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Abstract—In this paper, it is analyzed the possibility of the 
classification of the compressed sensed 
electroencephalographic (EEG) signals. Compressed sensing is 
a signal processing technique for efficiently acquiring and 
reconstructing a signal, by finding solutions to 
underdetermined linear systems. This is based on the principle 
that, through optimization, the sparsity of a signal can be 
exploited to recover it from far fewer samples than required by 
the Shannon-Nyquist sampling theorem. The signals 
classification is done directly in the compressed space and the 
EEG signals reconstruction is not necessary. For testing we 
used EEG signals from a brain computer interface system used 
for a spelling paradigm. For the classification task, two 
methods were used, both based on machine learning, namely, 
Deep learning and Gradient boosting learning. 

Keywords- EEG; Compressed sensing; BCI; classification; 
P300 

I.  INTRODUCTION 
Compressed sensing (CS), during recent years, was in 

focus for various fields of science and technology as applied 
mathematics, computer science, electrical engineering, and 
signal processing. The novelty introduced by CS is that, in 
certain conditions, the traditional limits of sampling theory 
can be overcome. CS relies on the fundamental fact that 
various signals can be represented using only several 
nonzero coefficients in a suitable basis of vectors. This basis 
is named dictionary. Based on the known dictionary and 
using only very few measurements, such signals can be 
reconstructed using nonlinear optimization methods. 
Compressed sensing method is an example of usage in 
practice of recent mathematical results [1] – [4]. 

The literature from recent years comprises an impressive 
number of papers in the field of CS, including 1D and 2D 
medical signals. Among 1D signals, the most frequently 
analyzed in connection with CS applications are ECG and 
EEG since they are most used in the medical world. In the 
case of EEG signals, there is often a need of records for 
longer periods of time (i.e., during the night) or for a large 
number of channels. On the other hand, during the past few 
years, the human-computer interaction has been thoroughly 
investigated by researchers from the fields of neurology, 
psychology and information technology [1] – [8]. 

Over the past decades, the development of the technology 
of brain–computer interface (BCI) has provided a novel and 
promising communication channel for patients suffering 
from severe motor disabilities, but, being cognitively intact, 
they need an alternative method to interact with the 
environment. 

As a non-muscular communication and control system, 
BCI has shown emerging possibilities for people with 
severe motor disabilities by allowing them to write 
sentences, move a cursor on the computer screen, play an 
electronic ping pong game, control an orthosis that provides 
hand grasp, or operate a brain actuated wheelchair. During 
the last two decades, BCI electroencephalographic (EEG) 
based systems have used a variety of electrophysiological 
signal components: visual evoked potentials, slow cortical 
potentials, P300 evoked potentials, mu and beta rhythms, 
and cortical neuronal action potentials [9] [10]. 

The P300 is a characteristic waveform in the human EEG, 
occurring as a response to rare task-relevant stimuli in a 
series of task-irrelevant stimuli. The classical oddball 
paradigm is usually used to evoke the P300: two categories 
of stimuli are presented to a subject in random order, one of 
the categories occurs only rarely and subjects are instructed 
to determine to which category a stimulus belongs [9] – 
[11]. 

The main goal of this paper is to test the following 
hypothesis: if some data can be classified in the original 
space, they can be acquired using the CS principle and then 
they can be classified with approximately similar results in 
the compressed space. In other words, the close neighbors 
remain close and far neighbors remain far in compressed 
space. In other words, the proportion of distances between 
neighbors is preserved. 

The layout of the rest of the paper is as follows: In 
Section II, there are described the principles of compressed 
and the mathematical formalism of this method. In Section 
III is presented P300 spelling paradigm of brain computer 
interface. In Section IV is described the experimental 
paradigm used for this work, the subjects and the 
preprocessing of the data. In Section V, the boosting 
algorithm and deep learning used for classification are 
described. The experimental results and conclusions are 
presented in Section VI. 
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II. COMPRESSED SENSING 

Compressed sensing is a rather new paradigm in signal 
processing that speculates the fact that the so-called sparse 
signals can be reconstructed from a sma.ll number of 
projections on a set of random signals.  CS applications in 
biosignals acquisition, compression and processing have 
been intensely investigated in the last decade [1] – [7]. 

It is well-known that data acquisition is fundamentally 
governed by the familiar sampling theorem [8] that states 
that an f0-bandlimited signal can be recovered from its 
samples if the sampling frequency is at least 2f0, i.e., twice 
the highest frequency of the signal spectrum. Thus, in a time 
window W, an f0-bandlimited analog signal can be 
represented by N=2f0W samples equally spaced at T=1/2f0, 
i.e., as a vector belonging to the space RN. Such a signal can 
be alternatively described using any complete set of 
orthogonal functions in RN. Let us observe that sampling is 
equivalent to taking projections (scalar products) on the 
elements of the canonical basis. In the general case, the 
signal can be reconstructed from its projections on N 
orthogonal (or only linear independent) elements in RN the 
canonical basis being the most natural particular case and 
usually the most convenient. Indeed, the above 
considerations are rigorously valid in the tacit hypothesis of 
an infinite precision sampling.  

On the other hand, there are many (classes of) signals that 
allow reconstruction based on fewer samples or projections 
than those required by the sampling theorem. The 
explanation is that in such cases the samples contain 
redundant information so that the signals can be compressed 
and can be reconstructed using projections and known prior 
information. Such a class is that of sparse signals, the prior 
information about them being the fact they admit a 
representation based on a small number of elements/atoms 
in RN. A signal is called k-sparse if it is known that it can be 
represented using a number k of elements of RN, the most 
interesting case being that when k<<N.  

Formally, a discrete signal/vector NRx∈   is said to be 
k-sparse if there exists a basis },...,1,{ Nii =Ψ=Ψ  in 

RN such that most of the elements },...,1,{ Nii == αα  

of its representation in that basis, αΨ=x , are zero or, in a 
more relaxed hypothesis, approximately zero so that the 
signal can be represented well enough with the k’s largest 
terms iα  from its expansion with respect to the above basis. 
In other words, x is said to be compressible, since it can be 
represented only by the nonzero/largest elements iα . CS 
theory shows that a k-sparse signal, i.e., which is 
compressible in a base (or, more general, dictionary) Ψ can 
be recovered with very good quality from a number m of the 

order of magnitude  
 

))/log(( kNkOm =  
 

of non-adaptive linear projections on a set of vectors Φ  
which are not coherent with the first, i.e., their elements 
cannot be used for a compressed representation of 
any Nii ,...,1, =Ψ .  

Thus, instead of measuring the N components of the 
signal in the canonic base, a number of m )( Nmk <<<  

linear projections on the elements of the matrix mN*Φ  are 
acquired for obtaining the measurement signal (show in 
Figure 1) 

 
αα Θ=ΦΨ=Φ= xy       (1) 
 

where we have neglected the measurement noise. The 
vectors on which x is projected onto are arranged as the 
rows of a mxN projection matrix Φ , m < N, where N is the 
size of x and m is the number of measurements.  
 

 
Figure 1.  Matrix operations in Compressed Sensing 

The system of equations (1) is obviously undetermined 
since Nm < , the reconstruction of the initial signal can be 
made only based on the hypothesis that it is compressible. 
Under certain assumptions on Φ  and Ψ , however, the 
original expansion vector α can be reconstructed as the 
unique solution to the optimization problem  

 
ααα ΦΨ== ytosubject

l0
minargˆ   (2) 

 
the signal is then reconstructed with 
 

α̂ˆ Ψ=x    (3) 
 

where l0 is the pseudonorm equal to the number of nonzero 
elements of α  , i.e., (2) amounts to finding the sparsest 
decomposition of the measurement vector y in the 
dictionary ΦΨ . Unfortunately, (2) is combinatorial and 
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unstable when considering noise or approximately sparse 
signals. Two directions have emerged to circumvent these 
problems: (i) pursuit and thresholding algorithms that seek a 
sub-optimal solution of (2) and (ii) the Basis Pursuit 
algorithm [1] that relaxes the 0l  minimization to 1l , solving 
the convex optimization problem (4) instead of the original 
one: 
 

ααα α ΦΨ== ytosubject
l1

minargˆ  (4) 

 
Many of the results obtained so far in CS refer to 

“genuine” sparse signals, i.e., to signals that can be 
represented using precisely k<<N atoms from a given 
dictionary. However, the results are formally valid for 
signals that are “approximately sparse”, i.e., k is the number 
of non-negligible elements. Moreover, signals can be sparse 
in overcomplete dictionaries Ψ , i.e., dictionaries with more 
atoms than their dimension; certain biomedical signals have 
been found to be sparse in such kind of overcomplete 
dictionaries. This is the reason why in the past few years, 
techniques inspired from the mathematic fundamentals of 
CS have also been applied in the field of biomedical signals, 
both at the level of processing methods for 
electroencephalographic (EEG) signals [2] –  [4] but also in 
practical applications [5] including compression, 
transmission and reconstruction of ECG signals using 
smart-phones [6]. 

III. BRAIN COMPUTER INTERFACE - P300 SPELLER 
PARADIGM 

P300 speller paradigm uses the P300 waves that are 
expressions of event related potential produced during 
decision making process. P300 has two subcomponents (as 
shown in Figure 2 a): the novelty P3 (also named P3a), and 
the classic P300 (renamed as P3b). P3a is a wave with 
positive amplitude and peak latency between 250 and 280 
ms; the maximum values of the amplitude are recorded for 
the frontal/central electrodes. P3b has also positive 
amplitude with a peak around 300 ms; higher values are 
recorded usually on the parietal areas of the brain. 
Depending on the task, the latency of the peak could be 
between 250 and at least 500 ms. 

 

 

 
Figure 2.  P300 wave and the classical P300 spelling paradigm described 

by Farwell-Donchin 1988 

One of the first examples for BCI is the algorithm 
proposed by Farwell and Donchin [11] that relies on the 
unconscious decision making processes expressed via P300 
in order to drive a computer. In their approach, a 6x6 matrix 
(see Figure 2.) of symbols is presented to the user and rows 
and columns of the matrix are flashed in random order. 
Subjects can select a symbol from the matrix, by counting 
the number of times it flashes. Each time the desired 
character flashes, a P300 is elicited and can be detected by 
an appropriate algorithm. 

IV. EXPERIMENTAL PARADIGM, DATA ACQUISITION AND 
PREPROCESSING 

In order to test the classification methods, we used EEG 
signals collected by Ulrich Hoffmann and collaborators in 
their laboratory and used by them in the papers [11][15]. 
The EEG data are available on the internet free at  [14].  

A setup similar to that described in [11] was used to 
record and to label the data. A 6×6 matrix containing the 
letters of the alphabet and the numbers 1-9 was presented to 
the subjects on a laptop screen. Rows and columns of the 
matrix were flashed randomly for 100ms with a 100ms 

7Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-571-5

ICCGI 2017 : The Twelfth International Multi-Conference on Computing in the Global Information Technology



pause between flashes. Flashes were block randomized, i.e., 
after 12 flashes each row and column was flashed exactly 
one time. Two datasets were recorded from each of the 
subjects on different days. In the first session subjects were 
asked to spell the french words ”lac,” ”nuage,” ”montagne, 
”and ”soleil.” In the second session subjects had to spell the 
words ”fromage,” ”chocolat,” ”pain,” and ”vin” [12]. 

Data was recorded from channels FP1, FP2, AF3, AF4, 
F7, F3, FZ, F4, F8, FC1, FC5, FC6, FC2, T7, C3, CZ, C4, 
T8, CP1, CP5, CP6, CP2, P7, P3, PZ, P4, P8, PO3, PO4, 
O1, OZ, O2 with a Biosemi Active 2 system at 2048Hz. The 
data was then re-referenced to the average of channels O1, 
OZ, O2, lowpass filtered between 0 and 9 Hz with a 7th 
order Butterworth filter, and downsampled to 128 Hz. The 
channels used for re-referencing and channels T7, T8 were 
not used for further computations because they did not carry 
relevant information for the detection of P300s. A more 
detailed description for experimental paradigm, data 
acquisition, and preprocessing and artifact rejection is 
presented in [12]. 

 

 
 

 
 

 
Figure 3.  Electrodes configurations 

In this paper, it was used a small dataset from this 
databased with EEG signals.  

V. THE CLASSIFICATION METHODS 
In this section the boosting algorithm and deep learning 

used for classification are described. 

A. Gradient boosting 
The Gradient boosting classifier from [12] was used. It 

should be noted that the used software was developed by the 
authors of that work in order to make a comparison of 
classification results compared to the original EEG data and 
the same EEG data but suppose they were purchased used 
compressed sensed principle. 

Gradient boosting is a machine learning method, which 
builds one strong classifier from many weak classifiers [12].  

In [12], Hoffmann and collaborators have described a 
simple, yet powerful method to detect the P300 from single 
EEG trials and use it to build a P300 based spelling device. 
Boosting was employed, to compute from training data a 
function that detects P300s from single EEG trials. In 
particular, gradient boosting was used to stepwise maximize 
the Bernoulli log-likelihood of a logistic regression model.  
Here ordinary least squares regression was used as weak 
learner. For a gradient boosting with OLS presented in detail 
see paper [12]. 

B. Deep learning 
In this paper, we used deep learning in order to learn 

useful representation of features directly from data. 
Autoencoder neural networks are able to extract features 
from unlabeleld data. Autoencoders are used as instruments 
to train deep neural networks. The training mechanism for 
autoencoders is considered unsupervised because no labeled 
data are needed.  Autoencoders are trained to replicate their 
inputs at their outputs by finding a set of weights minimize 
the corresponding cost function:  the error between the inputs 
and their reconstruction at the outputs [13]. An autoencoder 
has two parts: an encoder and a decoder. Both, the encoder 
and decoder could have multiple layers, but, usually, they are 
designed with a single layer for each of them [13]. The 
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training algorithm for autoencoders is back-propagation 
based. 

By cascading two or more autoencoders, a deepnetwork 
can be obtained. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The experimental results of classification will be 

presented in both real acquisition space and in compressed 
space where the EEG signal will be collected by applying the 
compressed sensed concepts. 

For testing there were used EEG signals collected by 
Hoffmann, namely, a reduced database available at [13]. 
This database contains EEG signals collected for 32 
channels, grouped in 942 vectors to be classified EEG, 
lasting 1 sec each. 

We have chosen four electrode placement configurations, 
which we tested for both the original signal and the 
compressed EEG signals (see Figure 3). 

In order to test the classification in the compressed space, 
we chose two compression ratios, namely, compression of 5: 
1 and respectively 10:1. Thus, using compressed sensed 
algorithm and a random matrix, we simulated that we 
acquire compressed sensed EEG signals. 

For compression evaluation we used the compression rate 
(CR) defined as the ratio between the number of bits needed 
to represent the original and the compressed signal. 

 

orig

comp

b
CR

b
=

 

where origb
and compb

 represent the number of bits required 
for the original and compressed signals, respectively. 

A. Gradient boosting 
For testing using the gradient boosting method, the 

configuration parameters were kept the same as in [12]. 
Namely, the maximal number of iterations of the boosting 
algorithm Mmax was set to 200, the optimal M was 
determined in a 30×10 cross-validation loop, and ε was set 
to 0.05. 

 
TABLE I. THE MAXIMUM CLASSIFICATION RATE FOR ORIGINAL AND 
COMPRESSED SENSED EEG SIGNALS FOR GRADIENT BOOSTING 

 
Gradient boosting method – 23 channels (Fp1, AF3, 
F3, Fc1, Fc5, C3, CP1, CP5, P3, Pz, PO3, PO4, P4, 

CP6, CP2, C4, FC6, FC2, F4, AF4, Fp2, Fz, Cz) 
 

The classification Space Max Classification rate 
EEG originals 86% 
CS with 10:1 80% 
CS with 5:1 79% 

Gradient boosting method – 8 channels (Fz, Cz, Pz, 
Oz, P7, P3, P4, P8) 

EEG originals 86% 
CS with 10:1 80% 
CS with 5:1 79% 

Gradient boosting method – 4 channels (Fz, Cz, Pz, 
Oz) 

EEG originals 81% 
CS with 10:1 75% 
CS with 5:1 73% 

 
Figure 4 shows the accuracy obtained during the cross-

validation loop for configuration with 23 channels. As can be 
seen, the gradient boosting algorithm converges to an 
optimal solution. The difference between the rate of 
classification in the original and compressed sensed space is 
relatively small, only 6 percent. 
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Figure 4.  The percentage of classification performance for different 

values of M. 

B. Deep learning 
The relevant features for P300 waves are not directly 

identifiable on each segment of signal we have available. 
From this reason we selected as tool for classification the 
deep networks with auto-encoders which are able to extract 
relevant features from unlabeled data. 

 
TABLE II.  THE MAXIMUM CLASSIFICATION RATE FOR ORIGINAL AND 

COMPRESSED SENSED EEG SIGNALS FOR DEPP LEARNING 
 

Deep learning neural network 
 

The 
classification 
Space 

Max 
Classificat
ion Rate 
% 

Size of 
signals to be 
classified 

Optimu
m 
network 
config. 

Gradient boosting method – 23 channels (Fp1, AF3, 
F3, Fc1, Fc5, C3, CP1, CP5, P3, Pz, PO3, PO4, P4, 
CP6, CP2, C4, FC6, FC2, F4, AF4, Fp2, Fz, Cz) 
EEG originals 95% 2944 200-50 
CS with 10:1 81% 294 50-10 
CS with 5:1 78% 588 65-10 

Gradient boosting method – 4 channels (Fz, Cz, Pz, 
Oz) 

EEG originals 80% 512 50-5 
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CS with 10:1 74% 52 20-5 
CS with 5:1 72% 104 50-5 

 
We used deep networks consisting in two auto-encoders 

followed by a soft-max layer for the classification of original 
signals and also for the compressed sensed ones. In case of 
not compressed signals, the first auto-encoder has 200 
hidden elements and the second one has 40. For the 
compressed signals, we used a first auto-encoder with 40 
hidden elements and a second one with only 10. 

VII. CONCLUSIONS 
In this paper, it was analyzed the possibility of EEG 

signals classification (from a spelling paradigm) into EEG 
signal containing P300 waveform and EEG signals without 
P300 wave. This classification is the essential element in a 
BCI system for spelling. Thus, starting from a method 
proposed by Hoffmann which is based on the gradient 
boosting classification, it was tested the possibility of the 
classification of the compressed sensed EEG signals. In 
other words it was analyzed the possibility of classifying 
compressed EEG signals, into compressed space which was 
named compressed sensed space. The utility of this 
classification is derived from the fact that using the 
mathematical foundations of CS, the EEG signals can be 
acquired directly in a compressed form (i.e. the number of 
samples in the EEG signal is lower than the one indicated by 
the sampling theorem based on the Nyquist frequency). 

It was noticed that using the gradient boosting algorithm, 
the obtained classification rates have close values for the 
normal space and the compressed sensed space. Thus, if the 
original EEG signals classification rate is 86%, for the CS 
space the classification rate is only 6% lower. 

We studied also the classification possibility by using 
neural network of deep learning type and the results in terms 
of classification rate are very similar to the gradient boosting 
method. 

The obtained results with both tested methods confirm 
the hypothesis presented in introduction, according to which 
the close neighbors in initially space remain close also in the 
compressed sensed space. This allows the classification of 
the signals acquired directly in compressed way and it is 
useful in the applications where only the membership class is 
important for a signal and not its shape. 

ACKNOWLEDGMENT 
This work was supported by a grant of the Romanian 

National Authority for Scientific Research and Innovation, 

CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-
0832 “Medical signal processing methods based on 
compressed sensing; applications and their 
implementation.” 

 

REFERENCES 
[1] S. Chen, D. Donoho and M. Saunders, “Atomic Decomposition by 

Basis Pursuit”, SIAM Review, 43 (2001), pp. 129-159 
[2] L. F. Polania, R. E. Carrillo, Manuel Blanco-Velasco and Kenneth E. 

Barner, “ECG compression via matrix completion”, EUSIPCO 2011 
[3] L. F. Polania, R. E. Carrillo, Manuel Blanco-Velasco and Kenneth E. 

Barner, “Compressed sensing based method for ECG compression”, 
2011 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 2011 

[4] C. Wang, J. Liu and J. Sun, „Compression algorithm for 
electrocardiograms based on sparse decomposition“, Front. Electr. 
Electron. Eng. China 2009, 4(1): 10–14 

[5] M. Fira and L. Goras, “Comparison of inter-and intra-subject 
variability of P300 spelling dictionary in EEG compressed sensing”, 
International Journal of Advanced Computer Science and 
Applications , Vol. 7, No. 10, 2016 

[6] M. Fira, “Compressed Sensing of Multi-Channel EEG Signals: 
quantitative and qualitative evaluation with Speller Paradigm”, 
International Journal of Advanced Computer Science and 
Applications, Vol. 7, No. 6, 2016 

[7] N. Cleju, M. Fira, C. Barabasa and L. Goras, „Robust reconstruction 
of compressively sensed ECG patterns”, ISSCS 2011 (The 10-th 
International Symposium on Signals, Circuits and Systems), 30 June 
– 1 July 2011, Iasi, pp. 507-510, 2011 

[8] C. E. Shannon, "Communication in the presence of noise", 
Proc. Institute of Radio Engineers, vol. 37, no. 1, pp. 10–21, 
Jan. 1949.  

[9] J. R.Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller and T. 
M. Vaughan, “Brain-computer interfaces for communication and 
control”, Clin. Neurophysiol. 113 (6), 767-791, 2002 

[10] M. A. Lebedev and M. A. Nicolelis, “Brainmachine interfaces: past, 
present and future”, Trends in Neurosciences 29 (9), 536 – 546, 2006 

[11] L.A Farwell and E Donchin, “Talking off the top of your head: 
toward a mental prosthesis utilizing event-related brain potentials”, 
Electroencephalography & Clinical Neurophysio,70(6):pp 510-523, 
1988 

[12] U. Hoffmann, G. Garcia, J.-M. Vesin, K. Diserens, T. Ebrahimi, “A 
Boosting Approach to P300 Detection with Application to Brain-
Computer Interfaces”, Proceedings of IEEE EMBS Conference on 
Neural Engineering, 2005 

[13] https://www.mathworks.com/help/nnet/ref/trainautoencoder.html#buy
r01b-1 (22 May 2017) 

[14] http://mmspg.epfl.ch/cms/page-58322.html (22 May 2017) 
[15] U. Hoffmann, J. M. Vesin, T. Ebrahimi and K. Diserens, “An efficient 

P300-based brain-computer interface for disabled subjects”, J 
Neurosci Methods. 2008 Jan 15;167(1):115-25. Epub 2007 Mar 13. 
 
 

 

 

10Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-571-5

ICCGI 2017 : The Twelfth International Multi-Conference on Computing in the Global Information Technology

http://en.wikipedia.org/wiki/Claude_E._Shannon�
http://en.wikipedia.org/wiki/Proceedings_of_the_IRE�
https://www.mathworks.com/help/nnet/ref/trainautoencoder.html#buyr01b-1�
https://www.mathworks.com/help/nnet/ref/trainautoencoder.html#buyr01b-1�
http://mmspg.epfl.ch/cms/page-58322.html�

	Introduction
	Compressed Sensing
	Brain Computer Interface - P300 Speller Paradigm
	Experimental Paradigm, Data Acquisition and Preprocessing
	The Classification Methods
	Gradient boosting
	Deep learning

	Experimental Results and Discussions
	Gradient boosting
	Deep learning

	Conclusions
	Acknowledgment
	References


