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Abstract— The objective of the work is to propose a 

distributed embedded architecture model for tolerating faults 

while performing security functions using multiple field 

programmable gate arrays (FPGA). The hardware encryption 

and decryption modules are used as customized modules 

within the devices to act as a cooperative system to tolerate 

omission and commission faults. The different security 

functions are communicating through a common UART 

channel and security operations are synchronized with 

standard protocols initiated by an embedded micro controller. 

The decision in locating the working and available modules 

among a pool of devices is carried out by the microcontroller 

using an intelligent F-map mechanism and directs the control 

instructions. The model is scalable with increased number of 

similar devices when connected across the common 

communication channel. The model is verified for all its paths 

using Symbolic Model Verifier, NuSMV to assert the dynamic 

behavior of the architecture in case of different faulty 

conditions. 

 

Keywords- Distributed architecture; Fault tolerance; Security 

module; Model verification; Assertion technique. 

I.  INTRODUCTION 

The security architecture of embedded systems depends 

not only on the functional and performance requirements 
but also on the cost and spatial requirements suited to the 

target platforms. For example, the data path should be 

secured against many privacy attacks in the case of 

embedded systems used in the mobile applications. The data 

flow based on the dependence graph is solely determined by 

the components embedded as intellectual properties to 

perform the expected computations in real time. The 

architecture suitable for such computations with the security 

primitive components should be formally verified in order 

to avoid security errors like communication and 

synchronization errors. Due to the heterogeneity of various 

security hardware components from different component 
vendors, integration of them may lead to further challenges 

in the architectural design. The earlier SAFES architecture 

[1] focuses on the reconfigurable hardware that monitors the 

system behavior to realize the intrusion detections. The 

other proposed SANES architecture [2] focuses on security 

controller and component controller components to monitor 

the abnormal behavior in the system run time. Irrespective 

of the cryptographic algorithm used in the security 

primitive, the primitive components are to be self tested 

since the data path may vary dynamically in the case of a 

distributed embedded system. The components may not be 
available at some point of time when they are in need and 

they should be available in a fault free condition within the 

distributed mesh of devices. The correct selection of the 

primitive components either in the source or in the 

destination FPGA is to be decided in a power efficient 

manner among a pool of similar devices. The security 

processes are to be completed in the correct sequence and 

the operations are to be enabled as in the same dataflow 

form when they are completed [3]. The components are 

treated as resources within a single device to complete the 

submitted task and other similar devices are considered as 

coordinating devices controlled by a centralized controller. 
A field mapping technique is proposed through which the 

resource components available in the devices will be 

connected to form a distributed system considering the 

power consumption and the propagation delay involved in 

the on demand architecture. The distributed security 

architecture model has to be formally verified for its 

behavior to meet the reachability and fail free conditions. 

The standard NuSMV tool [5] supports LTL model 

checking [5] where the individual parameters can be 

inspected to investigate the effect of choices. Existing 

embedded system architectures are not capable of keeping 
up with the computational demands of security processing, 

due to increasing data rates and complexity of security 

protocols [7]. High assurance cryptographic applications 

require a design to be portioned and physically independent 

to ensure information cannot leak between secure design 

partitions. Ensuring this partition separation in the event of 
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independent hardware faults is one of the principle tenets of 

a high-assurance design [8]. FPGAs are highly promising 

devices for implementing private-key cryptographic 

algorithms. Compared to software based solutions FPGA [9] 

based implementations can achieve superior performance 

and security. Hence the main focus of the work is to propose 
a fault tolerant distributed architecture model for security 

hardware and check the model for its expected behavior 

meeting the specifications or against it. 

The organization of the paper is as follows: Section 2 

proposes the distributed embedded architecture for the 

security hardware using a single reconfigurable FPGA 

device with all the needed security primitive components. 

Section 3 discusses the sequences of processes to meet the 

performance requirements of the security architecture. The 

next section 4 extends the single system on chip to multi 

FPGA model where the data packet is routed between four 

similar devices under different faulty situations that lead to 
the worst case performance of the model. The next section 

explains the role of the micro controller in managing the 

field mapping of the devices when needed security 

components are faulty. Section 7 illustrates the model 

checking using NuSMV and its verified output and explores 

the scalability of the architecture along with its limitations 

like the issue of packet conflicts along the communication 

path in UART. 

II. DISTRIBUTED EMBEDDED SYSTEM ARCHITECTURE 

The architecture selection depends on the resource 

availability and reliability requirements of the security 
system. A reconfigurable platform like FPGA in addition to 

a high speed micro controller can organize the different 

computations needed to control the sequence of operations 

in the system.  The resources are available in the form of 

intellectual properties (IPs) within the chip and these are to 

be assigned with the tasks in an efficient manner by the 

micro controller as the central manager. The best suitable 

architecture is the distributed embedded architecture where 

the resources are different sets of workers and the operations 

are performed in data flow form. The basic security 

hardware architecture consists of an encryption and 

decryption modules for 64 bit size along with their 
corresponding activation switches. The data transmission 

and reception takes place through the transmitter and 

receiver modules placed in the same chip and configured for 

different baud rates and actual process takes places through 

a universal asynchronous receiver transmitter (UART) 

module. The configuration of the security modules are self 

tested by the wired built-in self test (BIST) components 

connected with them to tolerate functional faults and 

controlled by a BIST Controller to regulate the data flow. 

All the components are selected or enabled by the control 

signals from device selector (DEVICE SEL) as shown in 
Fig. 1. The device reads the plain text from the keyboard 

and routes through the encryption and decryption modules 

as per the instructions received the micro controller that may  

reside inside or outside the chip assembly and connected 

through a bus. The deciphered text will be displayed in the 

activated display unit of the selected chip.  

The micro controller is responsible for maintaining the 

queue of tasks and allocates the tasks to computational 

module as and when they are fail free. Because of the 
different execution times needed for different resources for 

processing the tasks, the micro controller has to run an 

intelligence algorithm to decide the available resource for 

that instant of time to forward the data. The micro controller 

gets the updated components information by regular sample 

intervals and refreshes its resource status (RST) and device 

status table (DST) in the private registers. The control 

signals are issued by the device select component as and 

when needed to send or receive. In case where there are 

concurrent requests from multiple devices over the limited 

bandwidth channel, then the micro controller forms a 

priority table to decide the order in which the queue of tasks 
may be completed. The micro controller is embedded with 

the algorithm to assign the priority to various requests. 
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Figure 1.  Distributed Embedded Architecture on Chip. 

III. SEQUENCE OF PROCESSES 

The security components needed to perform 
cryptographic operations are to be initialized with requests 

from the central manager component that is the micro 

controller. The sequence of processes is determined based 

on the availability of those components in their fault free 

conditions so that the data flow can be triggered. The 

enabling and disabling of the components in the pool of 

resources is taken care by the intelligent algorithm called F-

Map embedded in the micro controller. For encryption of 

the text that is coming through an input peripheral say, 

keyboard connected to any one of the FPGA device, the 

sequence of processes is different from that of the 

decryption processes towards the output peripheral say, 
display device connected to other or the same FPGA device. 

For any FPGA to work it is mandatory that the 

Transmission, Reception switches & the UART connection 

to function properly. The microcontroller maintains two 
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table a Device Status Table (DST), where a Farm of FPGAs 

that can take part in the security process are listed and 

Resource Status Table (RST), where the resource status of 

each FPGA in the device farm is listed. During runtime 

micro controller forms a Run Time Table in which all the 

working set of FPGAs, obtained from DST with all its 
resources in fault-free condition (resource status obtained 

from the RST) for the current operation i.e. encryption or 

decryption, are enlisted depending on power dissipation 

(Power Aware mode) or propagation delay (Performance 

mode) of the FPGAs. 

A. Sequence of Operation 

 Check for updates in the run-time table_encryption 

 Get data from the SOURCE_FPGA.  

 Check the status of resources in the 

SOURCE_FPGA. 

 If Fault free, send data to FPGA for encryption.  

 Else, select next FPGA based upon the mode of 

operation in the runtime table to encrypt the data. 

 Check updates in run-time table_decryption. 

 Check the status of resources in the 

DESTINATION_FPGA 

 If Fault free, send encrypted data to 
DESTINATION_FPGA for decryption. 

 Else, select next FPGA in the runtime table and 

instructs to decrypt  

 Transmit data to destination. 

 Wait and Go to 1. 

 

IV. MULTI FPGA BASED FAULT TOLERANT 

DISTRIBUTED EMBEDDED SYSTEM 

The distributed embedded architecture on chip proposed 

in the work can be integrated with similar devices so as to 

make a distributed fault tolerant model. A micro controller 
is connected to instruct and manage the resource allocation 

between the devices based on the fault free conditions of the 

needed components. The algorithm that is embedded in the 

controller accepts the status of all the devices in terms of 

their resource components and decides the routing that the 

plain or cipher text has to follow as shown in Fig 2. The 

reliability of the distributed system is enhanced by 

component dynamic redundancy technique as and when the 

fault gets detected. Even though the functional component is 

static within a device, the controller calls the fault free 

components dynamically. The availability and system 
reliability is enhanced at the cost of communication 

overhead between the controller and the status table register 

multiple times. Since the performance depends on the speed 

of completion of the submitted task, the reliability of the 

system gets improved over the expected performance level. 

 

 
 

Figure 2.  Multi FPGA based Distributed Embedded System. 
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Figure 3.  Microcontroller System Level Behaviour. 

In the distributed architecture, the microcontroller 

behavior starts from instructing the distributed architectutre 

of FPGAs  in its Null state. After a time interval (when an 

implicit or watchdog timer expires) its state transits from 

Null to Get_Status state (MT1). The state changes from 

Get_Status to Monitor_Req when the microcontroller 

successfully reads the status of all the FPGAs (MT2). The 

coordinating micro controller continues to remain in 
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Monitor_Req state until any request is made (MT3). The 

state transits from Monitor_Req to Get_Info if a request is 

made by any one of the FPGAs (MT4). On occurance of any 

data error during the request,  the controller tracks back 

from Get_Info to Monitor_Req (MT5). On successfully 

aquiring the information from FPGAs, a state transition 
occurs from Get_Info to Analyse_Requester_Status (MT6). 

If all the resource primitive components at the source and 

destination FPGAs are fault-free, a state changes from 

Analyse_Requester_Status to Normal_Service (MT7). On 

successful completion of the task state transits from 

Normal_Service state to Monitor_Req state (MT8). If 

source or destination devices or both have non availability 

errors in any of their resources, the controller changes state 

from Analyse_Requester_Status to Worst_Case_Service 

(MT9). On successful completion of the event, the state 

changes from Worst_Case_Service state to Monitor_Req 

(MT10). The control remains in the Normal_Service state 
until  the predefined time elapses on occurance of a 

communication error  (MT11). The microcontroller changes 

state from Normal_Service to Get_Info state if the error 

continues to persist at the end of the predefined time interval 

(MT12). While encountering various errors, the control 

remains in the Worst_Case_Service state until the 

predefined time elapses (MT13). The control changes 

Worst_Case_Service to Get_Info state if the error exists 

when the predefined time is exhausted (MT14). The control 

of operations shift from Worst_Case_Service to 
Normal_Service when the micro controller finds the updated 

status of the resouce primitive components at the source and 

destination FPGAs to be fault-free (MT15) as in Fig 3. The 

fault tolerant technique using available fault free 

components can be extended to the situation when multiple 

FPGA devices are interconnected. Assuming similar 

devices, the security operations are executed in different 

devices based on the primitive components availability. If 

not, the correct routing instruction will be issued by the 

micro controller based on its updated device table and 

corresponding resource tables. The reliability of the 

communication path  between the devices is a major 
challenge in the design of the above multi FPGA based 

distributed embedded security system.The synchronization 

in the execution of primitive operations is taken care by the 

embedded algorithm residing in the micro controller. 
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Figure 4.  F Map for Power Aware Application. 

V. F MAP FOR RESOURCE SELECTION 

The Farm map (F-Map) is an intelligent algorithm by 

which the micro controller identifies the next device that has 

the needed security primitive components. The mapping 
brings the current status of the resources and fills the cell as 

‘1’ in the START FPGA which indicates that the DEVICE 

SELECT and the BIST for Encryption components are in 

failed states as shown in Fig 5. The algorithm searches the 

next device, depending upon whether the FPGAs are 

operated in power save mode or performance mode and in 

which all the needed components are fault free that is 

indicated by 1 cell for encryption process. Similarly the 

same algorithm is iterated for the decryption process also to 

get the data packet encrypted and communicated to the 

destination. The decryption may take place in the 

destination FPGA device. If multiple ‘1’ cells are appearing 

at any time among different devices, then the controller 

selects the shortest path to minimize the communication 

delay to avoid any attack on the device itself that is possible 

in the distributed FPGA architecture. The Device Select at 

the destination FPGA is in failed state which makes the 
micro controller iterate for the next FPGA with the required 

resources in Fault-free state. The alternate FPGA for 

decryption process is selected depending on whether the 

distributed FPGA architecture is operated in performance 

mode or power aware mode. ACTIVE_DECRYPT_FPGA1 

is chosen when operating in performance aware mode and 
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ACTIVE_DECRYPT_FPGA2 is chosen while operating in 

power aware mode. The performance characteristics of the 

distributed FPGA vary with the operating mode. For quicker 

response, the Distributed architecture may be operated in 

performance mode which causes higher power dissipation in 

the device. While operating in power save mode, the 
propagation delay is high, but the power consumed is 

minimal, as shown in Table. 1. 

Propagation Delay = n * T                                               (1) 

Where, n= R + C - 1 

‘R’ Denotes the Row & ‘C’ Denotes Column in which 

the FPGA is located in the DST. 

TABLE I.  POWER DISSIPATION AND PROPOGATION DELAY FOR 

VARIOUS MODES 

Order in 
DST (R,C) 

Power 
Dissipation 

Propagation 
Delay(ms) 

Remarks 

1,1 6.41W T Performance 

 2,3 4.23W 4*T Normal/Safe 

1,9 3.47W 9*T Power Aware 

 6,12 7.9W 17*T Poor  
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Figure 5.  F Map for Power Aware Application. 

VI. PERFORMANCE IN BEST CASE AND WORST CASE 

SCENARIO 

In the distributed embedded system, if all the 

resources in the source and destination FPGAs are fault-

free then the micro controller chooses the normal 

operating mode which is the best case scenario. The 

behavior of the embedded system during its best case 

performance is shown in Fig. 6 and its transitions are 
mentioned in Table. 2. The behavior of the distributed 

embedded system varies when a resource in source or 

destination FPGA is in failed state, depending upon the 

mode of operation viz. Performance Mode, Power Aware 

Mode, Safe Mode, depicted by the worst case behavior is 

shown in Fig. 7. 

The microcontroller iterates various paths from the 

source to the destination depending upon the mode of 

operation and selects the FPGAs in source or destination 

side, with its required resources in fault free condition.  

 

NORMAL_ NULL

NT1 NT2

GET_ DATA

NT3

NT6

SD_GET_ STATUS

SEND_ DATA

NT5

NT7

NT8

NT9
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Figure 6.  Best Case Scenario. 

 

TABLE II.  BEST CASE TRANSITIONS 

Transition 

ID Events 

NT1 

If main state machine reaches 

NORMAL_SERVICE state 

NT2 
Failure of getting source status || 
Failure of getting destination status 

NT3 

After getting successful status of 

source and destination 

NT4 If not getting correct data from source  

NT5 

If not getting correct data from source 

&& reaches maximum tries 

NT6 Getting successful data from source 

NT7 Not sending correct data to destination  

NT8 

If not sending correct data to 

destination  

NT9 If sending correct data to destination 
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Figure 7.  Worst Case Scenario. 

While the distributed Embedded system is in its Worst 

Case behavior, the microcontroller acquires the status of  

all the FPGAs present in the distributed embedded system 

(BT1). In case of failure of acquisition of the status, the 

microcontroller waits in a null state until the status of the 

FPGAs are updated (BT2). Depending upon the mode of 

operation during resource failure in the source FPGA, the 
microcontroller searches for an alternate FPGA for 

encryption  process(BT3). On selection of a suitable 

FPGA, the data from the source FPGA is transferred for 

encryption process (BT5). The microcontroller continues 

to exist in Get_Data state until the data is completely 

transferred to the alternate FPGA (BT6). On occurance of 

any errors during the data acquisition process, the 

microcontroller tracks back to its initial state (BT7). On 

completion of encryption process, a FPGA is selected by 

the microcontroller for decryption on the destination side 

(BT8). On successful selction of FPGA with all its 

resources in fault free condition, process of decryption 
takes place (BT10). The microcontroller traces itself to its 

initial state on failure of the decryption process (BT9). 

The decrypted data is ultimately sent to the destination 

FPGA until which the microcontroller remains in its 

current  state (BT11). On successful reception of the 

complete decrypted data by the destination FPGA, the 

microcontroller prepares itself for the next encryption 

process (BT13), else the microcontroller resets to repeat 

the failed process (BT12).        

VII. MODEL CHECKING OF  ARCHITECTURE USING 

NUSMV 

There are two extreme cases in which the fault tolerant 
capability can be measured. In one case, all the needed 
security components are fail free and available in a single 
chip and thereby the communication delay will be only 
due to transmit and receive signal propagation making 
power consumption very high. The other extreme is when 
one set of encryption components may be available in 
nearby device where as the decryption set of components 
in other end of the array or pool of devices and vice versa 
[6]. This condition leads to huge delay due to multiple 
enable, multiple address and data signals along with 
multiple receive, transmit and multiple device select 
signals. The worst case performance where the micro 
controller searches for the fail free encryption and 
decryption components is verified using the symbolic 
model verifier as shown below. The model checking is 
done to check the reliability of the model during the worst 
case performance and to verify the availability of alternate 
resources to complete the specified task. The LTL and 
CTL operations are applied as specifications to verify the 
availability of devices and the needed security resources 
for the encryption and decryption processes as given in 
NuSMV code below: 

NUSMV CODE FOR AVAILABILITY IN THE WORST CASE 

SCENARIO 

MODULE main 

VAR 

state : { null_state, get_update_status, s_device_select, 

get_data, d_device_select, send_data  };          

status: boolean; 

source_device_select : boolean; 

data_get : boolean; 

data_sent : boolean; 

time : boolean; 

dest_device_select : boolean; 

INIT 

state=null_state; 

ASSIGN 

next(state):= case 

state = null_state : get_update_status ; 

state = get_update_status & !status : null_state; 

state = get_update_status & status : s_device_select; 

state = s_device_select & !source_device_select : 

get_update_status; state = s_device_select & 

source_device_select : get_data; 

state = get_data & !data_get & time : get_data; 

state = get_data & !data_get & !time : get_update_status; 

state = get_data & data_get : d_device_select; 
state = d_device_select & !dest_device_select : 

get_update_status; 

state = d_device_select & dest_device_select : send_data; 

state = send_data & !data_sent & time : send_data; 
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state = send_data & !data_sent & !time : 
get_update_status; 

state = send_data & data_sent : null_state; 

esac; 

SPEC 

EF (state=null_state) 

SPEC 

AG AF( !time -> state= get_update_status) 

SPEC 

AG EF(!status -> state=null_state) 

SPEC 

AG AG AF( time -> !data_get ->state= 

get_update_status) 

 

The model checking algorithm reports true if 

specification holds true for every state of the system 

model. Otherwise, states not satisfying the specification 

are identified. A transition path from a defined initial state 

to a state identified as not satisfying the specification is 

called counterexample [4]. The CTL properties of the 

proposed security farm architecture is verified using  

NuSMV for different specifications  and the result with  

instances and counter example is shown below: 

SPECIFICATUIONS FOR THE NUSMV CODE USING LTL 

AND CTL PROPERTIES 

-- specification EF state = null_state is true 

-- specification AG (AF (!time -> state = 

get_update_status)) is true 

-- specification AG (EF (!status -> state=null_state)) is 

true 

-- specification AG (AG (AF (time -> (!data_get -> state 

= get_update_status)))) is false 

-- as demonstrated by the following sequence 

Trace DEscription: CTL Conterexample 

Trace Type: Counterexample 

-> State: 1.1 <- 

 state = null_state 

 status = FALSE 

 source_device_select = FALSE 

 data_ get = FALSE 

data_sent = FALSE 

 time = FALSE 

 dest_device_select + FALSE 

-> State: 1.2 <- 

 state = get_update_status 

 status = TRUE 

-> State: 1.3 <- 

 state = s_device_select 

 status = FALSE 

 source_device_select = FALSE 

 time = TRUE 

-- Loop starts here 

-> State: 1.4 <- 

 status=get_data 

 source_device_select = FALSE 
-> State: 1.5 <- 

VIII. CONCLUSION AND FURUTE WORKS 

A distributed embedded architecture model for 

security hardware with fault tolerant features is proposed 
to tolerate non availability faults and resource component 

faults. The model is a centralized system in which 

sequential control is exercised by a micro controller 

through the F-map algorithm embedded in it and can be 

scaled as multi FPGA devices pool with power or 

performance awareness. The collective behavior of the 

architecture model is formally verified using a model 

checker based on LTL and CTL properties. The limitation 

of the proposed model is in the communication overhead 

when all devices want to send the data concurrently over 

the limited bandwidth of UART channel. The constraints 
are the assumptions that the basic transmission and 

reception switches must always be fault free even to 

intimate the error report to the central controller. The 

actual implementation of the project with multiple FPGAs 

and triple micro controllers to enhance the reliability is 

the future work planned. 
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