
Analysis of the Development Process of a Mutation Testing Tool for the C++ Language

Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Juan José Domı́nguez-Jiménez
UCASE Software Engineering Group, Department of Computer Science and Engineering

University of Cádiz, Cádiz, Spain
Email: {pedro.delgado, inmaculada.medina, juanjose.dominguez}@uca.es

Abstract—Mutation testing is a fault-based software testing tech-
nique to measure the quality of a test suite depending on its ability
to detect faults in the code. This technique has been applied to an
assortment of languages of very diverse nature since its inception
in the late 1970s. However, the researchers have postponed its
development around C++ in favor of other mainstream languages.
This paper aims to survey the mutation testing research regarding
C++, studying the existing tools and approaches. To the same
extent, we discuss the different aspects that should be taken into
account in the construction of a comprehensive mutation tool for
this language, from the analysis of the code to the execution of
the mutants. In addition, we expound how the technique can be
assessed so that it can contribute effectively in the composition
of a complete test suite. The findings in this paper pose that the
construction of a mutation tool for this language is complex, but
still realizable.

Keywords-Mutation testing; Mutation tool; C++.

I. INTRODUCTION

Mutation testing is a fault injection technique used to
determine the ability of a test suite locating errors in the
code [1]. The effectiveness of error detection of a test suite
is defined as the percentage of faults that can be detected
by their test cases. The technique involves the creation of
mutants, i.e., versions of the original program with a simple
syntactic change. These faults are injected in the code through
the mutation operators, which are based on common mistakes
made by programmers in a certain programming language.

Mutation testing aims to ensure that a test suite is able to
detect all those typical mistakes when comparing the output
of the original program and the mutated version for the same
test cases; a mutant is killed when the output is different for
at least one test case, but remains alive if the output keeps
unaltered. In this latter case, either a new test case is needed
to detect the fault or the mutant is completely equivalent to
the original program.

Mutation testing is a white-box testing technique, so it has
to be studied around a particular language. Thus, the technique
has been successfully applied to several languages, finding
tools that automate the generation of mutants for a wide range
of them [2]. Unlike other languages, C++ is clearly behind
in the research and in practice. In literature, most research on
mutation testing has been focused on procedural programming
paradigm. For object-oriented (OO) languages, the research
has put the focus on Java or C# [3]. In contrast, the few existing
works about mutation testing and C++ [4], [5] are unfinished
and various matters are pending.

The overall goal of this paper is to analyze the state of the
art in order to devise the construction of a mutation tool for
C++. The matters that should be handled for that purpose have
been surveyed, from the composition of a catalog of mutation
operators to the execution of tests and the manner to assess the
results. Consequently, the information introduced throughout
the sections lays the foundations for the application of mutation
testing to C++, exposing an approach to follow in the future
based on the abstract syntax tree for the insertion of errors.

The current state regarding the mutation operators, the mu-
tation tools and the language itself are explored in Section II.
Section III deals with the operators at different levels, the
steps to accomplish in the creation of a mutation tool and
the techniques to mutate the code. In Section IV, the way to
gear the evaluation of the results in order to judge the operator
behavior is commented, giving special emphasis to the issues
that can arise in the analysis of results. Finally, the last section
presents the conclusions and also the future work.

II. RELATED WORK

This section looks in depth the existing background around
C++ and mutation testing.

A. Mutation Operators

To illustrate the underlying idea in mutation testing, we
can consider the C++ code fragment below:

if(a > 100){...}

If we have defined a mutation operator replacing the
relational operator ’>’, the fragment above can be modified
creating a mutant like the following:

if(a < 100){...}

A set of mutation operators can be defined for each of these
levels [2], [6]:

• Unit level: Standard operators applied indistinctly to
a function or method, checking its correctness. These
operators are usually known as traditional operators.

• Class level: This level deals with the mutation of OO
features.

• Integration level: Intermediate level between the unit
and the system levels, checking the function invoca-
tions.

151Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

• Multi-class level: Operators at this level are intended
to test a complete program: interactions among func-
tions, classes, etc.

As advanced in the introduction, we can state that the devel-
opment of mutation testing with respect to C++ is underrep-
resented. Regarding a particular set of mutation operators for
this language, the research accomplished is really scarce as we
cannot find a comprehensive catalog of operators.

However, two attempts have been performed up to now.
The first work in [4] composed a set of traditional operators;
it is named in [7], a paper aiming to supply the equivalence
of operators among different languages. These operators are
based on the operators defined for Ada and the Fortran
operators used by the tool Mothra [8]. This approach cataloged
the operators in four blocks: operand replacement, operator
insertion, arithmetic operator replacement and relational oper-
ator replacement. These groups and their operators are shown
in Table I. On the other hand, several mistakes regarding OO
features have been enumerated around C++ in [5]. This paper
poses five categories of possible faults: Inherit, Associate,
Access, Object and Member. Nevertheless, the three first
blocks are applied to the Unified Modeling Language (UML)
specification and only the errors belonging to the Object and
Member groups refer to the C++ code. The faults exposed in
that paper are summarized in Table II. The research regarding
both approaches seems given up as no new progress has been
published since then.

B. Mutation Tools

At present there are a variety of tools for several lan-
guages implementing mutation testing through different tech-
niques [2], as Mothra for Fortran [8], MuJava for Java [9]

TABLE I. STANDARD OPERATORS PROPOSED BY ZHANG [4].

Block Operator Description

Operand
Replacement
Ops.

OVV Variable replaced by a variable
OVC Variable replaced by a constant
OVA Variable replaced by an array reference
OVP Variable replaced by a pointer reference

OCV Constant replaced by a variable
OCC Constant replaced by a constant
OCA Constant replaced by an array reference
OCP Constant replaced by a pointer reference

OAV Array reference replaced by a variable
OAC Array reference replaced by a constant
OAA Array reference replaced by an array

reference
OAP Array reference replaced by a pointer

reference
OAN Array name replaced by an array name

OPV Pointer reference replaced by a variable
OPC Pointer reference replaced by a constant
OPA Pointer reference replaced by an array

reference
OPP Pointer reference replaced by a pointer

reference
OPN Pointer name replaced by a pointer name

Operator
Insertion Ops.

IBO Binary Operators Insertion
IOU Unary operator insertion

Arithmetic
Operator
Replac. Ops.

AOR Arithmetic operator replacement

Relational
Operator
Replac. Ops.

ROP Relational operator replacement

TABLE II. FAULTS IDENTIFIED BY DEREZIŃSKA [5] FOR THE Object
AND Member CATEGORIES.

Category Description

Object
Calls a same function member from a different
object of the same class.
Calls a function from an object of a different class,
but both classes have the common base class.
Calls a function from the derived class instead of
the base class.

Member

Calls a different (complementary) function member.
Calls a function inherited from the base class.
Swaps calling of function members in a class.
Swaps calling of functions inherited from one class.
Accesses the different data in the same object.

or MILU for C [10]. Concerning C++, only commercial tools
can be found tackling the mutation analysis for the C++ code:
Insure++ [11] from Parasoft, PlexTest [12] from ItRegister
and Certitude [13] from SpringSoft. These three tools appear
in this known survey around mutation testing [2]. In that paper,
it is also stated that the ESTP tool can be applied to C++, but
it is only devoted to the C language actually.

Table III displays a summary with the main characteristics
of the tools discussed (shown in [2]). All of them are applicable
to C and C++, as both languages share much of their syntax.
A description of these commercial products is given below:

• Insure++: This tool uses mutation testing as one more
technique to enhance the software quality. Its approach
is somewhat different from classical mutation testing
because it only creates functionally equivalent mu-
tants. These equivalent mutants are expected to pass
the tests (are still alive after their execution against the
test suite) instead of failing. Insure++ only performs
some standard mutations as mentioned in [14].

• PlexTest: This product implements a highly selective
mutation testing. Thus, it only performs the mutation
of deletion, i.e., the removal of an instruction. This
approach tries to avoid the generation of equivalent
mutants present in non-selective and full-selective
mutation testing.

• Certitude Functional Qualification System: This tool
combines the mutation testing technique with static
analysis, qualifying a program functionally and dis-
covering faults that might not be detected otherwise.
Although this product has also been used for the
analysis of software systems, it is now addressing
the microelectronics industry in order to simulate the
performance of a digital circuit before the design is
finally accomplished.

As a conclusion of the information shown, we can state that
these tools are different in terms of the operators supported and
the techniques to accelerate the testing process, but they are
not applicable to the whole language. Moreover, the products
presented are not absolutely centered on mutation testing (as
Insure++) or they are not only used for C++ (as Certitude).

Java and C# are the OO languages that have been mostly
tackled by researchers. The construction of frameworks for
these OO languages are mainly based on the insertion of
faults directly in the bytecode, like MuJava [9], and also on
the reflection mechanism to analyze the original program and

152Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

TABLE III. EXISTING MUTATION TESTING TOOLS FOR C++.

Application Year Character Available
Insure++ C/C++ 1998 Source Code

Instrumentation
Commercially

Plextest C/C++ 2005 General Commercially
Certitude C/C++ 2006 General Commercially

determine where the operators can be used. Derezińska et al.
[14] has proposed and built two different tools: CREAM, using
a parser-based approach, and ILMutator, which manipulates
both the meta-data and the intermediate code generated from
C# to insert the faults modeled by the operators. The former
approach is better in identifying where the operators can be
applied and complying with the correctness conditions, but the
latter is more efficient as no recompilation is needed.

C. The C++ Language

C++ is a complex programming language when compared
to other similar general purpose languages, such as Java or C#.
This language includes a great variety of alternatives. Besides,
many of the features are confusing for the programmers, being
usual that they neglect using some of them. Thus, we found
surprising that this popular language has been omitted in the
field of mutation testing up to now. Because of being so popu-
lar, we consider that it is worthwhile addressing the application
of this technique to C++ in order to harness the contributions
of mutation testing for this language, which presents various
complicated characteristics for the programmers.

In this regard, we can mention several particular fea-
tures, such as the destruction and construction of objects,
the existence of pointers and references, the use of exception
handling or the inclusion of templates. Multiple inheritance is
another characteristic which can lead to the creation of new
specific mutation operators as well as should be taking into
account in general when tackling class-level operators relating
inheritance, as more than a single class needs to be considered.

C++ is a language in continuous change and some stan-
dards have been approved since 1998, when the first standard
appeared. A new standard, C++11 [15], was ratified in 2011
to replace the previous standard, C++03. It represents the first
substantial change since 1998. Besides some minor modifica-
tions, the C++11 standard presents important changes. This
standard also provides new features and extends the C++
Standard Library. Currently, the changes introduced by this
standard are taking place gradually and even compilers are not
fully adapted to the new proposals. Nonetheless, the C++14
standard is already being prepared to provide the language with
new functionalities.

III. DEVELOPMENT PROCESS OF A C++ MUTATION TOOL

Mutation testing confronts two main challenges when con-
structing a mutation tool. The technique to insert mutations
in the code can be useful to handle certain features of the
language, but might not cover all its elements. In the case of
C++, as a mainstream language which provides a great range
of alternatives (unlike specification languages, for instance),
it is necessary to tackle the structures of the language in an
uniform manner so that the mutations are the expected ones
in every operator addessing the same elements. Secondly, the

generation and execution of mutants to obtain the results sup-
pose a high computational cost, especially when considering
the size of today’s programs. These and other concerns are
commented in the following subsections.

A. Catalog of Operators

C++ is a multi-paradigm programming language which is
considered as an enhancement of C with new features, such
as the manipulation of objects [15]. Mutation testing can be
applied at different levels of the language, as mentioned in
Section II-A. Taking into account the dimension of C++, it
seems challenging to apply this technique to every level of
the language all at once. In addition, the more operators are
included in the process, the more mutants will be produced,
with a consequent increase in the computational expenses.
Thus, a new catalog of operators can be composed for each
different level so that they can be used conveniently.

The research around C is the starting point concerning
traditional operators. The similarity between these two pro-
gramming languages is well-known, as C++ is derived from
C. Most of the works and tools created for C are based on
mutation operators described by Agrawal et al. in [16]. In the
aforementioned paper, the operators are separated into four
main categories: statement, operator, variable and constant
mutations. Because of the compatibility with C, all operators
can be adapted to the language (see Table IV). However, some
of them should be slightly modified in their implementation
with respect to some characteristics in C++, such as the
possibility to declare a variable at any point in a block.

According to the class level, we should survey the existing
mutation operators regarding the main OO features in other
languages, undertaking the two following steps:

1) To observe how the particular characteristics of C++
alter the operators, determining if they can be adapted
to the language or they have to be rejected instead.

2) Whenever possible, to add specific operators for this
language and its distinguishing features (see Sec-
tion II-C).

Many papers centered on this level can be found and sets of
mutation operators have been defined around the OO program-
ming [17], [18]. A similar survey to this paper around OO
languages studies the class mutation operators [3]. In Table V,
we expose the catalog of operators defined by Offutt et al. for
Java [17], which is one of the most prominent and complete
set of class mutation operators. Regarding this list and the
aforementioned step (1), most of these operators could be
adapted with some changes but the same purpose (for example,
the super keyword is not used in C++), but others are likely
to be excluded, such as the last four operators: they refer to
methods for which there is no a convention in C++.

To conclude, we have to note that the number of levels of
the language is not fixed at all. For instance, another level
of operators could be created only for the C++ Standard
Library, which provides a great range of extra functionalities
commonly used. Thus, the level chosen by the user depends on
the program characteristics and the type of testing intended to
perform. In other words, the subset of operators to be applied
should be selected after a preprocessing of the program under

153Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

TABLE IV. MUTATION OPERATORS FOR THE C LANGUAGE PROPOSED
BY AGRAWAL ET AL. [16].

Block Operator Description

Statement
mutations

STRP Trap on Statement Execution
STRI Trap on if Condition
SSDL Statement Deletion
SRSR return Statement Replacement
SGLR goto Label Replacement
SCRB continue Replacement by break
SBRC break Replacement by continue
SBRn Break Out to nth Enclosing Level
SCRn Continue Out to nth Enclosing Level
SWDD while Replacement by do-while
SDWD do-while Replacement by while
SMTT Multiple Trip Trap
SMTC Multiple Trip Continue
SSOM Sequence Operator Mutation
SMVB Move Brace Up or Down
SSWM Switch Statement Mutation

Operator
mutations

Obom (Binary Operator Mutations)
Ocor Comparable operator replacement
Oior Incomparable operator replacement

Ouor (Unary Operator Mutations)
Oido Increment/Decrement
OLNG Logical Negation
OCNG Logical context negation
OBNG Bitwise Negation
OIPM Indirection Operator Precedence Mutation
OCOR Cast operator replacement

Variable
mutations

Vsrr Scalar Variable Reference Replacement
Varr Array Reference Replacement
Vtrr Structure Reference Replacement
Vprr Pointer Reference Replacement
VSCR Structure Component Replacement
VASM Array reference subscript mutation
VDTR Domain Traps
VTWD Twiddle Mutations

Constant
mutations

CRCR Required Constant Replacement
Cccr Constant for Constant Replacement
Ccsr Constant for Scalar Replacement

test (PUT), so that the operators can be adjusted as much as
possible to the concrete application.

B. Applying Mutations

Mutation testing process can be subdivided into three
principal stages: the analysis of the code, the generation of the
mutants and the execution of the test suite. For the development
of a mutation tool, the implementation of these three steps is
necessary, so we describe the purpose of these parts below:

• Analyzer: This module first acts getting the program
under test and the set of operators defined. Its role is to
determine the mutation operators that can be applied,
that is, the mutation locations for each of the operators.

• Generator: Taking into account the analysis accom-
plished in the previous phase, the function of the
generator is to create the mutant for its later execution.
In the production of the mutant, the generator should
take care of the correctness conditions so that the
mutant generated is not an invalid mutant, i.e., it can
be compiled because the program has no errors.

• Test suite runner: This module executes the mutants
against a test suite defined for the PUT, finally classi-
fying them into alive (the mutant has not been detected
by any test case), dead (the mutant has been killed by
one or more test cases) or invalid.

The two first phases are quite related as they require an imple-
mentation technique that actually allows us to detect and then

TABLE V. MUTATION OPERATORS AT THE CLASS LEVEL PROPOSED BY
OFFUTT ET AL. [17].

Block Operator Description
Encapsulation AMC Access modifier change

Inheritance

IHI Hiding variable insertion
IHD Hiding variable deletion
IOD Overriding method deletion
IOP Overriding method calling position change
IOR Overriding method rename
ISI super keyword insertion
ISD super keyword deletion
IPC Explicit call of a parent’s constructor

deletion

Polymorphism

PNC new method call with child class type
PMD Member variable declaration with parent

class type
PPD Parameter variable declaration with child

class type
PCI Type cast operator insertion
PCD Type cast operator deletion
PCC Cast type change
PRV Reference assignment with other comparable

variable
OMR Overloading method contents replace
OMD Overloading method deletion
OAC Arguments of overloading method call

change

Java-specific
features

JTI this keyword insertion
JTD this keyword deletion
JSI static keyword deletion
JSD static keyword deletion
JID Member variable initialization deletion
JDC Java-supported default constructor creation
EOC Reference assignment and content

assignment replacement
EOA Reference comparison and content

comparison replacement
EAM Acessor method change
EMM Modifier method change

create a faulty version of the program intended to test (the third
step will be addressed in the Section III-C). The options shown
in Section II-B to mutate the code are not available in C++,
that is, there is nothing similar to the bytecode and a parser-
based approach cannot be used resorting to the reflection
mechanism in order to check the state of objects at runtime. In
the case of the approach used in ILMutator [14], neither that
kind of intermediate code exists in C++. However, a similar
technique to insert faults into the code can be followed as
the compilers use an internal representation in the form of
abstract syntax tree (AST). Bearing in mind the complexity
of C++, we consider that reusing this representation can be
fruitful instead of parsing the high-level source code; the AST
seems to be much more comprehensible than the intermediate
code used in C#, which limits the application of the operators.
Notwithstanding, recompilation will be needed, so we cannot
leverage this approach for a more efficient mutation system as
in C#.

Regarding the generator, we discern two basic options for
the mutant creation. The first is the generation of the mutants
so that each one can be run as a standalone program, making
a duplicate of the original version but containing the mutated
files. The second option supposes creating new files only for
those where the mutation was included, using the same build
system of the original program. In the former, a copy of every
file involved in the project will be needed for each mutant,
but we can resort to different techniques to save space in disk.
In the latter, the mutation tool has to be aware of the build
system to perform the appropriate changes so that the mutated
files are compiled, which could be a cumbersome task.

154Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

C. Execution of Tests

The goal of mutation testing is to determine how good is
a test suite defined for a program. Thus, we need to automate
the execution of the mutants against the test suite. The process
stars assuring that the test suite is successfully passed by the
original program. Then, the mutants are run and a comparison
can be performed in order to observe whether the changes
introduced in the program have been detected or not.

Nevertheless, the connection between the test suite defined
by the tester and the mutation tool can be a concern when it
comes to automate the test suite execution: the test suite should
be able to provide the results so that the tool can retrieve and
process them. On the one hand, there is no a prevailing testing
framework for C++ currently, unlike Java for instance, where
JUnit is broadly used. Hence, we can decide to give support
for one or more frameworks, but we advocate the design of
a library which can be used whatever the way the test suite
was developed. This latter approach allows for the execution
of tests consistently as the same methods will be used to report
the output. On the other hand, when testing mutants generated
from class mutation operators, posing different test scenarios
of the usage of objects is needed. Besides, various kinds of test
cases are required within the scenarios depending on the need
of testing that concrete situation. This aspect is different from
other unit tests or languages where some values are provided
to the program and simply an output is expected.

IV. HOW TO EVALUATE THE RESULTS

In this section, we discuss several matters to be considered
when assessing the results obtained with mutation testing.

A. Quality of Operators

The evaluation of the catalog of mutation operators is
a significant step in the application of mutation testing to
check if the operators are really effective for the purpose
of the technique. The most basic and used calculation for
the adequacy level of the test suite is the mutation score in
each particular mutation operator. The mutation score indicates
the percentage of dead mutants versus the number of non-
equivalent mutants. In other researches, further dimensions
have been studied. Smith et al. [19] proposed to determine the
quality of mutation operators by relating the possible states of
the mutants after the test suite execution: killed by the initial
test suite, killed by a new test case, killed by a new test case
specifically defined to kill another mutant or not killed.

Estero-Botaro et al. [20] defined some terms to evaluate
the operators for Web Services Business Process Execution
Language (WS-BPEL) 2.0, like “weak mutant”, which is killed
by every test case in the test suite, or “resistant mutant”, which
is killed by a single test case. Thus, the quality of a mutation
operator can be determined analyzing some conditions. In
summary, the operator should generate a low number of invalid
and equivalent mutants (as they do not help in the mutation
analysis), but produce few weak mutants as well as the more
resistant mutants the better.

Derezińska [18] exposed an idea of the effectiveness for the
class mutation operators (specifically for C#), posing various
questions (gathered in Table VI) that should be answered to

TABLE VI. QUESTIONS POSED BY DEREZIŃSKA [18] TO ASSESS THE
EFFECTIVENESS OF MUTATION OPERATORS.

Questions
1 Does an operator can be applied in real programs to

simulate faults of programmers?

2 Are any invalid mutants generated by an operator?

3 Does an operator generate many equivalent mutants?

4 Is an operator effective in assessing the quality of given test
cases? If a mutant is not killed by a given test suite, is it
easy to create test cases which kill it?

deem the usefulness of an operator. In addition, this author
qualifies a test suite calculating the quotient of the number of
test which killed mutants generated by an operator over all test
runs performed on these mutants (see Equation 1).

Effectiv. =
Killed test runs

(Totalmut.− Equiv.mut.) ∗ Total tests
∗ 100 (1)

These different kinds of measuring the quality of the testing
process should be taking into account when applying this
technique to C++, depending on the evaluation intended to
perform as well. The operators producing a great amount of
mutants should be also studied in depth because they can entail
much computation.

B. Issues in the Assessment of Results

When evaluating the results obtained from the applica-
tion of mutation testing, several issues should be considered.
Firstly, the different behavior of the programs can alter in
a great degree the results produced with an operator. For
example, an operator can involve the creation of many mutants
in some cases whereas there are no mutants in others. Thus, we
have to take care of this matter in order to generalize results.

Secondly, the initial test suite deserves special attention.
Especially in the mutants at the class level, the test suite may
not cover every class or member that has been injected a fault.
Hence, the mutant will not be killed by any test case, but they
cannot be considered as equivalent. This fact occurs very often
in C++, where a program is formed by different source files
and classes, some of them providing secondary functionalities.
This issue has been tackled by Segura et al. in [21], defining
the term “uncovered mutant” as that mutant whose fault is
not exercised by a test suite. These uncovered mutants should
not been computed when assessing the results. Likewise, the
authors of that paper also notice the possibility of executing
some duplicated mutants when the fault is inserted in a class
which is reused in more than a single file. Therefore, either
the creation of duplicated mutants is handled in order to avoid
them in the generation stage, or they are manually omitted in
the execution of the tests.

Finally, the identification of equivalent mutants is still an
undecided problem, so the alive mutants are visually analyzed
to determine which of them are actually equivalent. This is
a harsh and tedious task and, in several situations, it is not
easy to assure whether a mutant is definitely equivalent or not.
This matter can be even more pronounced in the case of C++
because of its features. According to the great size of current

155Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

programs leading to a high number of mutants, the analysis
of each one of them can be rather costly in time. Because of
this, Segura et al. [21] creates a new classification of mutants:
“undecided”. Within this group are cataloged those mutants
whose study exceeds an established threshold of time without
reaching a final conclusion. Anyway, the implementation of
a technique to reduce the time execution or the number of
mutants should be considered.

V. CONCLUSION

This paper has supplied a comprehensive survey of the
state of mutation testing with regard to the C++ programming
language, which has not been almost tackled in the literature
and neither in the practice so far. The paper provides useful
information about the mutation operators and various research
fields where further investigation should be accomplished
before conceiving the creation of a mutation tool for this
language: the implementation technique to inject the syntactic
faults in the program, the execution of tests and the evaluation
of the empirical results.

With respect to all these matters, we can summarize that a
set of operators can be composed at different levels of the
language, being possible to adapt the operators from other
similar languages. The class level regarding OO features is
probably the area most interesting; this paradigm is widely
used in C++ and further research is needed at this level to ob-
tain more concluding results around class mutation operators.
Likewise, we consider promising the approach of reusing the
abstract syntax tree generated by a compiler because it ensures
a complete coverage of the features of the language.

In the future, we intend to start out the development
of a mutation tool, first composing a set of class mutation
operators. In addition, we aim to study the possibilities of the
abstract syntax tree to found the mutation locations as well
as appropriately mutate the code. Once the mutants can be
created, a complete and automated tool can be constructed to
perform some experiments to evaluate the operator quality and
the usefulness of the technique in C++. Another salient issue is
the high number of mutants that can be produced, so the usage
of a cost reduction technique may direct the future research.

VI. ACKNOWLEDGMENTS

This paper was partially funded by the research scholarship
PU-EPIF-FPI-PPI-BC 2012-037 of the University of Cádiz and
by the MoDSOA research project (TIN2011-27242) under the
National Program for Research, Development and Innovation
of the Ministry of Science and Innovation (Spain).

REFERENCES

[1] M. R. Woodward, “Mutation testing - its origin and evolution,”
Information and Software Technology, vol. 35, no. 3, Mar. 1993,
pp. 163–169. [Online]. Available: http://dx.doi.org/10.1016/0950-
5849(93)90053-6

[2] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, Oct. 2011, pp. 649 –678.

[3] Z. Ahmed, M. Zahoor, and I. Younas, “Mutation operators for object-
oriented systems: A survey,” in Computer and Automation Engineering
(ICCAE), 2010 The 2nd International Conference on, vol. 2, feb. 2010,
pp. 614 –618.

[4] H. Zhang, “Mutation operators for C++,” retrieved: April, 2014.
[Online]. Available: http://people.cis.ksu.edu/˜hzh8888/mse project/

[5] A. Derezińska, “Object-oriented mutation to assess the quality of tests,”
in Proceedings of the 29th Conference on EUROMICRO. Belek,
Turkey: IEEE Computer Society, 2003, pp. 417–420.

[6] P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at the multi-class
and system levels,” Science of Computer Programming, vol. 78, no. 4,
2013, pp. 364–387, special section on Mutation Testing and Analysis
(Mutation 2010) and Special section on the Programming Languages
track at the 25th ACM Symposium on Applied Computing.

[7] J. Boubeta-Puig, A. Garcı́a-Domı́nguez, and I. Medina-Bulo, “Analogies
and differences between mutation operators for WS-BPEL 2.0
and other languages,” in Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE. Berlin, Germany: IEEE,
2011, p. 398–407, print ISBN: 978-1-4577-0019-4. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2011.52

[8] K. N. King and A. J. Offutt, “A FORTRAN language system for
mutation-based software testing,” Software - Practice and Experience,
vol. 21, no. 7, 1991, pp. 685–718.

[9] Y. S. Ma, J. Offutt, and Y. Kwon, “MuJava: an automated class mutation
system,” Software Testing, Verification and Reliability, vol. 15, no. 2,
2005, pp. 97–133.

[10] Y. Jia and M. Harman, “MILU: a customizable, Runtime-Optimized
higher order mutation testing tool for the full c language,” in Practice
and Research Techniques, 2008. TAIC PART ’08. Testing: Academic
Industrial Conference, Aug. 2008, pp. 94 –98.

[11] “Insure++: C/C++ testing tool, detect elusive runtime memory
errors - Parasoft,” retrieved: April, 2014. [Online]. Available:
http://www.parasoft.com/insure

[12] “PlexTest ITRegister,” retrieved: April, 2014. [Online]. Available:
http://www.itregister.com.au/products/plextest

[13] M. Hampton and S. Petithomme, “Leveraging a commercial muta-
tion analysis tool for research,” in Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, 2007.
TAICPART-MUTATION 2007, Sep. 2007, pp. 203 –209.

[14] A. Derezinska and K. Kowalski, “Object-oriented mutation applied
in common intermediate language programs originated from C#,” in
Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on, 2011, pp. 342–350.

[15] S. B. Lippman, J. LaJoie, and B. E. Moo, C++ Primer, Fifth Edition,
5th ed. Addison-Wesley, 2013.

[16] H. Agrawal and et al., “Design of mutant operators for the C program-
ming language,” Technical Report SERC-TR-41-P, Software Engineer-
ing Research Center, Purdue University, West Lafayette, Indiana, Tech.
Rep., Mar. 1989.

[17] J. Offutt, Y. S. Ma, and Y. R. Kwon, “The class-level mutants of
MuJava,” in Proceedings of the 2006 International Workshop on Au-
tomation of Software Test, K. Anderson, Ed. Shanghai (China): ACM,
May 2006, pp. 78–84.

[18] A. Derezińska, “Quality assessment of mutation operators dedicated
for C# programs,” in Proceedings of VI International Conference on
Quality Software, P. Kellenberger, Ed. Beijing (China): IEEE Computer
Society, Oct. 2006, pp. 227–234, ISSN 1550-6002.

[19] B. Smith and L. Williams, “On guiding the augmentation of an
automated test suite via mutation analysis,” Empirical Software
Engineering, vol. 14, no. 3, 2009, pp. 341–369. [Online]. Available:
http://dx.doi.org/10.1007/s10664-008-9083-7

[20] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo, “Quantitative
evaluation of mutation operators for ws-bpel compositions,” in Software
Testing, Verification, and Validation Workshops (ICSTW), 2010 Third
International Conference on, 2010, pp. 142–150.

[21] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés,
“Mutation testing on an object-oriented framework: An experience
report,” Information and Software Technology, vol. 53, no. 10, 2011, pp.
1124 – 1136, special Section on Mutation Testing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584911000826

156Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

