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Abstract—The parallel programming model used in a software
development project can significantly affect the way concurrency
is expressed in the code. It also comes with certain trade-offs with
regard to ease of development, code readability, functionality, run-
time overheads, and scalability. Especially the performance aspects
can vary with the type of parallelism suited to the problem at hand.
We investigate how well three popular multi-tasking frameworks
for C++ — Threading Building Blocks, Cilk Plus, and OpenMP 4.0
— cope with three of the most common parallel scenarios:
recursive divide-and-conquer algorithms; embarrassingly parallel
loops; and loops that update shared variables. We implement
merge sort, matrix multiplication, and dot product as test cases
for the respective scenario in each of the programming models. We
then go one step further and also apply the vectorisation support
offered by Cilk Plus and OpenMP 4.0 to the data-parallel aspects
of the loop-based algorithms. Our results demonstrate that certain
configurations expose significant differences in the task creation
and scheduling overheads among the tested frameworks. We also
highlight the importance of testing how well an algorithm scales
with the number of hardware threads available to the application.

Keywords—parallel programming models; performance; TBB;
Cilk Plus; OpenMP 4.0

I. INTRODUCTION

With the widespread availability of parallel processors, and
the focus on even more parallel execution units in upcoming
chips from all major manufacturers, the need for simple but
efficient programming models specifically designed for parallel
computing is becoming increasingly apparent.

For software developers, this means a rethinking of the way
code is written. We can no longer expect that our applications
will automatically run faster with every new processor genera-
tion, unless they are able to dynamically scale to large numbers
of threads that can be assigned to processing units by a runtime
scheduler in such a way that a good load balance is achieved.
And all of this should be done with as little overhead as
possible, both from the perspective of the programmer and from
a performance perspective. While some overheads are algorithm
specific, such as a need for thread local storage, others are
inherent to the programming model and parallel runtime system.
It is important to choose a parallel programming model that not
only performs well on the current generation of widely deployed
quad to hexa-core processors, but also on new generations of
many-core processors.

We investigate how well three of the most popular task-based
parallel programming models for C++ — Intel Threading Build-
ing Blocks (TBB) [1], Intel Cilk Plus [2] and OpenMP 4.0 [3]
— perform when faced with three different but equally common
parallel scenarios: divide-and-conquer style algorithms (merge
sort), for-loops with no data contention (matrix multiplication)
and loops performing a reduction operation (dot product).
We want to determine whether the way concurrent tasks are

spawned has a significant effect on the runtime schedulers.
Secondly, we are also interested in the support for parallel
reduction operations offered by the frameworks, as these are
difficult to do in parallel while at the same time retaining good
scalability to the large numbers of execution units found in
many-core devices. Finally, we also look at the support for
vectorisation offered by Cilk Plus and OpenMP 4.0, and how
it affects the results of the loop-based algorithms.

While there are already a number of existing publications
comparing some subset or superset of TBB, Cilk Plus and
OpenMP, they tend to focus on a particular parallelisation
strategy, such as subdividing the range of a loop or a recursive
algorithm. Most of these articles also do not yet utilise the
constructs for expressing opportunities for vectorisation to the
compiler, which have been added in Cilk Plus and OpenMP 4.0.
These extensions are becoming increasingly important, given
the trend towards wider vector units in general purpose CPU
cores, and the tendency towards heterogeneous architectures
that tightly integrate data-parallel graphics processing units with
the CPU to use them as compute accelerators [4]. The ability to
easily and efficiently combine task and data-parallelism will be
essential for good performance scaling on upcoming hardware.

The following section puts our work into context with exist-
ing publications. Section I-B then provides a brief introduction
to each of the chosen programming models, which is followed
by the implementation of the selected algorithms in Section II.
Section III gives the results of the tests, comparing the perfor-
mance of each of the parallel implementations with respect to a
serial reference implementation. In Section IV, we discuss the
results in more depth, before we draw some conclusions from
the findings in Section V.

A. Related Work
Articles that focus on only one type of parallel problem

are able to go into a significant level of detail with regard to
implementation decisions, but do not demonstrate how well the
programming models deal with a variety of use cases, all of
which can easily occur in a single application. For example,
matrix operations, in particular matrix multiplication, are a
common example for the parallelisation of loop-constructs, as
demonstrated in [5] for TBB, Cilk++ (the predecessor to Cilk
Plus, developed by Cilk Arts before their acquisition by Intel),
OpenMP, the Open Message Passing Interface (Open MPI)
[6] and POSIX (Portable Operating System Interface) threads
(Pthreads) [7]; or in [8] with TBB, Cilk++, OpenMP, Pthreads,
Intel Array Building Blocks (ArBB) [9] and a number of less
well known programming models.

The authors of [10], on the other hand, chose the well known
Mandelbrot algorithm to compare TBB, OpenMP and Pthreads.
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This is similar to matrix multiplication, in that the algorithm’s
outermost loop is straight forward to parallelise. While the
authors briefly discuss an implementation that uses SSE vector
intrinsics to further speed-up the computation, none of the
chosen programming models offered the necessary support on
its own at the time of publication.

Jarp et al. [11] compare the performance of an algorithm
for high energy physics data analysis when implemented in
TBB, OpenMP and Cilk Plus. Where possible, the code is
vectorised using either Cilk Plus array notation or the auto-
vectorisation capabilities of the Intel C++ compiler. While more
complex than in the articles mentioned so far, the parallelisation
is also based on executing loop iterations concurrently, with no
interdependence between the iterations of the first few loops
and the need for a reproducible reduction operation to sum the
results of the final loop.

In [12], the authors compare the performance of irregular
graph algorithms implemented using TBB, Cilk Plus, and
OpenMP 3.0 on Intel’s MIC architecture based ”Knights Ferry”
prototype, the predecessor of the first officially released gener-
ation of Intel Xeon Phi coprocessors. The algorithms imple-
mented are the memory bandwidth intensive graph colouring
and breadth-first search algorithms, as well as a synthetic
algorithm that artificially increases computation over the same
data. Again, loops over vertex and adjacency sets are used to
expose parallelism to the programming models.

In [13], Krieger et al. provide a good discussion of asyn-
chronous parallelism represented using task graphs. They com-
pare implementations of a sparse matrix solver and a molecular
dynamics benchmark using TBB, which offers explicit support
for task graphs, to OpenMP and Cilk Plus. Neither of the latter
two models supports the concept of task graphs out of the box.
Instead, the authors map the concepts of loop-based and task-
spawning based parallelism to task graphs.

Podobas et al. [14] focus on recursive algorithms and specif-
ically the overhead of task creation, spawn and join opera-
tions when using Cilk++, several different implementations of
OpenMP 3.0, as well as a multi-tasking library developed by
one of the authors of the paper.

Although this is not an exhaustive overview of the literature,
it illustrates how our article approaches the problem from a
more general perspective than what has been done before.

B. The Programming Models
This section gives a brief introduction to the programming

models. Specific features that are relevant to the article are
discussed in more detail in the implementation section.

1) Threading Building Blocks (TBB): is a portable C++
template library for the development of concurrent software
using task parallelism. A runtime scheduler is responsible for
maintaining a thread pool and efficiently mapping tasks to
worker threads for execution. In doing so, it abstracts the
programmer from the platform-specific threading libraries, and
also from the details of the hardware, such as the number of
physical cores available to the application.

TBB offers a variety of constructs to express concurrency,
ranging from simple parallel loops to flexible flow graphs. It
also provides a scalable memory allocator and a number of
concurrent data structures, such as a thread-safe vector, queue,
and hash map implementation.

One of the advantages of TBB compared to Cilk Plus
and OpenMP is that it does not require any special compiler

support. Any reasonably modern C++ compiler is able to build
a program that uses TBB.

2) Cilk Plus: introduces three new keywords to C/C++:
_Cilk_for, _Cilk_spawn, and _Cilk_sync. In us-
age and throughout much of the official documentation, it is
common to include the header cilk/cilk.h, which defines
the alternative and more streamlined keywords cilk_for,
cilk_spawn, and cilk_sync as synonyms for the lan-
guage keywords. As the names suggest, the keywords are used
to express concurrent code sections that can be executed in par-
allel by the runtime scheduler. Code sections that are bounded
by these parallel control statements, or the start and end of the
application, but that do not contain any such constructs, are
called “strands” in Cilk terminology.

Cilk Plus also adds array notations, which provide a natural
way to express data-parallelism for array sections. For example:
c[0 : n] = a[0 : n] + b[0 : n] performs an element by
element addition of arrays a and b and writes the results to
c. Furthermore, #pragma simd can be used to enforce loop
vectorisation.

Cilk has to be explicitly supported by the compiler. At the
time of writing, this includes stable support in the Intel icc/icpc
compiler, and a cilkplus development branch for GCC 4.9.
We would have liked to test the performance of the Cilk
extensions in GCC, but the use of any SIMD functionality—
array notations or #pragma simd—caused internal compiler
errors when using the current development version of GCC 4.9
at the time of writing this article (January 2014).

3) OpenMP: consists of a number of compiler directives,
introduced into the code using the #pragma keyword, run-
time library routines, and environment variables. Concurrency
is generally expressed with parallel regions that are denoted by
a #pragma omp parallel directive. The master thread is
forked at the beginning of each such region into a number of
worker threads. At the end of each parallel region, the worker
threads are joined back in after implicit synchronisation. Inside
the regions, OpenMP provides an option to use a selection of
work-sharing constructs that distribute the work amongst the
worker threads.

II. IMPLEMENTING THE ALGORITHMS

We choose three algorithms with very different parallel
characteristics to compare how each of the programming models
and associated runtime libraries handles the given challenges.

A. Merge Sort
The first is merge sort, representing the widely applicable

category of recursive divide-and-conquer algorithms. The im-
plementation can spawn recursive tasks during both the sorting
and merge phases to increase the amount of work that can be
done in parallel. This ensures that even in the last steps of the
algorithm, at the top of the merge sort hierarchy, where the
longest, sorted subsets of the input data are merged, plenty of
concurrent work is available to keep all worker threads busy.

Algorithm 1 gives the pseudo-code for function sort. The
implementation recursively subdivides the input range until the
threshold of length ≤ 32 is reached. At this point, it switches
to the insertion sort algorithm, which has a higher worst case
computational complexity of O(n2), but only a small constant
overhead, which makes it more efficient for very short arrays.

As can be seen, the recursive calls on lines 8 and 9 operate
on non-overlapping sections of the data array, [low, mid]
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Algorithm 1 The implementation of the merge sort algorithm
subdivides the input range until the threshold of length ≤ 32 is
reached. It then switches to the insertion sort algorithm, which
offers better performance for small inputs.
function sort(data, aux, low, high)

1: if low < high then
2: length ← high + low + 1
3: if length > 32 then
4: mid ← (low + high)/2
5: //Note: This is where the parallel implementations
6: //check if (mid−lo) > cutoffsort before they spawn
7: //the following calls to sort() as concurrent tasks.
8: call sort(data, aux, low, mid)
9: call sort(data, aux, mid + 1, hi)

10: call merge(data, aux, low, mid, high)
11: else
12: call insertion sort(data, low, high)
13: end if
14: end if

and [mid+1, hi] respectively. Therefore, they can be safely
executed in parallel. Depending on the programming model and
implementation, either both calls can be spawned as child tasks
while the parent task is suspended until they have completed
their work, or only the first call gets spawned and the parent
processes the second recursive call itself. The second version
intuitively introduces a smaller overhead, as less tasks are
spawned. In either case, the spawned tasks and their parent
must be synchronised before merge is called, which combines
the two independently sorted sub-ranges.

The serial implementation uses a straight forward merge
function that expects the two ranges to be consecutive in
memory. It copies the first half into an auxiliary data array
before it combines the two ranges in the original data array. This
is quite efficient, because memory is accessed sequentially, but
it is not obvious how to parallelise this operation. Therefore,
the recursive merge algorithm from [15] is implemented and
used for all parallel implementations. The pseudo-code in
Algorithm 2 illustrates the procedure.

The merge operation picks the median index of the first range,
idx1, and performs a binary search for the value found at this
index in the second range. Assuming an ascending sort order,
the search returns an index, idx2, according to these rules:

• If the search range is empty, then it returns low2

• If in[idx1] ≤ in[low2], then it returns low2

• If in[idx1] > in[low2], then it returns the largest index in
the range [low2, high2+1] such that in[idx2−1] < in[idx1]

Note that our implementation uses C++ templates to pass a
function pointer or functor to the procedures. The operation
defined by this function is used for all comparisons, and,
therefore, defines how data of a given type is sorted.

On line 10, the algorithm copies the value from the median
index to the output array, and then recursively calls itself
twice. The first call passes the lower parts of the two input
ranges to merge_recursive, while the second call passes
the upper parts. Just like before, the recursive calls operate on
non-overlapping data regions and can be safely performed in
parallel. However, since this algorithm does not traverse mem-
ory sequentially and introduces computational overhead, it runs
slower than the simple serial merge implementation. Therefore,
once sufficient tasks have been spawned, it is beneficial to
switch to a more efficient serial merge operation for the shorter
data ranges on the lower levels of the hierarchy. A cutoff is
defined (line 6) that causes the implementation to do exactly

Algorithm 2 The implementation of the recursive merge func-
tion is based on the algorithm described in [15]. It merges two
sub-ranges of array in, [low1, high1] and [low2, high2], and
writes the result to array out beginning at index lowout.
function merge recursive(in, low1, high1, low2, high2,

out, lowout)
1: length1 ← high1−low1 + 1
2: length2 ← high2−low2 + 1
3: if length1 ≤ length2 then
4: swap low1 ↔ low2, high1 ↔ high2, length1 ↔ length2

5: end if
6: if length1+ length2 > cutoffmerge then
7: idx1 ← (low1+ high1)/2 //pick the median index
8: idx2 ← call binary search(in[idx1], in, low2, high2)
9: idx3 ← lowout + (idx1− low1) + (idx2− low2)

10: out[idx3] ← in[idx1]
11: call merge recursive(in, low1, idx1 − 1, low2, idx2 − 1,

out, lowout)
12: call merge recursive(in, idx1 + 1, high1, idx2, high2,

out, idx3 + 1)
13: else if length1 > 0 then
14: call merge(in, low1, high1, low2, high2, out, lowout)
15: end if

that. This third merge function works like the first one, except
that the two input ranges do not have to be consecutive, as this
is the case when switching from the recursive merge operation
part way down the hierarchy.

Now that the merge sort algorithms have been described, we
can have a look at the different ways used to spawn the recursive
calls in the programming models.

TBB offers a number of ways to spawn concurrent tasks
that call functions, two of which are well suited for this
algorithm: manual task management and the template function
tbb::parallel_invoke. The former, more flexible but
also more complex option, is used in function sort. It defines
two types derived from tbb::task, one to perform the
recursive subdivision of the sort routine, the other to initiate
the recursive merge operation. This code is quite verbose and
is therefore not included here, but examples of the concept can
be found in the reference documentation of the task scheduler
[1] under continuation-passing style.

The implementation of recursive_merge, on the other
hand, uses tbb::parallel_invoke with the C++11
lambda function syntax to spawn the recursive calls and block
until they complete. The resulting code to implement lines 11
and 12 of Algorithm 2 is concise, as the following listing shows
(with template arguments omitted for readability):
t b b : : p a r a l l e l i n v o k e (

[&]{ m e r g e r e c u r s i v e ( in , low1 , idx1 −1,
low2 , idx2 −1, out , lowOut ) ; } ,

[&]{ m e r g e r e c u r s i v e ( in , i dx1 +1 , high1 ,
idx2 , high2 , out , i dx3 + 1 ) ; } ) ;

The Cilk Plus code for spawning functions is even simpler,
as the following listing demonstrates (with both template and
function arguments omitted for brevity):
c i l k s p a w n m e r g e r e c u r s i v e ( . . . ) ;
m e r g e r e c u r s i v e ( . . . ) ;
c i l k s y n c ;

The code essentially behaves like one would expect: the first
call to merge_recursive is spawned as a separate task,
whereas the second call is executed by the current thread,
until the cilk_sync statement synchronises both execution
paths. The actual implementation of Cilk Plus works slightly
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differently, in that the worker thread that performs the spawn
immediately executes the spawned task, while the so called
continuation of the function, that is the statements following
the spawn, can be stolen by an idle worker. The assumption is
that, most of the time, other threads are busy with their own
work, and the continuation is not stolen but simply executed by
the initial worker once it has completed the spawned function
call. This is more efficient, as it takes advantage of data locality
in the processor caches.

In the OpenMP implementation, we utilise the tasking facil-
ity introduced in specification version 3.0. An explicit task can
be created using the task directive, followed by a structured
block. When this directive is encountered by a thread, the task
may be executed right away, or placed into a pool from which
all worker threads in the current team can take tasks to exe-
cute. The following extract from the merge_recursive()
subroutine demonstrates the syntax simplicity:
#pragma omp t a s k

m e r g e r e c u r s i v e ( . . . ) ;
#pragma omp t a s k

m e r g e r e c u r s i v e ( . . . ) ;
#pragma omp t a s k w a i t

Two tasks at the next level of recursion will be created and the
execution of the current task will be halted at the taskwait
directive, until all tasks created at the current level of recursion
have been completed.

B. Matrix Multiplication
The second algorithm in our comparison is matrix multipli-

cation. Given an n × m matrix A and an m × p matrix B,
the algorithm computes matrix C = AB of size n × p. The
most straight forward implementation uses three nested loops,
iterating over the n rows of matrix A, the p columns of matrix
B, and, on the innermost level, over the m columns of A while
multiplying the values with the corresponding cells from B.

A simple but significant optimisation is to swap the two inner
loops, which allows the data for matrix B to be read in row-
major order and, thus, from sequential memory addresses. This
has a big impact on performance. The pseudo-code for this
implementation is given in Algorithm 3. While there are even
more efficient serial algorithms for matrix multiplication, this
implementation is straight forward to parallelise, because it does
not have any data races across the rows of matrix A, given the
precondition that the memory pointed to by C does not overlap
with A or B. As such, it is used to represent the category of
algorithms that can be parallelised by executing independent
loop iterations.

The concurrent implementations simply subdivide the iter-
ation space of the outermost loop into chunks that can be
executed in parallel. The concurrency is limited to at most
n chunks of one iteration each. If we do not swap the inner
two loops, then the outer two loops can be collapsed into one
loop of length np, but the improved memory access pattern
of the optimised code easily makes up for the more limited
concurrency, as even the serial version of this implementation
runs faster than the multi-threaded code for the basic approach.

To further optimise memory access, each row of the matrix
arrays is padded such that the memory address of the first
element is aligned to a 64-byte boundary. This means that the
data in a row is memory aligned for vector instructions of up
to 512-bit width. It also coincides with the common cache line
size on x86 processors. This is relevant, because the algorithm

Algorithm 3 The algorithm for matrix multiplication.
1: for rowa ← 0 to n− 1 do
2: for colb ← 0 to p− 1 do
3: C[rowa][colb]← 0 //initialise rowa in C
4: end for
5: for cola ← 0 to m− 1 do
6: for colb ← 0 to p− 1 do
7: C[rowa][colb]← C[rowa][colb] +

A[rowa][cola]×B[cola][colb]
8: end for
9: end for

10: end for

lends itself to vectorisation of the innermost loop. The padding,
along with the compiler specific alignment guarantee given
by __assume_aligned, in theory enables the compiler to
use the more efficient vector instructions for aligned memory
access. In theory, because Intel’s compiler refuses to do so for
unknown reasons during our tests when targeting AVX, where it
uses the unaligned instructions instead, even though it complies
and uses aligned instructions when targeting SSE.

The programming model specific changes to the code that
allow the iteration range of the loop on line 1 of Algorithm 3
to be processed in parallel, as well as the changes to vectorise
the loop on line 6 where applicable, are explained below.

TBB offers the convenient tbb::parallel_for func-
tion, which uses a partitioner to recursively split the specified
range into smaller chunks until a certain condition is fulfilled.
While different partitioning strategies can be implemented,
the default tbb::auto_partitioner, which attempts to
perform sufficient splitting to balance load, generally performs
quite well. This partitioner is used here. The following code
listing shows the TBB implementation.
t b b : : p a r a l l e l f o r ( 0 , n , [ & ] ( c o n s t s i z e t rowA ) {

/ / l oop body
} ) ;

The vectorisation of the innermost loop uses the Cilk Plus
constructs as explained below.

The Cilk Plus keyword cilk_for is the obvious choice
to parallelise the for-loop when using this programming model.
The compiler converts the loop body into a function that is
called recursively using a divide-and-conquer strategy, thus
turning it into a directed acyclic graph of strands that each
execute a chunk of up to grain size consecutive iterations. The
grain size can be defined with the following pragma placed
just before the loop: #pragma cilk grainsize = 10,
but just like discussed for TBB, there are advantages to leaving
it up to the runtime to decide what the grain size should be,
especially since the pragma is a compile time construct, where
the number of worker threads is usually not yet known. The
signature of the cilk_for loop used in our example is:
c i l k f o r ( s i z e t rowA = 0 ; rowA < n ; ++rowA )

Once again, the change to the serial implementation is
minimal. In fact, it is sufficient to change the definition of
cilk_for from _Cilk_for to for to turn it into a regular
for-loop, which can be very useful when debugging a concurrent
program.

The second aspect we want to parallelise is the innermost
loop on lines 6 to 8 using the Cilk Plus array notation:
cRowPtr [ 0 : p ] += aRowPtr [ aCol ] ∗ bRowPtr [ 0 : p ] ;

A scalar value from A is multiplied with every element from
an entire row of B, and the resulting vector is added to the
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matching elements in the current row of C. It should be noted
that the second argument in the array notation does not specify
the last index in the range, but rather the length of the range.

The OpenMP loop work-sharing construct allows for simple
parallelisation of the serial matrix multiplication code. Adding
the #pragma omp for directive immediately before the
outer loop indicates to the compiler that each loop iteration can
be executed concurrently. The iteration range will be subdivided
into equal chunks and executed concurrently by the threads in
the current team.

Vectorisation of the inner loop can be achieved
with the simd directive, introduced in specification
version 4.0, by inserting #pragma omp simd
aligned(aRowPtr,bRowPtr:64) directly before the
inner loop. The aligned clause indicates to the compiler that
addresses pointed to by aRowPtr and bRowPtr are aligned
to 64-byte boundaries.

C. Dot Product
The dot product of two vectors a and b is defined as

a · b =
∑n

i=1 aibi. The difficulty in parallelising this simple
algorithm lies in the sum operation, which updates a shared
variable across concurrent loop iterations, introducing data races
unless specific precautions are taken. This is a very common
problem in concurrent programming.

A common approach is to use some form of thread local
storage to accumulate the values of the shared variable across all
iterations of the loop executed by a given worker thread, before
a reduction strategy is used to safely merge—or reduce—these
intermediate results into the final value. The three frameworks
used here all offer support for reduction operations, which are
discussed in the following paragraphs.

TBB provides the function parallel_reduce, which
works similar to parallel_for. The form we use here
expects the following arguments: (range, identity,
func, reduction). This shows that, instead of passing
the first and last indices of the iteration range directly to the
loop construct, as we did in the matrix multiplication code,
parallel_reduce expects an object that models TBB’s
range concept as its first argument. This is more flexible and
also an alternative option for parallel_for. Most com-
monly, the predefined tbb::blocked_range is used, which
takes the begin and end values for the range as its arguments,
as well as an optional grain size.

The second argument is the left identity value used for the
reduction. This is followed by a functor (function object) that
implements the body of the loop, taking a reference to the range
type and an initialisation value for the reduction variable as its
arguments. The last argument is another functor that is called
whenever two intermediate values from different tasks need to
be joined. This functor accepts two references of the type of
the reduction variable, and it returns the merged value, which,
in this example, is the sum of the arguments. Conveniently,
the C++ standard template library defines the binary functor
type std::plus in header functional, which does exactly
what is needed for the join operation.

The following code listing shows the implementation of the
reducer in TBB, where T is the type of the reduction variable:

c o n s t T t o t a l = t b b : : p a r a l l e l r e d u c e (
t b b : : b l o c k e d r a n g e<s i z e t >(0 , l e n g t h ) ,
T ( ) , /∗ t h e l e f t i d e n t i t y v a l u e ∗ /
[ = ] ( c o n s t t b b : : b l o c k e d r a n g e<s i z e t > &range ,

T i n i t )
{

f o r ( s i z e t i = r a n g e . b e g i n ( ) ;
i < r a n g e . end ( ) ; ++ i )

{
i n i t += v e c t o r 1 [ i ] ∗ v e c t o r 2 [ i ] ;

}
re turn i n i t ;

} , s t d : : p lu s<T>() /∗ t h e j o i n o p e r a t i o n ∗ /
) ;

Cilk Plus reducers are based on the concept of so called
hyperobjects [16], which return a view of the given type
when they are dereferenced. If the strand that is doing the
dereferencing was stolen (i.e., it is being executed by a different
worker thread than its parent), then the hyperobject returns a
new instance of the view, otherwise it can safely return the same
instance as before. This minimises the overhead of creating view
instances. When a spawned strand finishes and merges back
into its parent, the reduction operation is invoked to reduce
the values of the two view instances, leaving the result in the
surviving strand’s view. At the end of the concurrent section, all
strands have been merged back into the leftmost view, which
now contains the final value. The following listing illustrates
how this works in practice.

c i l k : : r e d u c e r< c i l k : : op add<T> > sum{ T ( ) } ;
c i l k f o r ( s i z e t i = 0 ; i < l e n g t h ; ++ i ) {

∗sum += v e c t o r 1 [ i ] ∗ v e c t o r 2 [ i ] ;
}
c o n s t T t o t a l = sum . g e t v a l u e ( ) ;

The type of the reduction operation is specified as a C++
template argument (the C syntax for reducers depends on
macros and typedefs instead) to the cilk::reducer type,
which, when dereferenced, returns a reference to a value of
type T that is guaranteed not to be in use by another worker.
The reduction operation must be associative, but the order of
the operands is the same as in the serial computation.

OpenMP provides a facility for the reduction operation
through an additional reduction clause attached to the loop
work-sharing construct. The following listing demonstrates the
ease of expressing the concurrent loop for the dot product
operation using OpenMP constructs, including reduction on
variable sum:

#pragma omp p a r a l l e l f o r r e d u c t i o n ( + : sum )
f o r ( s i z e t i = 0 ; i < l e n g t h ; ++ i ) {

sum += v e c t o r 1 [ i ] ∗ v e c t o r 2 [ i ] ;
}

III. PERFORMANCE RESULTS

The test system runs Ubuntu 13.10 on a 3.4 GHz quad-core
Intel Core i7-3770 and 16 GBytes of PC-1600 system mem-
ory. The processor supports 2-way simultaneous multithreading
(SMT), and is, therefore, seen as having eight logical cores by
the system and applications. We use the Intel C++ compiler
version 14.0.1, as this is the only compiler that offers stable
support for all three programming models at the time of writing.

All tests are repeated 30 times and the fastest result is selected
for each, as this most accurately reflects the actual time taken by
the test case, with the least interruptions from system processes
that are running in the background. Non-essential processes,
such as the window manager, were stopped for the test runs.

We first test the merge sort algorithm, which uses two cutoff
values to decide when to stop spawning concurrent tasks as
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Fig. 1. Scaling the parallel sort cutoff value from 32 to 8192.

256 512 1024 2048 4096 8192 16384
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

Merge Cut−off

S
p

e
e

d
−

u
p

 

 

Cilk

Tbb

OpenMP

Fig. 2. Scaling the parallel merge cutoff value from 256 to 16384.
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Fig. 3. The merge sort algorithm running with 1–16 worker threads. The
parallel cutoffs are set to 512 and 8192 for sorting and merging respectively.
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Fig. 4. Matrix multiplication with 1–16 worker threads.
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Fig. 5. Dot product with 1–16 worker threads.

indicated by cutoffsort on line 5 of Algorithm 1 and by
cutoffmerge on line 6 of Algorithm 2. Figure 1 gives the
results for cutoffsort values from 32 to 8192, with the merge
cutoff set to a constant 8192; and Figure 2 gives the results for
cutoffmerge values from 256 to 16384, this time with the sort
cutoff set to a constant 64 for Cilk Plus, 512 for TBB, and 4096
for OpenMP. These numbers for the sort cutoff were chosen
as they are the smallest values that, on average, approach the
best performance achieved with the respective framework. It is
important to set the cutoffs as low as possible without causing
too much overhead, as they limit the amount of concurrency
available at runtime.

Now that the effects of the cutoffs are established, we look
at how the number of worker threads available to the process
affects the performance. Figure 3 shows the results for merge
sort. The data array to be sorted contains 50 × 106 integers.
This test is also performed for the matrix multiplication and dot
product, with the results given in Figures 4 and 5, respectively.
The tests for matrix multiplication use two integer matrices of
size 2500×2500 each, and the dot product implementations are
tested with two vectors of 109 integers as input. These latter
two plots also differentiate between code compiled with and
without the -novec flag, which disables vectorisation when
set.

IV. DISCUSSION

The results show that all three programming models dis-
cussed here can perform well in a wide range of common
parallel scenarios, but that there are also some caveats to be
considered. The OpenMP implementation in the Intel compiler
tends to be a little slower than TBB and Cilk Plus. It is
also more susceptible to a loss of performance than the other
frameworks in four different ways.

Firstly, the results for the scaling of parallel cutoff values in
the merge sort implementation (Figures 1 and 2) show that the
task creation and scheduling overheads introduced by a very
large number of small tasks affect OpenMP more severely than
they affect Cilk Plus or TBB.

Secondly, Figure 3 clearly illustrates that the OpenMP per-
formance suffers significantly from oversubscription of the
processor when more than eight threads (i.e., the number of
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logical cores) are used in the divide-and-conquer algorithm. In-
terestingly, the same can be seen for matrix multiplication with
vectorisation enabled, but not without vectorisation. Cilk Plus
also takes a slight dip in these situations, whereas TBB remains
unperturbed. Only for the dot product, where performance is
clearly limited by the memory bandwidth, does TBB also take
a small performance hit once the thread count exceeds four (i.e.,
the number of physical cores).

Thirdly, the static division of the problem space for parallel
for-loops only works well when all cores of the processor are
fully dedicated to the current task, the number of worker threads
is equal to the number of logical cores, and each loop-iteration
consists of the exact same set of instructions, that is, the amount
of work to be done in every iteration is the same. If the operating
system, or indeed a concurrent part of the application itself,
schedules some other work on one of the cores, then the static
work division can unnecessarily delay the completion of the
loop, potentially letting some cores go idle, as the remaining
threads are not able to take some of the load from the busy
core and distribute it among the idle cores. The effects of
load balancing issues are evident in the significant dip of the
OpenMP performance in Figures 4 and 5 with five threads, and
to a lesser extent six and seven threads, only that in our tests it
is caused by a number of worker threads that is not a multiple
of the core count. Static work load balancing with its minimal
scheduling overhead certainly has a place in the repertoire of a
parallel framework, but a dynamic scheduling algorithm would
appear to be a more robust default choice. It should be noted
that OpenMP does offer dynamic scheduling policies as options.

The final aspect we would like to highlight with regard to
OpenMP is the lower SIMD performance when using the re-
spective pragma for matrix multiplication (Figure 4). However,
it is unclear why it is slower than the other implementations or
auto-vectorisation, and we intend to investigate this further by
comparing the machine instructions generated by the compiler
for the different implementations.

The performance of TBB is impressive given that it does not
have the advantage of being integrated into the language, which
means that certain optimisations that can only be done when
the compiler is aware of the parallel constructs are not open to
it. The drawback of TBB is that it is somewhat more verbose
than the other approaches, which makes the code more difficult
to read. The introduction of lambda functions into the C++11
standard has helped tremendously in this regard, allowing for
much more streamlined constructs than before, but TBB still
does not reach the level of integration of Cilk Plus or OpenMP.
Especially the former integrates beautifully into the language, to
the point where it almost becomes difficult to spot the parallel
sections. However, this minimalistic feel in Cilk Plus is also
partly due to the smaller number of configuration options, which
may be seen as a drawback when one needs more control.
OpenMP pragmas are plentiful and concise, allowing for many
optional parameters. OpenMP 4.0 even adds support for a
number of additional modes of operation, such as off-loading
of parallel sections to an accelerator, that are not covered by
either of the other frameworks.

While TBB does not include support for vectorisation, it
does not hinder it being added to the algorithm by other means
either, as demonstrated by the use of Cilk Plus array notation
in the vectorised TBB results. These array notations are another
example of Cilk’s seamless integration into the language, as the
resulting code is both concise and easy to understand.

V. CONCLUSION

To conclude, we would like to emphasise several important
characteristics of parallel programming models: ease of devel-
opment, code readability, functionality, runtime overheads, and
scalability. The last point is significant because of the trend
towards integrating ever higher numbers of parallel execution
units into new processor architectures.

In the future, we would like to compare the performance of
Cilk Plus and OpenMP with their respective implementations
in GCC, and potentially other compilers as well, to determine
how consistent the results given here are across different imple-
mentations. The performance of TBB is expected to offer less
surprises between compilers, as it is a template library rather
than a language extension.

We would also like to run the same tests on the Intel Xeon
Phi, Intel’s many-core architecture, to find out how well the
frameworks scale to the significantly larger number of cores.
This would give a good indication of how future-proof the
parallel programming models are.
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