
Implementing UNIQUE Integrity Constraint in Graph Databases

Kornelije Rabuzin, Martina Šestak, Mladen Konecki

Faculty of Organization and Informatics, Varaždin

University of Zagreb

Zagreb, Croatia

e-mail: kornelije.rabuzin@foi.hr, msestak2@foi.hr, Mladen.Konecki@foi.hr

Abstract—Databases enable users to store and retrieve

data. Howe ver, uncontrolled data entry often results in having

duplicate or incorrect data stored in the database, which

makes it inconsistent. To prevent this, it is recommended to

specify integrity constraints in the database. In this paper, the

current possibilities in the field of integrity constraints, with
special emphasis on graph databases as a relatively new

category of NoSQL databases, are discussed. After giving an

overview of the current situation regarding integrity

constraints in mostly used graph database query languages, a

successful implementation of UNIQUE integrity constraint in a
Neo4j graph database is shown.

Keywords-integrity constraints; graph databases; Gremlin;

UNIQUE

I. INTRODUCTION

Inserting data into a database is an important process that

must be properly managed and controlled in order to ensure
the validity of the inserted data (no Garbage-In-Garbage-Out

situations) and to enforce database integrity, i.e., to maintain
the database in a consistent state. The database is considered

to be consistent if it satisfies the set of specified integrity

constraints [1]. Formally, integrity constraints can be defined
as formal representations of invariant conditions for the

semantic correctness of database records [2] and as general
statements and rules that define the set of consistent database

states or changes of states, or both [3].
Thus, integrity constraints contain the semantic

information about data stored in the database, i.e., they are

properties that must be satisfied for the database and data we
want to insert into the database. If these properties are

satisfied, then the data is considered to be semantically
correct and the operation or transaction is executed

successfully. Otherwise, if the integrity constraint is violated,
then the transaction is rejected or a specific compensation

action is activated, which will reduce the impact of that
transaction and repair the current database state.

Once constraints are specified, the database management

system (DBMS) has to ensure that all constraints are satisfied
and none are broken. Eventually, it is possible that some

constraints will be broken during a transaction, but when the
transaction ends, all constraints have to be satisfied.

Nowadays, most relational DBMSs provide some kind of
support for declarative integrity constraints, which can be

grouped into three categories:

 Column constraints, which are specified on table
columns (e.g., NOT NULL, UNIQUE, CHECK,

PRIMARY KEY, REFERENCES);

 Table constraints, which are used when some

constraints cannot be specified as column
constraints (e.g., when tables have compound

primary keys consisting of multiple columns, then

one cannot specify a PRIMARY KEY co lumn
constraint on these columns, since the PRIMARY

KEY clause can appear only once within the table
definition); and

 Database constraints, which are defined for multiple
tables or the entire database through assertions,

which belong to the database schema and can be
created using the CREATE ASSERTION clause.

Triggers represent an interesting alternative for

specifying more complex constraints involving several
tables, i.e., database constraints. Basically, when an event

like INSERT or UPDATE occurs in the database, a function
(procedure) is activated and several different statements can

be executed as a reaction to the event.
Unfortunately, most DBMSs are quite limited when it

comes to expressing more complex conditions and rules to

be satisfied, but also the compensating actions responsible
for repairing the database state. This disadvantage can be

replaced by expressing integrity constraints as triggers and
stored procedures. However, note that they are more

challenging to manage as data and constraints evolve.
Lately, maintaining database integrity has become very

costly and time consuming due to the increasing amount of
data stored in databases and the large number of specified

integrity constraints, where each requires some time to be

validated.
In the last few years, new database solutions have

appeared on the database market as an alternative to
traditional relational databases. These solutions avoid using

the Structured Query Language (SQL) as the only query
language for interacting with databases, so they are known

under the term Not only SQL (NoSQL) databases. NoSQL

databases can be classified in four solution groups: key-value
databases, document databases, column-oriented databases,

and graph databases.
Unlike relational databases, NoSQL databases are usually

schema-less, thus not placing much attention and importance
on strictly maintaining database consistency.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

As already mentioned, graph databases represent a

special category of NoSQL databases. Even though they are
a relatively new alternative to relational databases, much

effort has been made in their development (both in graph
DBMS products implementation and the literature).

According to [4], Neo4j, the most widely used graph DBMS,
is the 21st most popular DBMS on the database market

(including relational and other NoSQL DBMSs) and has

constant growth in popularity.
Like every database, graph databases are based on the

graph data model, which consists of nodes connected by
relationships. Each node and relationship contains (not

necessarily) properties, and is given a label. Hence, data is
stored as property values of nodes and relationships. In the

graph data model, nodes are physically connected to each
other via pointers (this property is called index-free

adjacency [5], and the graph databases that implement index-

free adjacency are said to be using native graph processing),
thus enabling complex queries to be executed faster and

more effectively than in a relational data model.
The main advantage of graph databases is their ability to

model and store complex relationships between real-world
entities. Nowadays, there are some situations where it is

easier to model a real-world domain as a graph, rather than

as a set of tables connected via foreign keys in the relational
data model. Querying a graph database is much faster

(especially as the database size grows) when nodes are
connected physically as compared to relational databases,

where many performance-intensive table join operations
must be made. Except for the performance improvements,

graph databases offer much bigger flexibility in data

modelling, since no fixed database schema must be defined
when creating a graph database. The lack of a fixed schema

makes later changes to the database structure much simpler,
since graphs can be easily updated by adding new subgraphs,

nodes, relationships, properties or labels.
In this paper, we discuss integrity constraints in graph

databases. Section 2 contains an overview of graph
databases, related researches on the topic of integrity

constraints in graph databases and the current level of

support for integrity constraints provided by most commonly
used graph DBMSs. In Section 3, the concrete

implementation of the UNIQUE integrity constraint in a
Neo4j graph database is shown and explained. Finally, in

Section 4, we g ive a short conclusion about the topic of this
paper and provide some brief information about our future

work.

II. INTEGRITY CONSTRAINTS IN GRAPH DATABASES

When it comes to data consistency and integrity
constraints in graph databases, one can notice that this area is

still not developed in detail and provides space for further

improvements and research. Some people even say that the
reason for this is the flexible and evolving schema supported

by graph databases, which makes integrity constraint
implementation more difficult.

As discussed in [6], Angles and Gutierrez wrote a
research paper in which they identified several examples of

important integrity constraints in graph database models ,

such as schema-instance consistency (the instance should

contain only the entities and relations previously defined in
the schema), data redundancy (decreases the amount of

redundant information stored in the database), identity
integrity (each node in the database is a unique real-world

entity and can be identified by either a single value or the
values of its attributes), referential integrity (requires that

only existing entities in the database can be referenced), and

functional dependencies (test if one entity determines the
value of another database entity).

In [7], Angles also considered some additional integrity
constraints such as types checking, verifying uniqueness of

properties or relations and graph pattern constraints.
Apart from the Neo4j graph DBMS, which will be used

for UNIQUE integrity constraint implementation, there are
other graph DBMSs available on the database market. In this

paper, an overview of the support level for integrity

constraints will be given for the five most popular graph
DBMSs. According to [8], when it comes to graph DBMS

popularity ranking, Neo4j DBMS is followed by Titan,
OrientDB, AllegroGraph and InfiniteGraph. The level of

support in Neo4j DBMS will be exp lained in the fo llowing
subsections.

Titan is a graph DBMS developed by Aurelius , and its

underlying graph data model consists of edge labels,
property keys, and vertex labels used inside an implicitly or

exp licitly defined schema [9]. After giv ing an overview of its
characteristics and features, one can say that the level of

support for integrity constraints is pretty mature and
developed. Titan offers the possibility of defining unique

edge and vertex label names, edge label mult iplicity

(maximum number of edges that connect two vertices) and
even specifying allowed data types and cardinality of

property values (one or more values per element for a given
property key allowed). OrientDB is a document-graph

DBMS, which can be used in schema-full (all database fields
are mandatory and must be created), schema-hybrid (some

fields are optional and the user can create his own custom
fields) and schema-less (all fields are optional to create)

modes [10]. OrientDB provides support for defining and

specifying even more integrity constraints , such as:

 Defining minimum and maximum property value;

 Defin ing a property as mandatory (a value for that
property must be entered) and readonly (the

property value cannot be updated after the record is
created in the database);

 Defin ing that a property value must be unique or
cannot be NULL;

 Specifying a regular expression, which the property

value must satisfy; and

 Specifying if the list of edges must be ordered.

Unlike Titan and OrientDB, AllegroGraph does not
provide support for any kind of user-defined integrity

constraints, which means that there are no database control
mechanisms to verify the validity of the inserted data.

AllegroGraph databases only ensure that each successfully
executed database transaction will change the database’s

consistent internal state [11]. InfiniteGraph is a distributed

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

graph database solution offering strong or eventual database

consistency, which only supports property value type
checking and referential integrity constraints [12].

As already mentioned, Neo4j is the most commonly used
graph DBMS, so its support for integrity constraints will be

discussed by giving a practical overview of features provided
by query languages used in a Neo4j database: Cypher and

Gremlin. In the following subsections, their characteristics

and the level of support for integrity constraints will be
reviewed.

A. Cypher

Cypher is a declarative, SQL-like query language for

describing patterns in graphs using ascii-art symbols. It
consists of clauses, keywords and expressions (predicates

and functions), some of which have the same name as in
SQL. The main goal and purpose of using Cypher is to be

able to find a specific graph pattern in a simple and effective
way. Writ ing Cypher queries is easy and intuitive, which is

why Cypher is suitable for use by developers, professionals

and users with a basic set of database knowledge.
Cypher is the official query language used by Neo4j

DBMS. When using Neo4j DBMS, one can define integrity
constraints by using the CREATE CONSTRAINT clause

and drop them from the database by using the DROP
CONSTRAINT clause. At this point of time, Neo4j enables

users to define only the unique property constraint, but it
only applies to nodes. This constraint is used to ensure that

all nodes with the same label have a unique property value.

For instance, to create a constraint that ensures that the
property Name of nodes labeled Movie has a unique value,

the following Cypher query must be executed:

CREATE CONSTRAINT ON (m:Movie) ASSERT m.Name IS

UNIQUE

Fig. 1 shows the error message displayed to the user

when the user tries to insert a movie with duplicate name,
which violates the previously specified integrity constraint.

B. Gremlin

Gremlin is a graph traversal language developed by

Apache Tinkerpop. Gremlin enables users to specify steps of
the entire graph traversal process. When executing Gremlin

query, several operations and/or functions are evaluated from
left to right as a part of a chain.

At this point of time, Gremlin does not provide support

for any kind of integrity constraint, which leaves a lot of
space for improvement.

In the next section, it is shown how to implement support

for integrity constraints in a Neo4j graph database.

III. SPECIFYING UNIQUE NODES AND RELATIONSHIPS IN

GREMLIN

In the relational data model, the UNIQUE constraint is

used when a column value in a table must be unique in order
to prevent duplicate values to be entered into a table. The

UNIQUE constraint can be specified for one or more

columns in a table. For instance, if certain table columns are
declared as UNIQUE, it implies that the values entered for

these columns can appear only in one table row, i.e., there
cannot be any rows containing the same combination of

values for these columns.
It is already mentioned that in graph database theory, the

UNIQUE constraint is defined as a constraint to be applied

on a node/relationship property, therefore having the same
meaning as the corresponding constraint in the relational

database world. However, to prevent data corruption and
redundancy when repeatedly inserting nodes and

relationships with the same properties, we propose that the
UNIQUE constraint should be and can be defined on nodes

and a relationship as a whole, instead of only on some of

their properties.
In [6], some implementation challenges regarding

different vendors and approaches for the implementation,
such as application programming interfaces (APIs),

extensions and plugins, have been discussed. The research
paper was concluded by choosing the API approach, so a

web application has been built by using Spark, a Java web
framework, and Apache Tinkerpop, a graph computing

framework for graph databases, which contains classes and

methods for executing Gremlin queries. The application
interacts with a Neo4j graph database through the JAVA

API. The purpose of the application is to showcase the usage
of the unique node/relationship constraint when creating a

node/relationship through executing Gremlin queries. The
web application consists of a GUI where a user can create

one or two nodes connected via a relationship or query-

created nodes and relationships.
The UNIQUE constraint is defined in an additional graph

DBMS layer, which behaves as a mediator between the
graph database and the application itself. The constraint itself

is implemented as a special verification method, which is
called when the user wants to create unique nodes and

relationships in order to check whether these nodes and

relationships already exist in the database.

A. Creating one unique node

When creating one unique node, the user first needs to

select a node label from the dropdown list. For instance, to

create an author, one needs to select the Author label and set
its property values (“firstname” and “lastname”). After that,

if the Author node needs to be unique, i.e., in order to ensure
that there are no nodes with the same labels and property

values in the database, the UNIQUE checkbox must be
checked, as shown in Fig. 2.

Figure 1. Constraint violation error message

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

When running this query, the entered data is sent as
parsed parameters first to the method , which source code is

shown in Fig. 3, which checks if an Author node with the
received parameters already exists in the database. This

method retrieves all nodes (by using the g.V() nodes iterator)

that are labeled “Author” (by using the has() method, which
returns true if the values are equal or false if they differ) and

have the same property values as the node, which was sent as
a parameter to the method. If true, the method returns the

existing node. However, if a node with the same label and
property values does not exist in the database, it will return a

NULL value. Then, a new “Author” node will be created

within a Neo4j database transaction by calling the
addVertex() method and setting the appropriate property

values (Fig. 4).

If the user tries to create another author named William
Shakespeare, no changes are made to the database, i.e., the

database does not change its internal state, and the result of

this unsuccessful operation is a notification displayed to the
user (Fig. 5).

B. Creating one unique relationship

When creating a relationship between two nodes, the user

first needs to select the necessary labels from dropdown lists.
For instance, if one wants to create a “BORROW ED”

relationship type between “User” and “Book” nodes, the
aforementioned labels must be selected, and their property

values defined. After having selected the required node and
relationship labels and entered their property values , if the

selected relationship needs to be unique, i.e., in order to

ensure that there are no relationships of the same type with
equal property values in the database, one needs to check the

UNIQUE checkbox first (similar to the definition of a unique
node).

Figure 3. Creating one unique node

Figure 6. Creating one not unique relationship

Figure 5. Error message when trying to create duplicate node

Figure 4. Creating new "Author" node in the database

Figure 2. Checking whether the entered “Author” node exists in the

database

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

To show what happens if that checkbox is not checked, a
“BORROW ED” relationship between the user “Alex

Young” and the book “Romeo and Juliet” has been created ,
as shown in Fig. 6. If a relationship is not specified to be

unique, the Gremlin query for creating two nodes and this

relationship is directly executed with the received parameters
(nodes and relationship property values), which means that

there is no verification for whether these objects already exist
in the database (there is no call for the verification method).

Each time a user runs this query, “Author” and “Book”
nodes and a “BORROW ED” relationship between them will

be created in the database by simply calling the previously

exp lained custom createUser() and createBook() methods.
After creating the nodes, the addEdge() Gremlin method is

called, which creates a relationship between the two created
nodes and sets all necessary relationship property values

through the property() method. The nodes and the
relationship are created within a single database transaction,

as shown in Fig. 7.

If a relationship is not specified to be unique, the result is
duplicate data in the database, as shown in Fig. 8.

Conversely, as with creating unique nodes, if the
UNIQUE checkbox when creating a relationship is checked,

then the method that checks if a relationship with same type
and properties exists in the database is called and executed.

This method, which source code is shown in Fig. 9, performs

a graph traversal in order to find the required nodes and
relationship within the graph. It first retrieves all nodes

labeled “User” with the property values equal to the new
node that we want to create, finds the outgoing edges

(relationships) labeled “BORROW ED” with the same
property value as the new relationship by calling the Gremlin

outE() traversing method, and then finds the incoming
vertices (nodes) of that relationship, which are labeled

“Book” and have the same property values as the new node

by calling the inV() method .

Thus, if the user tries to create a duplicate

“BORROW ED” relationship, which already exists in the
database, then the appropriate notification message, similar

to the message shown in Fig. 4, is displayed.

As already mentioned, the UNIQUE integrity constraint
is implemented as a method, which is a part of the

application. Its main purpose is to check whether the nodes
and relationships, which the user is trying to create, already

exist in the database. This is achieved by executing simple
Gremlin queries that traverse the graph in order to find the

subgraph corresponding to these nodes and relationships. As
such, this infers that the implemented UNIQUE constraint

does not affect the database performance in any way, since it

is implemented through a layered approach as a method
within the application. As a result, this constraint and the

implemented method increase the complexity of creating
nodes and relationships, and, like every other method within

an application, it requires additional time to be executed
(especially when performing more complex graph

traversals). The Gremlin query language is, however, proven

to perform well in these situations. Therefore, the cost of
time necessary to execute the method is still acceptable when

considering the benefits for database consistency.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, the importance of integrity constraints in
the database has been discussed. After giving an overview of

the current support for defining integrity constraints provided
by the most popular graph DBMSs, it can be said that the

level of support is currently minimal and mostly theoretical,
thus leaving this issue available for further research and

improvements. To showcase the UNIQUE integrity

constraint in graph databases, that integrity constraint was
implemented as a method within an application, which

performs Gremlin queries in a Neo4j database in order to
check for existing nodes and relationships. Therefore, the

UNIQUE constraint has been successfully implemented as a
separate independent layer, which fulfills the required task

(preventing duplicate nodes and relationships from being

created in the database and enforcing database integrity and
consistency), with minimal effect on application

performance and absolutely no effect on database
performance while executing queries .

In the future, this research is to be extended by
implementing more complex integrity constraints, which will

be discussed in our future research papers.

Figure 8. Duplicate relationships in the database

Figure 7. Creating new "BORROWED" relationship in the database

Figure 9. Checking whether the entered "BOROWED" relationship

exists in the database

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

REFERENCES

[1] H. Ibrahim, S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca, U.
S. Chakravarthy, et al., “Integrity Constraints Checking in a

Distributed Database,” in Soft Computing Applications for

Database Technologies, vol. 19, no. 3, IGI Global, 1AD, pp.

153–169.

[2] H. Decker and D. Martinenghi, “Database Integrity

Checking,” Database Technol., pp. 961–966, 2009.

[3] E. F. Codd, “Data models in database management,” in ACM
SIGMOD Record, 1980, vol. 11, pp. 112–114.

[4] DB-Engines, “Popularity ranking of database management

systems,” 2016. [Online]. Available: http://db-
engines.com/en/ranking. [Accessed: 17-Sep-2016].

[5] I. Robinson, J. Webber, and E. Eifrem, Graph Databases:

New Opportunities for Connected Data. “ O’Reilly Media,

Inc.,” 2015.

[6] K. Rabuzin, M. Šestak, and M. Novak (in press), “Integrity

constraints in graph databases – implementation challenges,”

2016.

[7] R. Angles, “A comparison of current graph database

models,” in Data Engineering Workshops (ICDEW), 2012

IEEE 28th International Conference on, 2012, pp. 171–177.

[8] “DB-Engines Ranking - popularity ranking of graph

DBMS.” [Online]. Available: http://db-

engines.com/en/ranking/graph+dbms. [Accessed: 16-Sep-
2016].

[9] Titan:db by Aurelius, “Schema and Data Modeling.”

[Online]. Available:

http://s3.thinkaurelius.com/docs/titan/0.5.1/schema.html.
[Accessed: 17-Sep-2016].

[10] OrientDB Manual, “Graph Schema.” [Online]. Available:

http://orientdb.com/docs/2.1/Graph-Schema.html. [Accessed:
17-Sep-2016].

[11] Franz Inc., “Introduction | AllegroGraph 6.1.1,” 2016.

[Online]. Available:
http://franz.com/agraph/support/documentation/current/agrap

h-introduction.html. [Accessed: 17-Sep-2016].

[12] R. Angles and C. Gutierrez, “Survey of graph database

models,” ACM Comput. Surv., vol. 40, no. 1, pp. 1–39, 2008.

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

