
Fault Tolerant Distributed Embedded Architecture and Verification

Chandrasekaran Subramaniam

Research and Development

Rajalakshmi Engineering College/ AUT

Chennai, India

chandrasekaran_s@msn .com

Prasanna Vetrivel, Srinath Badri

Electrical and Electronics Engineering

Easwari Engineering College/ AUT

Chennai, India

prasannavetrivel1990@gmail.com,

srinath.badri@live.com

Sriram Badri

Electronics and Communication Engineering

Sri Venkateswara College of Engineering/ AUT

Chennai, India
b-sriram@hotmail.com

Abstract— The objective of the work is to propose a

distributed embedded architecture model for tolerating faults

while performing security functions using multiple field

programmable gate arrays (FPGA). The hardware encryption

and decryption modules are used as customized modules

within the devices to act as a cooperative system to tolerate

omission and commission faults. The different security

functions are communicating through a common UART

channel and security operations are synchronized with

standard protocols initiated by an embedded micro controller.

The decision in locating the working and available modules

among a pool of devices is carried out by the microcontroller

using an intelligent F-map mechanism and directs the control

instructions. The model is scalable with increased number of

similar devices when connected across the common

communication channel. The model is verified for all its paths

using Symbolic Model Verifier, NuSMV to assert the dynamic

behavior of the architecture in case of different faulty

conditions.

Keywords- Distributed architecture; Fault tolerance; Security

module; Model verification; Assertion technique.

I. INTRODUCTION

The security architecture of embedded systems depends

not only on the functional and performance requirements
but also on the cost and spatial requirements suited to the

target platforms. For example, the data path should be

secured against many privacy attacks in the case of

embedded systems used in the mobile applications. The data

flow based on the dependence graph is solely determined by

the components embedded as intellectual properties to

perform the expected computations in real time. The

architecture suitable for such computations with the security

primitive components should be formally verified in order

to avoid security errors like communication and

synchronization errors. Due to the heterogeneity of various

security hardware components from different component
vendors, integration of them may lead to further challenges

in the architectural design. The earlier SAFES architecture

[1] focuses on the reconfigurable hardware that monitors the

system behavior to realize the intrusion detections. The

other proposed SANES architecture [2] focuses on security

controller and component controller components to monitor

the abnormal behavior in the system run time. Irrespective

of the cryptographic algorithm used in the security

primitive, the primitive components are to be self tested

since the data path may vary dynamically in the case of a

distributed embedded system. The components may not be
available at some point of time when they are in need and

they should be available in a fault free condition within the

distributed mesh of devices. The correct selection of the

primitive components either in the source or in the

destination FPGA is to be decided in a power efficient

manner among a pool of similar devices. The security

processes are to be completed in the correct sequence and

the operations are to be enabled as in the same dataflow

form when they are completed [3]. The components are

treated as resources within a single device to complete the

submitted task and other similar devices are considered as

coordinating devices controlled by a centralized controller.
A field mapping technique is proposed through which the

resource components available in the devices will be

connected to form a distributed system considering the

power consumption and the propagation delay involved in

the on demand architecture. The distributed security

architecture model has to be formally verified for its

behavior to meet the reachability and fail free conditions.

The standard NuSMV tool [5] supports LTL model

checking [5] where the individual parameters can be

inspected to investigate the effect of choices. Existing

embedded system architectures are not capable of keeping
up with the computational demands of security processing,

due to increasing data rates and complexity of security

protocols [7]. High assurance cryptographic applications

require a design to be portioned and physically independent

to ensure information cannot leak between secure design

partitions. Ensuring this partition separation in the event of

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

independent hardware faults is one of the principle tenets of

a high-assurance design [8]. FPGAs are highly promising

devices for implementing private-key cryptographic

algorithms. Compared to software based solutions FPGA [9]

based implementations can achieve superior performance

and security. Hence the main focus of the work is to propose
a fault tolerant distributed architecture model for security

hardware and check the model for its expected behavior

meeting the specifications or against it.

The organization of the paper is as follows: Section 2

proposes the distributed embedded architecture for the

security hardware using a single reconfigurable FPGA

device with all the needed security primitive components.

Section 3 discusses the sequences of processes to meet the

performance requirements of the security architecture. The

next section 4 extends the single system on chip to multi

FPGA model where the data packet is routed between four

similar devices under different faulty situations that lead to
the worst case performance of the model. The next section

explains the role of the micro controller in managing the

field mapping of the devices when needed security

components are faulty. Section 7 illustrates the model

checking using NuSMV and its verified output and explores

the scalability of the architecture along with its limitations

like the issue of packet conflicts along the communication

path in UART.

II. DISTRIBUTED EMBEDDED SYSTEM ARCHITECTURE

The architecture selection depends on the resource

availability and reliability requirements of the security
system. A reconfigurable platform like FPGA in addition to

a high speed micro controller can organize the different

computations needed to control the sequence of operations

in the system. The resources are available in the form of

intellectual properties (IPs) within the chip and these are to

be assigned with the tasks in an efficient manner by the

micro controller as the central manager. The best suitable

architecture is the distributed embedded architecture where

the resources are different sets of workers and the operations

are performed in data flow form. The basic security

hardware architecture consists of an encryption and

decryption modules for 64 bit size along with their
corresponding activation switches. The data transmission

and reception takes place through the transmitter and

receiver modules placed in the same chip and configured for

different baud rates and actual process takes places through

a universal asynchronous receiver transmitter (UART)

module. The configuration of the security modules are self

tested by the wired built-in self test (BIST) components

connected with them to tolerate functional faults and

controlled by a BIST Controller to regulate the data flow.

All the components are selected or enabled by the control

signals from device selector (DEVICE SEL) as shown in
Fig. 1. The device reads the plain text from the keyboard

and routes through the encryption and decryption modules

as per the instructions received the micro controller that may

reside inside or outside the chip assembly and connected

through a bus. The deciphered text will be displayed in the

activated display unit of the selected chip.

The micro controller is responsible for maintaining the

queue of tasks and allocates the tasks to computational

module as and when they are fail free. Because of the
different execution times needed for different resources for

processing the tasks, the micro controller has to run an

intelligence algorithm to decide the available resource for

that instant of time to forward the data. The micro controller

gets the updated components information by regular sample

intervals and refreshes its resource status (RST) and device

status table (DST) in the private registers. The control

signals are issued by the device select component as and

when needed to send or receive. In case where there are

concurrent requests from multiple devices over the limited

bandwidth channel, then the micro controller forms a

priority table to decide the order in which the queue of tasks
may be completed. The micro controller is embedded with

the algorithm to assign the priority to various requests.

Key

Disp

Encrypt

Decrypt

Tx

SW

Rx

SW

Uart

D

E

V

I

C

E

S

E

L

BIST Encrypt

Enc

SW

Dec

SW

BIST Decrypt

BIST

Controller

 U
A

R
T

 R
x
/T

x

DS From MC

Figure 1. Distributed Embedded Architecture on Chip.

III. SEQUENCE OF PROCESSES

The security components needed to perform
cryptographic operations are to be initialized with requests

from the central manager component that is the micro

controller. The sequence of processes is determined based

on the availability of those components in their fault free

conditions so that the data flow can be triggered. The

enabling and disabling of the components in the pool of

resources is taken care by the intelligent algorithm called F-

Map embedded in the micro controller. For encryption of

the text that is coming through an input peripheral say,

keyboard connected to any one of the FPGA device, the

sequence of processes is different from that of the

decryption processes towards the output peripheral say,
display device connected to other or the same FPGA device.

For any FPGA to work it is mandatory that the

Transmission, Reception switches & the UART connection

to function properly. The microcontroller maintains two

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

table a Device Status Table (DST), where a Farm of FPGAs

that can take part in the security process are listed and

Resource Status Table (RST), where the resource status of

each FPGA in the device farm is listed. During runtime

micro controller forms a Run Time Table in which all the

working set of FPGAs, obtained from DST with all its
resources in fault-free condition (resource status obtained

from the RST) for the current operation i.e. encryption or

decryption, are enlisted depending on power dissipation

(Power Aware mode) or propagation delay (Performance

mode) of the FPGAs.

A. Sequence of Operation

 Check for updates in the run-time table_encryption

 Get data from the SOURCE_FPGA.

 Check the status of resources in the

SOURCE_FPGA.

 If Fault free, send data to FPGA for encryption.

 Else, select next FPGA based upon the mode of

operation in the runtime table to encrypt the data.

 Check updates in run-time table_decryption.

 Check the status of resources in the

DESTINATION_FPGA

 If Fault free, send encrypted data to
DESTINATION_FPGA for decryption.

 Else, select next FPGA in the runtime table and

instructs to decrypt

 Transmit data to destination.

 Wait and Go to 1.

IV. MULTI FPGA BASED FAULT TOLERANT

DISTRIBUTED EMBEDDED SYSTEM

The distributed embedded architecture on chip proposed

in the work can be integrated with similar devices so as to

make a distributed fault tolerant model. A micro controller
is connected to instruct and manage the resource allocation

between the devices based on the fault free conditions of the

needed components. The algorithm that is embedded in the

controller accepts the status of all the devices in terms of

their resource components and decides the routing that the

plain or cipher text has to follow as shown in Fig 2. The

reliability of the distributed system is enhanced by

component dynamic redundancy technique as and when the

fault gets detected. Even though the functional component is

static within a device, the controller calls the fault free

components dynamically. The availability and system
reliability is enhanced at the cost of communication

overhead between the controller and the status table register

multiple times. Since the performance depends on the speed

of completion of the submitted task, the reliability of the

system gets improved over the expected performance level.

Figure 2. Multi FPGA based Distributed Embedded System.

NULL

GET_STATUS

MONITOR_REQ

GET_INFO

ANALYSE_REQ

UESTER_STATU

S

NORMAL_SERVI

CE

WORST CASE

SERVICE

MT1

MT2

MT3

MT4 MT5

MT6

MT7

MT8MT10

MT9

MT11MT13

MT12MT14

MT15

Figure 3. Microcontroller System Level Behaviour.

In the distributed architecture, the microcontroller

behavior starts from instructing the distributed architectutre

of FPGAs in its Null state. After a time interval (when an

implicit or watchdog timer expires) its state transits from

Null to Get_Status state (MT1). The state changes from

Get_Status to Monitor_Req when the microcontroller

successfully reads the status of all the FPGAs (MT2). The

coordinating micro controller continues to remain in

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

Monitor_Req state until any request is made (MT3). The

state transits from Monitor_Req to Get_Info if a request is

made by any one of the FPGAs (MT4). On occurance of any

data error during the request, the controller tracks back

from Get_Info to Monitor_Req (MT5). On successfully

aquiring the information from FPGAs, a state transition
occurs from Get_Info to Analyse_Requester_Status (MT6).

If all the resource primitive components at the source and

destination FPGAs are fault-free, a state changes from

Analyse_Requester_Status to Normal_Service (MT7). On

successful completion of the task state transits from

Normal_Service state to Monitor_Req state (MT8). If

source or destination devices or both have non availability

errors in any of their resources, the controller changes state

from Analyse_Requester_Status to Worst_Case_Service

(MT9). On successful completion of the event, the state

changes from Worst_Case_Service state to Monitor_Req

(MT10). The control remains in the Normal_Service state
until the predefined time elapses on occurance of a

communication error (MT11). The microcontroller changes

state from Normal_Service to Get_Info state if the error

continues to persist at the end of the predefined time interval

(MT12). While encountering various errors, the control

remains in the Worst_Case_Service state until the

predefined time elapses (MT13). The control changes

Worst_Case_Service to Get_Info state if the error exists

when the predefined time is exhausted (MT14). The control

of operations shift from Worst_Case_Service to
Normal_Service when the micro controller finds the updated

status of the resouce primitive components at the source and

destination FPGAs to be fault-free (MT15) as in Fig 3. The

fault tolerant technique using available fault free

components can be extended to the situation when multiple

FPGA devices are interconnected. Assuming similar

devices, the security operations are executed in different

devices based on the primitive components availability. If

not, the correct routing instruction will be issued by the

micro controller based on its updated device table and

corresponding resource tables. The reliability of the

communication path between the devices is a major
challenge in the design of the above multi FPGA based

distributed embedded security system.The synchronization

in the execution of primitive operations is taken care by the

embedded algorithm residing in the micro controller.

UART Interface

Encrypt

Decrypt

Keyboard

Dispaly

Tx SW

Rx SW

Enc SW

Dec SW

BIST CtrlDec SW

F

P

G

A

n,2

Encrypt

Decrypt

Keyboard

Dispaly

Tx SW

Rx SW

Enc SW

Dec SW

BIST CtrlDec SW

F

P

G

A

Encrypt

Decrypt

Keyboard

Dispaly

Tx SW

Rx SW

Enc SW

Dec SW

BIST CtrlDec SW

F

P

G

A

1,1

Encrypt

Decrypt

Keyboard

Dispaly

Tx SW

Rx SW

Enc SW

Dec SW

BIST CtrlDec SW

F

P

G

A

Encrypt

Decrypt

Keyboard

Dispaly

Tx SW

Rx SW

Enc SW

Dec SW

BIST CtrlDec SW

F

P

G

A

Encrypt

Decrypt

Keyboard

Dispaly

Tx SW

Rx SW

Enc SW

Dec SW

BIST CtrlDec SW

F

P

G

A

Instructor
(Microcontroller)

n,1
n,n

1,n1,2

Figure 4. F Map for Power Aware Application.

V. F MAP FOR RESOURCE SELECTION

The Farm map (F-Map) is an intelligent algorithm by

which the micro controller identifies the next device that has

the needed security primitive components. The mapping
brings the current status of the resources and fills the cell as

‘1’ in the START FPGA which indicates that the DEVICE

SELECT and the BIST for Encryption components are in

failed states as shown in Fig 5. The algorithm searches the

next device, depending upon whether the FPGAs are

operated in power save mode or performance mode and in

which all the needed components are fault free that is

indicated by 1 cell for encryption process. Similarly the

same algorithm is iterated for the decryption process also to

get the data packet encrypted and communicated to the

destination. The decryption may take place in the

destination FPGA device. If multiple ‘1’ cells are appearing

at any time among different devices, then the controller

selects the shortest path to minimize the communication

delay to avoid any attack on the device itself that is possible

in the distributed FPGA architecture. The Device Select at

the destination FPGA is in failed state which makes the
micro controller iterate for the next FPGA with the required

resources in Fault-free state. The alternate FPGA for

decryption process is selected depending on whether the

distributed FPGA architecture is operated in performance

mode or power aware mode. ACTIVE_DECRYPT_FPGA1

is chosen when operating in performance aware mode and

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

ACTIVE_DECRYPT_FPGA2 is chosen while operating in

power aware mode. The performance characteristics of the

distributed FPGA vary with the operating mode. For quicker

response, the Distributed architecture may be operated in

performance mode which causes higher power dissipation in

the device. While operating in power save mode, the
propagation delay is high, but the power consumed is

minimal, as shown in Table. 1.

Propagation Delay = n * T (1)

Where, n= R + C - 1

‘R’ Denotes the Row & ‘C’ Denotes Column in which

the FPGA is located in the DST.

TABLE I. POWER DISSIPATION AND PROPOGATION DELAY FOR

VARIOUS MODES

Order in
DST (R,C)

Power
Dissipation

Propagation
Delay(ms)

Remarks

1,1 6.41W T Performance

 2,3 4.23W 4*T Normal/Safe

1,9 3.47W 9*T Power Aware

 6,12 7.9W 17*T Poor

1

1

1

1

00

01

11

10

00

01

11

00

01

11

10

00

01

11

10

00 01 11 10 00 01 11 10

00 01 11 10

00 01 11 10

D- Decryptor E- Encrytor e BIST Encryptor d- BIST Decryptor
Ds

- Device Select x -Encrytor switch D x - Decryptor switch

Ds Ex

Be E

Ds Ex

Be E
Ds Dx

Bd D

Ds Dx

Bd D

START_ FPGA DESTINATION_ FPGA

ACTIVE_ DECRYPT_FPGA1

00

01

11

10

00 01 11 10Ds Dx

Bd D

ACTIVE_ DECRYPT _ FPGA2

1

10

00

01

11

10

00 01 11 10Ds Ex

Be E
ACTIVE_ ENCRYPT_FPGA

1 1

E
B B

POWER AWARE MODE

PERFORMANCE MODE

Figure 5. F Map for Power Aware Application.

VI. PERFORMANCE IN BEST CASE AND WORST CASE

SCENARIO

In the distributed embedded system, if all the

resources in the source and destination FPGAs are fault-

free then the micro controller chooses the normal

operating mode which is the best case scenario. The

behavior of the embedded system during its best case

performance is shown in Fig. 6 and its transitions are
mentioned in Table. 2. The behavior of the distributed

embedded system varies when a resource in source or

destination FPGA is in failed state, depending upon the

mode of operation viz. Performance Mode, Power Aware

Mode, Safe Mode, depicted by the worst case behavior is

shown in Fig. 7.

The microcontroller iterates various paths from the

source to the destination depending upon the mode of

operation and selects the FPGAs in source or destination

side, with its required resources in fault free condition.

NORMAL_ NULL

NT1 NT2

GET_ DATA

NT3

NT6

SD_GET_ STATUS

SEND_ DATA

NT5

NT7

NT8

NT9
NT4

Figure 6. Best Case Scenario.

TABLE II. BEST CASE TRANSITIONS

Transition

ID Events

NT1

If main state machine reaches

NORMAL_SERVICE state

NT2
Failure of getting source status ||
Failure of getting destination status

NT3

After getting successful status of

source and destination

NT4 If not getting correct data from source

NT5

If not getting correct data from source

&& reaches maximum tries

NT6 Getting successful data from source

NT7 Not sending correct data to destination

NT8

If not sending correct data to

destination

NT9 If sending correct data to destination

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

WORST NULL

ENCRYPT DEV

SELECT

BT1 BT2

DECRYPT

DEV SELECT

GET_ DATA

BT3

BT8

SD_GET_ STATU

S

BT5

SEND_ DATA

BT10

BT4

BT6BT7

BT9

BT11

BT12

BT13

Figure 7. Worst Case Scenario.

While the distributed Embedded system is in its Worst

Case behavior, the microcontroller acquires the status of

all the FPGAs present in the distributed embedded system

(BT1). In case of failure of acquisition of the status, the

microcontroller waits in a null state until the status of the

FPGAs are updated (BT2). Depending upon the mode of

operation during resource failure in the source FPGA, the
microcontroller searches for an alternate FPGA for

encryption process(BT3). On selection of a suitable

FPGA, the data from the source FPGA is transferred for

encryption process (BT5). The microcontroller continues

to exist in Get_Data state until the data is completely

transferred to the alternate FPGA (BT6). On occurance of

any errors during the data acquisition process, the

microcontroller tracks back to its initial state (BT7). On

completion of encryption process, a FPGA is selected by

the microcontroller for decryption on the destination side

(BT8). On successful selction of FPGA with all its

resources in fault free condition, process of decryption
takes place (BT10). The microcontroller traces itself to its

initial state on failure of the decryption process (BT9).

The decrypted data is ultimately sent to the destination

FPGA until which the microcontroller remains in its

current state (BT11). On successful reception of the

complete decrypted data by the destination FPGA, the

microcontroller prepares itself for the next encryption

process (BT13), else the microcontroller resets to repeat

the failed process (BT12).

VII. MODEL CHECKING OF ARCHITECTURE USING

NUSMV

There are two extreme cases in which the fault tolerant
capability can be measured. In one case, all the needed
security components are fail free and available in a single
chip and thereby the communication delay will be only
due to transmit and receive signal propagation making
power consumption very high. The other extreme is when
one set of encryption components may be available in
nearby device where as the decryption set of components
in other end of the array or pool of devices and vice versa
[6]. This condition leads to huge delay due to multiple
enable, multiple address and data signals along with
multiple receive, transmit and multiple device select
signals. The worst case performance where the micro
controller searches for the fail free encryption and
decryption components is verified using the symbolic
model verifier as shown below. The model checking is
done to check the reliability of the model during the worst
case performance and to verify the availability of alternate
resources to complete the specified task. The LTL and
CTL operations are applied as specifications to verify the
availability of devices and the needed security resources
for the encryption and decryption processes as given in
NuSMV code below:

NUSMV CODE FOR AVAILABILITY IN THE WORST CASE

SCENARIO

MODULE main

VAR

state : { null_state, get_update_status, s_device_select,

get_data, d_device_select, send_data };

status: boolean;

source_device_select : boolean;

data_get : boolean;

data_sent : boolean;

time : boolean;

dest_device_select : boolean;

INIT

state=null_state;

ASSIGN

next(state):= case

state = null_state : get_update_status ;

state = get_update_status & !status : null_state;

state = get_update_status & status : s_device_select;

state = s_device_select & !source_device_select :

get_update_status; state = s_device_select &

source_device_select : get_data;

state = get_data & !data_get & time : get_data;

state = get_data & !data_get & !time : get_update_status;

state = get_data & data_get : d_device_select;
state = d_device_select & !dest_device_select :

get_update_status;

state = d_device_select & dest_device_select : send_data;

state = send_data & !data_sent & time : send_data;

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

state = send_data & !data_sent & !time :
get_update_status;

state = send_data & data_sent : null_state;

esac;

SPEC

EF (state=null_state)

SPEC

AG AF(!time -> state= get_update_status)

SPEC

AG EF(!status -> state=null_state)

SPEC

AG AG AF(time -> !data_get ->state=

get_update_status)

The model checking algorithm reports true if

specification holds true for every state of the system

model. Otherwise, states not satisfying the specification

are identified. A transition path from a defined initial state

to a state identified as not satisfying the specification is

called counterexample [4]. The CTL properties of the

proposed security farm architecture is verified using

NuSMV for different specifications and the result with

instances and counter example is shown below:

SPECIFICATUIONS FOR THE NUSMV CODE USING LTL

AND CTL PROPERTIES

-- specification EF state = null_state is true

-- specification AG (AF (!time -> state =

get_update_status)) is true

-- specification AG (EF (!status -> state=null_state)) is

true

-- specification AG (AG (AF (time -> (!data_get -> state

= get_update_status)))) is false

-- as demonstrated by the following sequence

Trace DEscription: CTL Conterexample

Trace Type: Counterexample

-> State: 1.1 <-

 state = null_state

 status = FALSE

 source_device_select = FALSE

 data_ get = FALSE

data_sent = FALSE

 time = FALSE

 dest_device_select + FALSE

-> State: 1.2 <-

 state = get_update_status

 status = TRUE

-> State: 1.3 <-

 state = s_device_select

 status = FALSE

 source_device_select = FALSE

 time = TRUE

-- Loop starts here

-> State: 1.4 <-

 status=get_data

 source_device_select = FALSE
-> State: 1.5 <-

VIII. CONCLUSION AND FURUTE WORKS

A distributed embedded architecture model for

security hardware with fault tolerant features is proposed
to tolerate non availability faults and resource component

faults. The model is a centralized system in which

sequential control is exercised by a micro controller

through the F-map algorithm embedded in it and can be

scaled as multi FPGA devices pool with power or

performance awareness. The collective behavior of the

architecture model is formally verified using a model

checker based on LTL and CTL properties. The limitation

of the proposed model is in the communication overhead

when all devices want to send the data concurrently over

the limited bandwidth of UART channel. The constraints
are the assumptions that the basic transmission and

reception switches must always be fault free even to

intimate the error report to the central controller. The

actual implementation of the project with multiple FPGAs

and triple micro controllers to enhance the reliability is

the future work planned.

REFERENCES

[1] G. Gogniat, T. Wolf and W. Burleson: Reconfigurable
Hardware for High-Security / High-Performance
Embedded Systems: The SAFES Perspective, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 16, No. 2, February 2008, pp. 1-10.

[2] Reconfigurable Security Architecture for Embedded
Systems, http://vcsgi.ecs.umass.edu/essg/papers/
MOCHASubmit.pdf, pp. 1-7.

[3] S. Hauck and A. Dehon: Morgan Kaufmann Publications,
Reconfigurable Computing, pp 107-110.

[4] Sebastian Steinhorst: Dissertation, Formal Verification
Methodologies for Nonlinear Analog Circuits, Frankfurt,
2011, pp. 55-69.

[5] A.Cimatti, E.Clarke, F.Giunchiglia and M.Roveri: NuSMV
:A New Symbolic Model Verifier,pp.1-5.

[6] G. K. Palshikar: An Introduction to Model Checking, html
page, pp. 1-8.

[7] S. Ravi, A. Raghunathan, P. Kocher and S. Hattangady:
Security in Embedded Systems: Design Challenges, ACM
Transactions on Embedded Computing Systems, Vol 3, No.
3, August 2004, pp. 6-10.

[8] P. Quintana: Fail-Safe FPGA Design Features for High-
Reliability Systems, Paper ID: 900566, IEEE 2009, pp. 3-5.

[9] A. Dandalis, V.K. Prasanna and D.P. Rolim: An Adaptive
Cryptography Engine for IPSec Architectures, ACM
Transactions on Design of Automation of Electronic
Systems, Vol. 9, July 2004, pp. 333-353.

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

