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Abstract—In today’s world, with its complex global supply
chains, the difficulties and uncertainties we face offer both
challenges and opportunities for making things better, especially
in terms of efficiency and sustainability. These challenges grow
due to unpredictable events, such as natural disasters, unexpected
incidents, and unusual business practices, pushing us towards
more advanced modeling methods that focus on reducing risks
and enhancing sustainability. In this paper, we present a new
agent-based simulation approach that goes beyond the usual
limits of supply chain simulations by incorporating sustainabil-
ity directly into supply chain operations using Reinforcement
Learning (RL) algorithms. We introduce MOGI, derived from
the Japanese word for ’simulation’, a sustainable supply chain
simulation system that takes carbon emissions into account in its
main operations. Additionally, we examine how effective a multi-
agent RL strategy is in dealing with the complex and uncertain
nature of supply chains that span multiple levels. By comparing
this strategy with traditional heuristic methods, our study looks
at how well single versus multiple RL agents can manage risks
and improve sustainability in both the beginning and end parts
of the supply chain. The results of our experiments show that
strategies based on RL are much better than traditional methods
at managing risks, making profits, and achieving sustainability
goals.

Index Terms—Agent-based Simulation, Supply Chain, System
Optimization

I. INTRODUCTION

In the evolving landscape of global Supply Chain Man-
agement (SCM), mitigating carbon emissions has emerged
as a critical concern. This imperative addresses not only
environmental sustainability but also operational efficiency
and regulatory compliance. The complexity of modern supply
chains, characterized by intricate networks of suppliers, manu-
facturers, and retailers across diverse regions, poses significant
challenges in accurately quantifying and managing carbon
footprints. With ambitions toward achieving a net-zero econ-
omy, numerous countries are adopting varied sustainability
policies [2], [3]. To meet internationally agreed-upon climate
goals, optimizing supply chain management by integrating
carbon emissions considerations is essential.

Efforts to reduce carbon footprints in supply chain man-
agement necessitate a comprehensive approach that incor-
porates robust strategies to address traditional uncertainties
while actively striving for sustainability and carbon neutrality.
This approach ensures that supply chains not only achieve
their economic objectives but also contribute positively to
environmental stewardship. Machine Learning (ML) has be-
come increasingly prevalent in enhancing SCM, particularly
in improving demand forecasting and sales predictions [7],
[12], [14], estimating commercial partnerships [10], [11], and
optimizing inventory management [9], [15]. However, reliance
solely on ML techniques presents certain limitations, including
the lack of transparency in the decision-making process and
the intensive requirements for training data and computational
resources. These challenges necessitate either advanced do-
main expertise for developing sophisticated and experiential
strategies or substantial datasets for model training, which can
be particularly challenging to acquire, especially in the context
of proprietary commercial data.

Considering the identified limitations of ML methods in
addressing supply chain challenges, an increasing number of
researchers are integrating simulation-based methods with ML
to tackle these issues [1], [5]. To this end, we introduce MOGI,
a simulation tool tailored for general complex problems.
MOGI encompasses three critical components: a comprehen-
sive agent-based simulation engine, a resource management
system, and an interactive platform for the implementation
and testing of policies. Designed for efficiency and scalability,
MOGI is adept at simulating complex scenarios involving
numerous agents and complex resource flows. Owing to its
capability to monitor every detail of each component within
the simulation framework, MOGI facilitates the calculation of
product-level carbon emissions with a precision that surpasses
previous methods.

Reinforcement Learning (RL) has emerged as a critical
technique for optimizing agent-based simulations in supply
chain management, attributed to its unparalleled capability
to navigate complex, uncertain environments. Firstly, supply
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chain management necessitates sequential decision-making
amidst uncertainty, a domain where RL excels by optimizing
decisions across time to favor long-term rewards over imme-
diate gains. This approach is vital for supply chain decisions,
considering that short-term actions may lead to enduring
consequences. Secondly, RL can model and learn complex be-
haviors directly from agent-interaction data, obviating the need
to explicitly enumerate all conceivable states and actions—a
task impractical for complex systems. In this study, we apply
RL to each simulation agent and assess various RL algorithms
to facilitate optimization of supply chain management towards
achieving carbon neutrality.

The contributions of this paper are summarized as follows:
• We have developed an agent-based supply chain simu-

lator, MOGI, capable of simulating detailed interactions
among supply chain components, with an emphasis on
sustainability attributes.

• We investigate the potential and limitations of multi-
agent reinforcement learning algorithms in reducing sup-
ply chain uncertainty by extending the supply chain to
include participants across various tiers.

This paper is organized as follow. Section II introduces
the previous work about supply chain system simulation
and reinforcement learning. In Section III, we defined the
supply chain system optimization problem. In Section IV,
we introduce MOGI simulator in detail including all the key
components. In Section V and Section VI, we introduce the re-
inforcement learning used in MOGI simulation evaluation and
the experiments respectively. In Section VII and Section VIII,
we conclude this paper and introduce the future work.

II. RELATED WORK

Agent-based simulation tools are increasingly employed
in supply chain management to facilitate the exploration of
complex interactions among individual agents, which may rep-
resent companies, consumers, or products, within the supply
chain network. Tools such as AnyLogic [1], Simio [5], and
MATSim [4] exemplify agent-based supply chain simulation
platforms. Nevertheless, these tools do not explicitly focus on
sustainability within the supply chain, nor do they extend to
the precise calculation of product-level carbon emissions.

Since there was a lack of relevant research on supply chain
management in sustainability, based on our exploration, the
closest previous work is the application of RL in inventory
management. In this type of problem, the RL-agent first
observes the current state of the system, including current
inventory levels, demand patterns, lead times, etc. The RL-
agent is then required to determine order quantities or reorder
points, and the environment responds by generating new states
and providing rewards or penalties to guide the learning
process. As a typical case of downstream uncertainty, the
variant demands are considered as the drive for reinforcement
learning solution in many researches, and the adaptive balance
between customer satisfaction and storage cost need to be
found. Zwaida [6] propose an online solution with deep Q-
network (DQN) algorithm to prevent drug shortage problem

in hospital by deciding the refilling time and the amount of
ordered drugs, balancing the shortage cost and overstock cost.
Ganesan et al. [8] train the RL-agent to select the optimal
strategy from five pre-defined policies by considering the
combination of shortages, frequency of shortages and surplus
inventories over the past n periods. Sedamaki et al. [13]
classify suppliers to four risk indices and train the RL-agent in
a custom-modeled environment to slit an order among multiple
suppliers while minimizing the delays.

III. PROBLEM DEFINITION

The goal of our work is to develop a simulation tool to
model supply chain system behaviors with a focus on sus-
tainability, aiming to optimize supply chain decision-making
for lower carbon emissions and reduced uncertainty. To assess
the MOGI simulation tool and the RL optimization methods
for system sustainability, we transform a real-world supply
chain system focusing on sustainability into an optimization
problem aimed at lowering carbon emissions. Consider a
supply chain system with I retailers (agents in the simulation)
interconnected in a specific topology. At time point t within
period T , the ith retailer purchases mij(t) units of the product
from the jth supplier at price nij(t). Subsequently, the ith

retailer sells mik(t) units of the product to the kth customer
at price nik(t). Given that carbon emissions are predominantly
calculated during the manufacturing process, the carbon emis-
sions associated with the transaction between the ith retailer
and the jth supplier are represented as mij ∗ Eij , where
Eij is the product-specific carbon emission factor. Thus, the
objective is to maximize the profit earned by all retailers while
accounting for the equivalent carbon emissions, as illustrated
below:

max

T∑
(

I∑
mij(t) ∗ nij(t)−

K∑
Eik ∗mij(t)). (1)

For clarification, we use the term “agent” in this article to
refer to the agent both in simulation system and real-world
environment and “RL-agent” to refer to the agent in RL only.

IV. MOGI: SUPPLY CHAIN SIMULATION

In this section, we introduce MOGI, an agent-based simula-
tion tool designed for general complex system modeling. This
paper demonstrates the application of MOGI in supply chain
management with a focus on sustainability. We use the supply
chain system as a case study to elucidate MOGI’s rationale
and the methodology for mapping real-world systems into the
simulation environment.

A. Overview of MOGI Simulation

A general complex system is comprised of interacting,
autonomous components. Unlike simple systems, complex
adaptive systems possess the ability for agents to adapt at the
individual or population levels. This exploration into complex
systems forms the basis for understanding self-organization,
emergent phenomena, and the origins of adaptation in na-
ture. Conceptually, the decomposition of a general complex
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system into three primary components—Agents, Resources,
and Topology—is derived from a holistic approach to mod-
eling and comprehending the intricate interactions and dy-
namics within such systems. Agents within the system have
the capacity to act, interact, and make decisions based on
predefined rules or through adaptive learning mechanisms.
Resources include the various elements and assets that can
be consumed, transformed, or produced by agents within the
system. Topology refers to the arrangement and connectivity
of elements within the system, highlighting the structural
aspect of complex systems. It delineates how agents are
linked and the manner in which they can interact with one
another. This framework not only facilitates the conceptual
understanding of complex systems but also enables structured
simulations to explore system dynamics, predict behavior
under diverse scenarios, and devise interventions to achieve
specific objectives. The diagram shown in Fig. 1 exemplifies
MOGI’s functionality, orchestrating resource flow dynamically
through the supply chain. The module is pivotal, facilitating
the simulation of diverse supply chain strategies and their
impacts on efficiency and sustainability.

Fig. 1. MOGI in supply chain simulation.

B. Agent

Agents are entities within the system capable of acting,
interacting, and making decisions based on predefined rules or
adaptive learning mechanisms. Each agent is endowed with the
ability to process information, utilize resources, and potentially
alter the topology through their actions. The complexity of
real-world systems emerges from the collective behaviors
of agents, leading to phenomena such as self-organization,
adaptation, and evolution.

The design and description of agents within a simulation are
predicated on several essential characteristics. First, an agent is
a self-contained and uniquely identifiable entity with attributes
that enable it to be distinguished from and recognized by other

agents, facilitating interaction. Second, an agent is autonomous
and self-directed, capable of operating independently within its
environment and in interactions with other agents. An agent’s
behavior, which bridges sensed information to decisions and
actions, can range from simple rules to complex models,
including RL mechanisms that adapt inputs to outputs. Third,
an agent possesses a state that evolves over time or in
response to external changes. In MOGI, we employ a state
machine mechanism within each agent to represent its state.
This mechanism is chosen for its inherent ability to model
the discrete states and transitions that define the operational
and decision-making processes of agents. In the context of
supply chain systems, this approach is particularly apt, as it
mirrors the operational stages and decision-making sequences
in procurement and manufacturing processes, among others.

Fig. 2. State machine in MOGI agent.

A general example of a state machine within an agent
is depicted in Fig. 2. This figure shows a state machine
comprising two states: State 1 and State 2. Each state triggers a
specific action, denoted as Action 1 and Action 2, respectively.
The diagram also illustrates a uni-directional transition from
State 1 to State 2, initiated by a designated event. This
transition symbolizes a shift in behavior, as indicated by the
distinct actions associated with each state.

Within MOGI, agents function according to a behavioral
model that promotes autonomy and responsiveness to other
agents. This model incorporates decision-making algorithms
that enable agents to adapt to the evolving conditions of
the simulation environment, thus mirroring the uncertainties
and dynamics typical of real-world supply chain operations.
Agents evaluate their performance metrics, such as delivery
times and production rates, and adjust their strategies ac-
cordingly to optimize these variables. The model guarantees
that agents’ actions are responsive to changes in resource
availability and demand, creating a self-regulating system that
adapts based on simulation inputs and inter-agent interactions.

C. Resource

The resource component manages the both tangible and in-
tangible resources within the connections among all the agents
or produced by agents, employing algorithms that adapt to
simulation conditions. Resources are allocated based on supply
and demand, with the simulation tracking their utilization and
wastage. It also simulates the exchange of resources among
agents, incorporating factors like market trends and demand
forecasts. It ensures a balance between resource consumption
and replenishment, aligning with the sustainability metrics
modeled within the simulation. Resource dynamics, such as
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scarcity, competition, and allocation, play a critical role in
the agent’s behavior and interactions and consequently, in the
emergent properties of the system.

The nature and dynamics of resource can greatly impact
agent behavior especially under different interaction such as
cooperation and competition. For the cooperation, the agents
work together to share, allocate, or optimize resource in the
same direction such as shared benefit or similar goal. Resource
in such settings should be designed to encourage collaborative
strategies, such as pooling resource to complete a task that no
single agent could accomplish alone. Meanwhile, the simula-
tion can explore how cooperation leads to efficient resource
use and mechanisms for fair distribution and sustainability. For
competition, the competitive resource settings can simulate
the real-world phenomena such market dynamics, ecological
survival strategies, or social competition. The focus can be
on how agents adapt the strategies in response to resource
scarcity, the impact of competition on resource distribution.

D. Topology

The topology component in MOGI simulates the dynamic
connections and interactions between agents and resources. It
concerns the arrangement and connectivity of elements within
the system, highlighting the structural dimension of complex
systems. Topology determines how agents are interconnected,
thereby influencing their potential interactions. The configura-
tion of a system’s topology plays a crucial role in its dynamics
by dictating the channels for information or resource flow
and impacting overall system performance. As interactions
between agents and resources unfold, the topological structure
adapts, shedding light on optimal system configurations.

Topology within simulations can be categorized into
static/dynamic and physical/virtual, accommodating various
real-world system types. Static topology features a spatial
structure that remains constant throughout the simulation pe-
riod, streamlining the analysis of agent interactions and the
influence of spatial arrangements on system dynamics. It suits
the study of systems with stable spatial relationships over time,
such as those in organization-based simulations, allowing a
concentrated examination of other dynamics.

Conversely, dynamic topology supports modifications to
spatial structures during the simulation, including changes
in agent positions, modifications in agent connections, or
variations in spatial configurations. This type of topology is
crucial for simulating systems where adaptability, movement,
or structural changes are integral to behavior, exemplified by
social network evolution simulations.

Physical topology deals with the spatial arrangement of
agents and resources, taking into account distances, barriers,
or spatial distributions that influence interaction probabilities
and dynamics. It is applied to simulate real-world spatial
dynamics, such as urban traffic patterns. Virtual topology,
on the other hand, defines connections among agents based
on relationships, communication paths, or other non-physical
links. It is vital for studying systems where physical locations

are secondary to the connections between entities, as seen in
simulations of idea development or virtual networks.

V. OPTIMIZATION METHOD

A. Scenario Setup

In this study, our objective is to investigate the impact of
supply chain depth on uncertainty management, focusing on
a scenario that incorporates multiple suppliers and customers.
At the heart of this scenario is an intermediary entity, such
as a retailer, which is represented by a decision-making agent
(as depicted in Fig. 3). This agent aims to maximize profits
through strategic purchasing and selling activities, with a keen
consideration for sustainability, herein represented by carbon
emissions.

The initial simulated scenario involves three suppliers con-
nected to a central agent, which in turn is connected to
three customers (as illustrated in Fig. 3a). These connections
symbolize contracts established for the trading of products.
To inject an element of uncertainty into the simulation, the
connection between a given supplier i and the central agent
j may become disabled with a certain probability pij at any
given time step t. Customer demand directed towards agent
j is modeled as a random variable that follows a Poisson
distribution, represented by dj . This setup allows the agent
to purchase products from suppliers at a quoted price and
then sell them to distributors at a price determined by the
agent, effectively simulating the dynamic and uncertain nature
of customer demand.

To further examine the influence of having multiple multi-
level agents in the supply chain on sustainability, the scenario
is expanded as shown in Fig. 3 (b). In this more complex
setup, multiple agents share the uncertainties, each facing a
disruption probability pii when interacting with another agent.
The demand requested by a downstream agent is denoted as
dik, illustrating the extended network and layered interactions
designed to explore deeper aspects of supply chain sustain-
ability and uncertainty management.

B. RL method

Because of the traditional optimization methods that strug-
gle to cope with the stochastic nature and the high dimension-
ality of decision spaces, we apply RL-agent on the agent to
make decisions due to its capability to learn optimal strategies
through interaction with a real-world system. Meanwhile,
the adoption of RL can learn from simulation without real-
world risks, deal with uncertainty and partial observability,and
facilitate continuous improvement. Next, we introduce the
detail of RL (DQN) (as shown in Fig. 4) applied in MOGI.

The learning process of RL-agent can be described by a
tuple (s, a, s′, r, ), where s denotes the current state, a denotes
the action will take, s′ and r is the new state and reward
returned from the environment, respectively, once a is acted
4. We also denote S and A as the set of possible states and
actions respectively. The Q-learning algorithm aims to estimate
the action by mapping state and corresponding action, Q :
S × A → R, to a real number so called Q-values. The agent
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Fig. 3. (a) The basic topology of the supply chain with a single agent balancing with uncertainty from both upstream and downstream entities. (b) A
multi-layer agents involved supply chain for uncertainty sharing.

can execute the action with highest Q-values based on the
optimal Q-values function, Q∗, to achieve highest accumulated
rewards. The optimal Q-values function can be optimized by
minimizing the temporal difference error,

δ = r + γmax
a′

Q(s′, a′)−Q(s, a) (2)

where γ is the discount factor determining the importance of
future rewards. Therefore, the we can update the Q-function
by,

Q(s, a)← Q(s, a) + αδ (3)

In the setting of DQN, the Q-value function a learnable deep
neural network parameterized by θ instead of the tabular
encoding used in standard Q-learning. We can optimize it by

L(θ) = E
[(

Q(s, a; θ)− (r + γmax
a′

Q(s′, a′; θ−))
)2

]
(4)

where (s, a, r, s′) is sampled from the memory buffer D, and
θ− denotes to the parameters of target network.

Agent

Simulation environment

State Reward

Action

Fig. 4. The comparison of storage level and the number of purchased products.

C. RL Settings

1) State: The state s is defined as a vector embedding the
information that can be gained by the agent from the environ-
ment. We denote the state of agent i as si = [ci, µi, xi, yi] ∈
R|Si|+|Ri|+li+1

+ . ci ∈ R|Si|
+ is the product price from i’s sup-

plier; µi ∈ R|Ri|
+ is the anticipated demand from i’s retailer;

xi is the current inventory level; and yi ∈ Rli
+ represents the

product transition line, and [yi(t)]n is the replenishment that
arrives at time t+ n.

2) Action: In each time point t, an agent can decide the
quantity of purchasing, mij, and the selling price nik, forming
the action vector ai = [mij, nik] ∈ R2N

+ . So, mij is the
products amount ordered by agent i from its supplier j.

3) Rewards: We define the rewards in terms of total rev-
enue, order cost, holding cost, backlog cost and equivalent
carbon emissions,

ri(t) =
∑
j

nij(t)dij(t)︸ ︷︷ ︸
total revenue

−
∑
k

cik(t)dki(t)︸ ︷︷ ︸
order cost

−

hi

xi(t)
∑
j

dij(t)


+︸ ︷︷ ︸

holding cost

−wi

∑
j

dij(t)− xi(t)


+︸ ︷︷ ︸

backlog cost

−

−
∑
k

Eikdki(t)︸ ︷︷ ︸
carbon emission

(5)
Where Eik is the carbon emission for the product. The

agent earn the profit by selling products that purchased from
suppliers (order cost) to retailers (total revenue) and it aims
to reduce the total equivalent carbon emission in the whole
process.

VI. EXPERIMENTS

A. Implementation Details

In the experiment, as shown in Fig. 3, the supply chain
system includes three suppliers and three customers. An agent
can purchase products from the suppliers at quoted prices
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and sell them to distributors at self-determined prices. This
model effectively simulates the dynamic and uncertain nature
of customer demands. We implement RL (DQN) in the supply
chain with one single RL-agent or three RL-agents in Fig. 3
(a) and (b), respectively. In the RL method, the states include
the product price from each supplier, the selling price to each
customer, and the current inventory amount in each agent. The
actions include setting the buying and selling prices of the
product and the amount of product purchased by the agent
for the next time period. The reward is calculated as shown
in Equation 5. Furthermore, we considered the instability of
suppliers and transitions, aiming to mimic scenarios where
abnormal events occur, which ultimately affect the transaction
amount. Therefore, we add a random discount factor to dij ,

d′ij = dij · pij

where pij is a random variable evenly ranging from 0 to
1. We assume customer demand is price-sensitive, such that
Q(nk) = 10 − 2nk + 0.05ϵ, where ϵ ∼ N (0, 1) represents
Gaussian noise. The RL (DQN) configuration includes two
layers with 128 units each for both the value and the advantage
streams. We use the Adam optimizer and set the learning
rate to 0.001. The discount factor, gamma, was set to 0.99.
An epsilon-greedy strategy was employed for action selection,
with an initial epsilon of 1.0, which decayed exponentially to
a final epsilon of 0.01 over 50,000 steps. Experience Replay
was employed to stabilize the learning process. The buffer size
for the experience replay was set to 10,000. A batch size of
32 was used to sample experiences from the replay buffer for
updating the Q-network. The target network was updated with
the weights of the policy network after each episode.

To compare with the RL method, we designed a naive
threshold-based heuristic strategy that determines the decision
according to a certain threshold. We maintain a safety storage
range, composed of sto+ and sto− (5000 and 1000 in the
experiment, respectively). If the current storage level is lower
than sto−, the agent will purchase the differential product
from suppliers, with the order amount being the same. If the
current storage level exceeds the range, the agent will stop
purchasing and attempt to satisfy all the customers. In other
cases, the agent will evenly purchase products from suppliers
and distribute them evenly among customers.

B. Result

A single agent implemented with DQN is able to handle
uncertainties. Fig. 5 shows the learned purchasing strategy
of the agent in the basic supply chain shown in Fig. 3 (a).
We can see that the agent purchases products quickly at the
beginning and fills the store to a comfortable level around
100 to avoid future shortages. After that, it focuses on selling
products and does not make purchases for a long period. When
the storage level reaches a median value (∼ 50), the agent fre-
quently trades products with suppliers to dynamically satisfy
customer demands. The sawtooth fluctuations are caused by
the connection disruption. In Fig. 6, we present a comparison
of the number of products sold and the total demands from

Fig. 5. The comparison of storage level and the number of purchased products.

Fig. 6. The comparison of total customer demands and the number of sold
products.

downstream customers. It indicates that the learned agent can
satisfy customers well in such an uncertain environment. Most
of the time, the storage level is equal to or greater than the
demands, ensuring that sufficient products can be sold.

Comparison between an RL-agent and an agent driven by
a heuristic strategy, we conclude the average profits in 200
simulations (Table I). For single-agent method, the heuristic
strategy yielded an average profit of $183.05 with a standard
deviation of $12.86, indicating a relatively stable performance.
In contrast, the single agent employing RL outperformed the
heuristic approach with a significantly higher average profit
of $267.87, albeit with a larger standard deviation of $63.32,
suggesting higher variability in the outcomes.

The multi-agent method followed a similar pattern, with the
heuristic strategy achieving an average profit of $215.43 and
a standard deviation of $23.68. The multi-agent strategy uti-
lizing RL demonstrated superior performance with the highest
average profit of $307.19 among all strategies tested, but also
exhibited the highest standard deviation of $79.31, indicating
the greatest variability in profit outcomes.

These results underscore the enhanced performance poten-
tial of RL strategies over heuristic in both single and multiple
agent settings, as evidenced by the higher average profits.
However, the increased standard deviations associated with RL
strategies also highlight the greater risk in profits, which may
be attributed to the dynamic and possibly complex decision-
making processes intrinsic to RL algorithms.

VII. FUTURE WORK

This research lays a foundational framework for integrating
sustainability considerations with reinforcement learning to
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TABLE I
AVERAGE PROFITS OBTAINED BY AGENT WITH DIFFERENT STRATEGIES.

MethodS Average profits (USD)

single agent (heuristic) $183.05±12.86
single agent (RL) $267.87±63.32

multiple agents (heuristic) $215.43±23.68
multiple agents (RL) $307.19±79.31

enhance supply chain resilience and sustainability. However,
the dynamic and multifaceted nature of global supply chains
presents numerous avenues for further investigation. Future
work will focus on several key areas to extend the contribu-
tions of this study:

Enhanced Model Complexity: Expanding the complexity
of the MOGI simulation system to incorporate more granular
sustainability metrics, such as water usage, land use, and bio-
diversity impact. This would allow for a more comprehensive
assessment of environmental stewardship across the supply
chain.

Advanced Reinforcement Learning Algorithms: Investi-
gating the application of more advanced reinforcement learn-
ing algorithms, including deep reinforcement learning and
multi-agent reinforcement learning strategies, to better capture
the complexities and dynamics of global supply chains.

Supply Chain Collaboration Mechanisms: Developing
mechanisms for enhanced collaboration and information shar-
ing among supply chain participants. This includes exploring
the role of blockchain and other decentralized technologies in
fostering transparency and trust in sustainable supply chain
practices.

Policy and Regulatory Impact Analysis: Analyzing the
impact of policies and regulations on supply chain sustain-
ability and resilience. Future research could model the effects
of different regulatory frameworks on supply chain decisions
and outcomes, providing insights for policymakers.

LLM-Enabled Agent-Based Simulation: Building upon
the integration of advanced AI techniques, future research will
explore the application of Large Language Models (LLMs)
within the agent-based simulation framework to facilitate more
sophisticated communication and decision-making processes
among agents. LLMs can be utilized to enable agents to
process and interpret natural language data, allowing them
to extract actionable insights from unstructured data sources
such as news articles, social media feeds, and industry reports.
This capability will significantly enhance the agents’ ability to
anticipate and react to real-world supply chain disruptions and
trends by understanding the context and sentiments expressed
in global news and market analyses.

VIII. CONCLUSION

This paper studied the complexities and challenges inherent
in today’s global supply chains, underscoring the need for
innovative approaches to manage uncertainties and enhance
sustainability. By introducing the MOGI sustainable supply

chain simulation system and employing a multi-agent rein-
forcement learning strategy, we have a significant step forward
in addressing these challenges. Our findings reveal that rein-
forcement learning, when applied across a multi-level supply
chain topology, not only improves risk management and profit
margins but also significantly advances environmental, social,
and economic sustainability objectives. The comparative anal-
ysis with heuristic strategies further emphasizes the superiority
of reinforcement learning in navigating the uncertainties that
plague global supply chains. This research contributes to the
broader discourse on sustainable supply chain management,
showcasing the potential of advanced simulation techniques
to fortify supply chain resilience and sustainability amidst a
volatile global landscape.
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