
Fast Polynomial Approximation Acceleration on the GPU

Lumı́r Janošek
Department of Computer Science

VSB-Technical University of Ostrava
Ostrava, Czech Republic

Email: lumir.janosek.st@vsb.cz

Martin Němec
Department of Computer Science

VSB-Technical University of Ostrava
Ostrava, Czech Republic

Email: martin.nemec@vsb.cz

Abstract—This article presents the possibility of paralleliza-
tion of calculating polynomial approximations with large data
inputs on GPU using NVIDIA CUDA architecture. Parallel
implementation on the GPU is compared to the single thread
CPU implementation. Despite the enormous computing power
of today’s graphics cards there is still a problem with the
speed of data transfer to GPU. The article is mainly focused
on the implementation of some ways of transferring data from
memory into GPU memory. The aim is to show what method
is suitable for a large amount of data being processed and
what for the lesser amount of data. Afterwards performance
characteristics of the implementation of the CPU and GPU are
matched.

Keywords-GPU; CUDA; Direct Memory Access; Parallel Re-
duction; Approximation.

I. INTRODUCTION

This article is focused on the application of a parallel
approach to the implementation of the polynomial approx-
imation of the k-th degree and its comparison with con-
ventional single thread approach. Polynomial approximation
model is widely used in practice. The statistics commonly
use the basic model of approximation of 1th degree - a linear
approximation, in other statistics called the linear regression.

Nowadays it is possible to create a massively parallelized
applications using modern GPUs (Graphics Processing Unit)
that enable the distribution of calculations among tens of
multiprocessors of graphic cards. The problem still remains
the need to transfer data between the CPU (Central Process-
ing Unit) and GPU. This can become a limiting factor in
performance when the time needed to transfer data between
memory and GPU memory, the host system plus the time
the GPU processes data exceeds the time after, which the
same data can be handled by the CPU. But there are ways
to at least partially eliminate this lack of trying.

In this article will be shown how to implement polynomial
approximation using the GPU parallel computing architec-
ture of NVIDIA CUDA (Compute Unified Device Archi-
tecture), which provides a significant increase of computing
power [1]. The parallel implementation is compared with
single threaded CPU implementation. Performance results
of both implementations are compared with each other and
show the differences between the parallel implementation
approach and common single threaded approach for certain

volume of data. By comparison of these two approaches it
can be seen for how much data is suitable for the parallel
approach and for how much it is already inappropriate. A
substantial part of the implementation is a comparison of
the chosen methods of copying data from RAM (Random-
Access Memory) to graphics card memory, and especially
the methods of allocating this memory. Three methods are
compared: the allocation of pageable memory, the allocation
of page-locked memory (also known as Pinned memory),
and the allocation of memory mapped into the address space
of the CUDA [2].

A common approach is the method of allocation and data
transfer, when the input data are placed in pageable memory
and from this memory are then transmitted by conventional
copying approach into graphics card memory. The allocation
of page-locked memory when copying data allows the GPU
to use DMA (Direct Memory Access). Mapping memory
allocation into the address space of the CUDA is a special
case that allows to read data stored in RAM directly from
the GPU.

This paper is structured as follows. First, some mathe-
matical background related to polynomial approximations is
presented. Next, a description of the implemented memory
approaches and a description of the implementation of a par-
allel reduction are presented. Lastly, results and conclusion
are presented.

II. MATHEMATICAL MODEL OF APPROXIMATION

Consider a set of points with coordinates xi z Rd, where
i ∈ {1, · · · , n}. The aim of the approximation data problem
is to find the function f(x) in the general case, which best
approximates the scalar value fi at point xi. The result, using
the least squares method, is a function f(x) such that the
distance between scalar data values fi and functional values
f(xi) is as small as possible [3]. Least squares method
based linear approximation in its simplest application, which
approximates an input data by linear function in the form
of:

f : b0 + x · b1, (1)

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

where the sum of squares has the form:

ψ(b0, b1) :=

n∑
i=1

[f(xi)− fi]2 (2)

Minimum of sum of squares then we found as:
∂ψ

∂b0
= 0

∂ψ

∂b1
= 0

By adjusting the obtained:

(
b0
b1

)
=

 n
n∑

i=1

xi
n∑

i=1

xi
n∑

i=1

x2
i

−1

n∑
i=1

yi
n∑

i=1

xiyi

 (3)

Members of the vector of the right side b0 and b1 are
coefficients of the polynomial approximation (1). Input data
of the algorithm are represented by a set of vectors (pairs)
of R2. For input data it is sufficient to calculate the four
sums (vector of sums):

VΣ =

(
n∑

i=1

xi,

n∑
i=1

yi,

n∑
i=1

xiyi,

n∑
i=1

x2
i

)
(4)

The results of these sums are then just put back into the
system of equations (3). By solving it, we get the sought
coefficients of b0 and b1 approximation polynomial (1).

A. Polynomial approximation
A special case of linear model approximation is polyno-

mial approximation. It is an approximation by polynomial
of k-th degree. Using the procedure for calculating the
linear approximation it is possible to express polynomial
approximations formula as a set of [4]:

b = A−1Y (5)

where

A =

n
n∑

i=1

xi · · ·
n∑

i=1

xki
n∑

i=1

xi
n∑

i=1

x2
i · · ·

n∑
i=1

xk+1
i

· · · · · · · · · · · ·
n∑

i=1

xki
n∑

i=1

xk+1
i · · ·

n∑
i=1

x2k
i

b =

b0
b1
...
bk

 , Y =

n∑
i=1

yi
n∑

i=1

xiyi

· · ·
n∑

i=1

xki yi

The solution of this system of equations is a vector b,
the individual members of which b0 · · · bk represent the
coefficients of the approximation polynomial. Using the
system of equations (5) it is possible to derive a vector of
sum for any polynomial k-th degree as in the case of linear
approximation.

III. IMPLEMENTATION OF MEMORY APPROACHES

The algorithm for calculating polynomial approximation,
which was described in the previous section, was imple-
mented using the CUDA architecture of NVIDIA. The
implementation was designed for processing large amounts
of data represented as a set of vectors of R2. Parallel
implementation of polynomial approximations on GPU is
compared with single threaded implementation on CPU.
During implementation, the goal was due to the large amount
of input data, to optimize data flow between RAM and GPU
memory.

Given the size of the input data set, several approaches
to copy data from RAM to graphics card memory (global
memory), or to access data from the GPU were compared.
Three approaches were compared: normal approach with
pageable memory allocation, the allocation of page-locked
memory (also known as Pinned memory), and the allocation
of page-lock memory mapped into address space of the
CUDA.

The actual calculation of the polynomial approximation
was implemented in part on the GPU and in part on the CPU.
For comparison approximations of 1th degree, 2th degree
and 3th degree were implemented. A parallel approach was
used for calculating the vector of sums (4) by using a the
parallel reduction algorithm. Calculation of the resulting
coefficient b0 and b1 of the approximation polynomial is
then completed on the CPU.

A. Pageable system buffer and page-locked memory

A common approach to transfer data from RAM to the
global memory was compared with direct access of the
GPU to RAM when copying data, otherwise the DMA
(Direct Memory Access). The disadvantage of the common
approach is double copying of transferred data. Data are
transmitted in the first step from pageable memory (pageable
system buffer) to the page-locked memory, and then from
this page-locked memory to the GPU memory. By direct
allocation of a data buffer in the page-locked memory extra
data copying can be avoided. By allocation page-locked
memory the operating system guarantees that this memory is
not paged to disk, thus ensuring its place in physical memory
[5]. By knowing the physical address of the buffer in the
memory, GPU can copy data to the global memory direct
memory access - DMA.

B. Memory mapping into address space of the CUDA

Another approach to access data in the RAM from the
GPU is using direct mapping of page-lock memory into
address space of the CUDA. The data are, as in the previous
case, stored in memory allocated as page-locked memory,
with the only difference being that this data can be accessed
directly from the GPU. This eliminates the need for allocat-
ing memory block in global memory and the need to copy
data into this block of memory.

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

IV. PARALLEL REDUCTION

With access to parallel hardware the entire process of the
sum calculation can be parallelized. If we have hundreds
of threads, then each thread can contribute to the gradual
calculation of the resulting sum. This approach is called
parallel reduction [6]. The main idea of the parallel reduction
is that each thread performs the sum of two values in the
memory and then saved back. The algorithm therefore starts
at the beginning with half the number of threads than the
number of inputs. In each step, one thread adds the two
values. In the next step the process is repeated, but with half
the number of threads. The process continues until the final
sum is achieved by gradual reduction. The parallel reduction
algorithm is especially efficient for large data inputs.

Reduction of the vector (4) is divided between
C ·N−1

threads blocks, where C is the count of input data
(vectors of R2) and Nthreads = 256 is the number of threads
per block. The data are this way evenly divided between the
individual blocks, when each block handles one subset of
the input data.

Implementation of the parallel reduction of the vector of
sums can be divided into three steps: 1) The first step is
to copy data from global memory to the shared memory.
In the shared memory the reduction of the vector of sums
is subsequently made. Copying data from global memory
to shared memory is implemented in the CUDA kernel by
using all threads of the block, thus each thread copies always
the four values that belong to one of the four sums of a
vector (4). Simultaneously with copying the data into shared
memory, is made the first reduction step - first add during
load [6]. This leads to the reduction of the required number
of blocks by half. The total number of blocks needed to run
the CUDA kernel is

1

2
· C

Nthreads

2) After copying the data into shared memory all the threads
of block are synchronized, which ensures that no thread
starts reading the shared memory until all threads finish
copying the data. Then begins the process of reduction. In
each iteration, one thread performs the sum of the vector
of sums, which leads to a gradual reduction of input data.
Before entering the next iteration, the number of threads is
reduced by half. Reduction cycle ends when the number of
threads reaches zero. The data inside the loop are processed
in the shared memory (on-chip memory), accordingly there
is no unnecessary transfer of data between global memory
and GPU multiprocessor. 3) The result of each block is
transferred back to global memory after the reduction. This
copy process takes place before the end of kernel one of the
threads. The results of the individual blocks are copied from
global memory back to the RAM on the CPU. Completion
of reduction, thus the sum of all results of individual blocks,
is completed on the CPU. The result is a vector (4). It

is then possible, without difficulty, to apply the described
algorithm of a parallel reduction, with minor modifications,
to the calculation of vectors of sums of approximations of
higher degrees.

V. RESULTS

The presented method for parallel calculation of linear
approximation to the GPU has been implemented and tested
on a graphics card GeForce 9600 GT, GeForce 9800 GTX
and GeForce GTS 450 NVIDIA. The implementation was
tested for various sizes of the input file in order to determine
what amount of data is preferable to compute on the CPU
and for how much data it is more efficient to use a parallel
implementation on GPUs. Performance characteristics of
both implementations were compared, the result is shown
in the Fig. 1. From a comparison of the characteristics of
computations on the CPU and GPU it is obvious that for a
smaller amount of data it is preferable to keep the calculation
of polynomial approximation on the CPU. GPU in this case
is more appropriate for larger data amounts. The size of test
data ranged from 12 KB to 50 MB (1365 - 6400000 input
data).

As written in the previous section, three approaches of
transferring data between RAM and the global memory were
compared. A common approach to copy data between RAM
and global memory of GPU is compared with the approach
of direct access of the GPU to RAM (DMA) when copying
data. This method of implementation has brought strong
effect especially in an expanding volume of copied data,
as seen from the Figure 2 because there is no need to copy
data from pageable memory into the page-locked memory,
before transferring data to the GPU global memory.

The last of the studied approaches of transferring data
from memory into the GPU global memory was the use
of mapping page-lock memory into address space of the
CUDA. Mapping page-lock memory is especially suitable
for integrated graphics processors that are built into the
system chipset and usually share their memory with the
CPU. In this case, using the mapping page-lock memory
removes unnecessary data transfers. For discrete graphics
processors, the mapping page-lock memory is only suitable
just in some cases [7]. For this reason, this method also
did not bring any optimization of implementation. On the
other contrary, when using the mapping page-lock memory
into address space of the CUDA, there was a significant
downgrade in performance, see Figure 3. Below are listed
the size of data transfers that have occurred during the
calculation between the CPU and GPU memory.

A total number of N bytes of data was transmitted into
the global memory from RAM. After completion of the
calculation on the GPU back to RAM was transmitted a
total of

‖VΣ‖2 ·
(
NumBlocks

2
· 4bytes

)

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

The total number of bytes transferred from global memory
back into the RAM is equal to:

‖VΣ‖2 ·
(
1

2
· N

4bytes
· 1

NumThreads
· 4bytes

)

1

2
· ‖VΣ‖2 ·

N

NumThreads

0

50

100

150

200

250

300

1
5
3
6

2
5
6
0

2
0
4
8
0

5
6
3
2
0

1
0
2
4
0
0

2
0
4
8
0
0

3
0
7
2
0
0

4
0
9
6
0
0

5
6
3
2
0
0

9
2
1
6
0
0

1
4
3
3
6
0
0

2
0
4
8
0
0
0

3
8
4
0
0
0
0

6
4
0
0
0
0
0

CPU

GPU

Figure 1. The speed of calculating a linear approximation for the input
data (vectors) in milliseconds. Comparison of speed of calculation on the
CPU and GPU.

0

10

20

30

40

50

60

70

80

1
5
3
6

2
5
6
0

2
0
4
8
0

5
6
3
2
0

1
0
2
4
0
0

2
0
4
8
0
0

3
0
7
2
0
0

4
0
9
6
0
0

5
6
3
2
0
0

9
2
1
6
0
0

1
4
3
3
6
0
0

2
0
4
8
0
0
0

3
8
4
0
0
0
0

6
4
0
0
0
0
0

Common

DMA

Figure 2. The speed of calculating a linear approximation for the
input data (vectors) in milliseconds. Comparison of the effectiveness of
implementation of calculation on the GPU using DMA access and common
access to copy data to the global memory.

0

100

200

300

400

500

600

1
5
3
6

2
5
6
0

2
0
4
8
0

5
6
3
2
0

1
0
2
4
0
0

2
0
4
8
0
0

3
0
7
2
0
0

4
0
9
6
0
0

5
6
3
2
0
0

9
2
1
6
0
0

1
4
3
3
6
0
0

2
0
4
8
0
0
0

3
8
4
0
0
0
0

6
4
0
0
0
0
0

Mapped

DMA

Figure 3. The speed of calculating a linear approximation for the input
data (vectors) in milliseconds. Comparison of implementations using the
mapping page-lock memory into the address space of the CUDA and
approach using the DMA to copy data to the global memory.

VI. CONCLUSION

This article presented a parallel implementation of poly-
nomial approximations on the GPU, which will signifi-
cantly optimize the performance during calculation the large
amounts of data. The implementation was compared with
single thread CPU implementation, which is more suited
for smaller data amount. It was shown that copying data
from RAM, allocated as a page-lock memory, using the
direct memory access (DMA), significantly accelerated the
application performance in the result. In contrast, the use
of mapping page-locked memory into address space of the
CUDA in the implementation provided no improvement
in application performance. This method is suitable for
integrated GPU, which almost always produces a positive
result due to the shared memory of CPU and GPU.

ACKNOWLEDGMENT

The thanks belongs to Professor Václav Skala for his
substantive comments.

REFERENCES

[1] NVIDIA Corporation, CUDA ZONE,
http://developer.nvidia.com/, retrieved: December, 2011.

[2] NVIDIA Corporation, NVIDIA CUDA C Programming Guide,
Version 4.0, 2011.

[3] G. Coombe, An Introduction to Scattered Data Approximation,
October 31, 2006.

[4] K. Rektorys, Survey of Applicable Mathematics II, 7th ed.
Praha, 2003.

[5] J. Sanders and E. Kandrot, CUDA by example: an introduction
to general-purpose GPU programming, 1th ed. United States
of America, 2011.

[6] M. Harris, Optimizing CUDA, SC, 2007.

[7] R. Farber, CUDA, Supercomputing for the Masses,
May 14, 2009, http://drdobbs.com/high-performance-
computing/217500110, retrieved: December, 2011.

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

