

and N. Mulyar, „Workflow control-flow patterns: A revised

view”, BPM Center Report BPM-06-22, BPMcenter.org,

2006.

[8] S. Rosario, A. Benveniste, S. Haar and C. Jard, “Foundations

for web services orchestrations: functional and QoS aspects,

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://cin.ufpe.br/~redis/intranet/bibliography/standards/leymann-wsfl01.pdf
http://cin.ufpe.br/~redis/intranet/bibliography/standards/leymann-wsfl01.pdf

jointly”, Proc. of the 2nd International Symposium,

Leveraging Applications of Formal Methods, Verification and

Validation (ISoLA 06), 2006, pp. 309-316

[9] E. Zeiris and M. Ziema, ”E-Service architecture selection

based on multi-criteria optimization”, Proc. of the 8th

International Conference PROFES 2007, Riga, Latvia, July

2007, pp. 345-357.

[10] M. Havey, „Essential business process modeling”, O’Reilly

2005, p. 141.

[11] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M.

ter Hofstede, “Pattern based analysis of BPEL4WS”, FIT

Technical Report, FIT-TR-2002-04, Queensland University of

Technology, Brisbane, 2002.

[12] OASIS WS-BPEL Extension for People, Online. Available:

https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=bpel4people,

accessed on the 18th of February, 2014

[13] T. Holmes, M. Vasko, and S. Dustdar, “VieBOP: Extending

BPEL engines with BPEL4People”, Proc. of the 16th

Euromicro International Conference on Parallel, Distributed

and network-based Processing, February 2008, pp. 547-555.

[14] A. Rozinat, M. T. Wynn, W. M. P. van der Aalst, A. H. M. ter

Hofstede, and C. J. Fidge, “Workflow simulation for

operational decision support using design, historic and state

information”, Proc. of the 6th International Conference on

Business Process Management (BPM 08), Milan, Italy,

Springer, 2008, LNCS, vol. 5240, pp. 196 – 211.

[15] W.M.P. van der Aalst et. al., “ProM 4.0: Comprehensive

support for real process analysis” In J. Kleijn and A.

Yakovlev, editors, Application and Theory of Petri Nets and

Other Models of Concurrency (ICATPN 2007), Springer,

2007, LNCS, vol. 4546, pp. 484-494.

[16] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri

nets and CPN Tools for modelling and validation of

concurrent systems”, International Journal on Software Tools

for Technology Transfer, vol. 9(3-4), 2007, pp. 213-254.

[17] WFMC, Workflow Management Coalition Workflow

Standard, Workflow Process Definition Interface – XML

Process Definition Language (XPDL)(WFMC-TC-1025),

Technical report, Workflow Management Coalition,

Lighthouse Point, Florida, USA, August 2012.

[18] D. Lee, H. Shin, and B. K. Choi, “Mediator approach to direct

workflow simulation”, Simulation Modelling Practice and

Theory, vol. 18(5), May 2010, pp. 650-662.

[19] Y. Zheng, Y. Fan, and W. Tan, “Towards workflow

simulation in service-oriented architecture: an event-based

approach”, The 1st International Workshop on Workflow

Systems in Grid Environments (WSGE ’06), vol. 20(4),

March 2008, pp. 315-330.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=bpel4people
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=bpel4people

