
Mining Web Usage and Content structure Data to Improve Web Cache Performance
in Content Aggregation Systems

Carlos Guerrero
Department of Mathematics and

Computer Science
University of Balearic Island

Palma, E-07122, Spain
Email: carlos.guerrero@uib.es

Carlos Juiz
Department of Mathematics and

Computer Science
University of Balearic Island

Palma, E-07122, Spain
Email: cjuiz@uib.es

Ramon Puigjaner
Department of Mathematics and

Computer Science
University of Balearic Island

Palma, E-07122, Spain
Email: putxi@uib.cat

Abstract—Web cache performance has been reduced in Web
2.0 applications due to the increase of the content update
rates and the higher number of personalized web pages. This
problem can be minimized by the caching of content fragments
instead of complete web pages. We propose a classification
algorithm to define the fragment design that experiences the
best performance. To create the algorithm, we have mined data
of content characterization, user behaviour and performance.
We have obtained two classification tree as result of this
process. These classification trees are used to determine the
fragment design. We have optimized the model of a real web
site using both classification trees and we have evaluated the
user observed response time. We have obtained significant
results which prove that the optimization of the fragment
designs can achieve high speedups in the user perceived
response time.

Keywords-Web caching; classification trees; web performance
engineering; web content aggregation.

I. INTRODUCTION

Web Caching is a widely used technique to save band-
width, to reduce server workload and to improve user
response time, i.e., Web Caching improves the performance
of web architectures. This improvement is based on the
reusability of web responses between different users and
requests. This happens when several users request the same
page or when a user requests the same web pages at least
twice before its content changes.

In current web architectures, especially in Web 2.0 sys-
tems, content changes are more usual and the personalization
of web pages is allowed. The behaviour of user generated
content and pages created by collaboration are more un-
predictable [1]. As a result of this, the web responses that
are stored in the web cache become not reusable. It is
widely accepted that this problem can be solved by reducing
the minimum chacheable unit: content fragments instead of
whole web pages [2], [3]. Nevertheless, from a performance
point of view, there is a dilemma [4]: on one hand, a high
level of fragmentation (a big number of content fragments)
improves hit ratio, but response time could be increased due
to overhead connection and fragment joining times; on the

other hand, a low level of fragmentation (a small number of
fragments) minimizes overhead times but it makes hit ratio
worse. So that, the problem results on determining when it
is better to serve two fragments together (joined) and when
it is better to do it separately (split).

To deal with this problem, we use a tree-based clas-
sification algorithm which optimizes the performance of
the system. This algorithm uses the characteristics of the
contents of the page (content fragments sizes, update rates,
request rates, . . .) to obtain a design of the web pages (which
elements are served split and which ones are served joined)
for an optimal performance.

We have compared the performance of using joined and
split states in a high number of synthetic pages. We have
applied data mining algorithms to the data obtained in these
exploration phase and we have produced different classifi-
cation trees. These classification trees have been tested in a
web page model extracted from a real system (The New York
Times web site, http://www.nytimes.com). The performance
results obtained show high speedups of them with the two
basic design alternatives: either all the fragments are joined
or all the fragments are split.

Our main contribution is the developing of a classification
algorithm which improves the performance of the systems
in where web pages are created by the aggregation of
content atomic fragments. This solution can be applied to
systems in where these fragments can be served joined or
split. We represent these two ways of delivering the content
fragments by a state of the aggregation relationship. The
performance of the system changes depending on the state
of each aggregation relationship. The inputs of the algorithm
are the characteristics of the fragments.

In Section III, we give the details about how the content
aggregation application works and about the model we use
to represent the contents fragments, the web pages, the
characterization parameters of the fragments and the states
of the aggregation relationships. In Section IV, we explain
in which type of applications we can use our propose and
how it fits in these applications. We explain the process

123

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

and the results of obtaining the classification trees in Sec-
tion V. Finally, we analyse the performance of a system
where we have implemented our solution to optimise the
page fragment design (Section VI). Last section is used to
explain the conclusion of our work and possible future works
(Section VII).

II. RELATED WORK

The application of techniques based on decision trees and
data mining to improve the performance of the system, and
more concretely, the performance of web architectures is not
either new.

Pallis et al. [5] present a clustering-based scheme in
order to improve the performance of a prefetching and web
caching system. The input of the data mining process is
the users’ access patterns. Their solution identifies clusters
of correlated Web pages. The idea of mining users’ access
sequence is also present in studies of Huang et al. [6].
They propose a system to mine popular surfing sequences
to obtain rules. The rules will be used by a prediction-based
manager to achieve better buffer utilization. Kumar et al. [7],
use data mining processes to detect dynamic deviations from
normal usage patterns of the users. But the problem of
improving the fragmentation design of the web pages have
not been addressed before by using classification trees. Our
work differs form the previous in two main aspects: the
scope and the inputs parameters of the data mining process.
Our propose improved the performance of the system by
determining the fragmentation design of the content in web
pages. The other researches improve it by doing more
accurately the selection of the pages to be evicted from the
cache or the next web pages to be prefetched. Finally, they
only use user access patterns as inputs of the data mining
process. In the other hand, we also take into account the
structure of the web pages.

Other approaches have deal with the same scope than us:
to determine the fragmentation design of the content web
pages [8]. But they have based the solution on cost-benefit
functions. Their studies are in preliminary phases and they
have not validated it in real web systems. We are not able
to contrast our results with them.

Similar methods have been used in the study presented by
Li et al. [9]. Their objective is to predict the performance for
services instead of content delivery. Their study also differs
in the data analysed. They use object timing information
from packet traces. We use data extracted from higher layers
(application layer).

III. CONTENT AGGREGATION MODEL AND
PERFORMANCE

Web systems have evolved from static and general content
pages to dynamic generated, personalized and updated con-
tent pages. These characteristics are specially present in a
group of web applications, for example: content aggregation

P1

P2

P3 f4

f4

f4
f5

f5
f6

f7

f8

f9
f6

f7

f8

f9

Figure 1: Example of pure content fragments, aggregated
fragments and web pages from a real web site (The New
York Times, http://www.nytimes.com)

systems, Web 2.0 applications, weblogs, newspaper sites,
etc.

Content aggregation technologies are systems that com-
bine content from different sources to create new content
elements. These contents could be extracted from server-
local databases or from remote systems using RSS, XML, or
similar technologies. There are two main types of aggrega-
tion systems: mashups and portlets. The differences between
them are related to the side where the aggregation takes
place: client-side or server-side, respectively. For example,
newspaper sites and weblogs are content aggregation sys-
tems where contents are stored in server-local database and
the contents are aggregated on the server (this aggregation
can be done by the application server, the web server or the
proxy cache).

So, in these content aggregation systems, pages are cre-
ated by the aggregation of independent contents (for exam-
ple, news in a newspaper site or entries in weblogs). These
contents are usually included in more than one web page (for
example, news included in political and economy section or
entries in a blog classified by tags and by sections). But
the structure of a web page in these systems can be more
complex than aggregations of only one degree of depth. The
aggregation of a set of contents can be considered as a new
content fragment which could be aggregated by other pages
of fragments (for example, the group of highlighted news or
the group of the most recent entries in a weblog).

Therefore, we could distinguish between two content ele-
ment types: pure content elements (which are created/stored
by a user/system) and aggregated content elements (which
are created from the combination of others content ele-
ments). Also we consider another type of elements, the ag-
gregation relationship which defines that a fragment includes
the content of other fragment (pure or aggregated). The num-

124

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

ber of aggregation relationships is unlimited. In Figure 1, we
can observe an example of three web pages extracted from
the The New York Times web site (P1, P2, P3). Three of
them share the aggregation of a pure content fragment (f4)
and two of them share an aggregated fragment (f5). This
aggregated fragment is created by the aggregation of several
fragments (f6, f7, f8, ...).

Authors of [10] define an Object Dependence Graph
(ODG) to model web pages that are created by aggregation
of contents. An ODG is a Directed Acyclic Graph (DAG)
where pure and aggregated content elements are represented
by vertices (nodes). ODGs have two vertex types: Pi which
represents parent vertices (user web pages) and fi which
represents pure or aggregation fragments. The sink vertices
correspond to pure elements and source vertices to user web
pages. The rest of the vertices correspond to aggregated ele-
ments. Finally, the edges of the graph represent aggregation
relationships between a pair of elements.

We use ODGs in our system to represent the design of
the web pages. Nevertheless, ODGs are not able to model
all the information we need. Thus, we have extended the
ODG model to include information about the characteristics
of the fragments and information about how fragments are
delivered by the server: joined or split (Figure 2).

Our main goal is to determine the fragment design of
a web pages which experiences a better performance. The
fragment design is the information that refers to how the
fragments are delivered by the server and stored by the
web cache: if a set of contents are delivered and stored
independently (split) or together (joined). This information
can be represented in a ODG using labelled edges which
indicates if a pair of content fragments are joined or split.

In the results presented in [11], we studied the relation
between characterization parameters of the content frag-
ments and the performance experienced by the web cache for
aggregated content systems. We concluded that, in these type
of web sites, there is a strong correlation between compared
performance speedups of aggregation states (joined or split)
and the characterization parameters for a given pair of
related content fragments. The characterization parameters
that we took into account in the study were: for both
fragments, update rates, request rates and sizes; for the
father fragment, the number of children; and for the child
fragment, the number of fathers. We conclude also that
other parameters as fragment service times or ODG structure
characteristics (as fragment depth degree in the ODG) are
not able to predict the difference of the performance between
joining or splitting two fragments.

Our classification algorithm uses these characterization
parameters, for a given pair of fragments, to determined
if it is better to deliver them joined or split. Some of this
information is in the ODG (number of fathers and children
of a vertex) but other is not (fragment update rate, content
size, . . .). We have added some attributes to each vertex to

Figure 2: ODG of the example of Figure 1. The text in
vertices corresponts to the identificators of the fragments and
the characterization attributes vector {size in bytes, request
rate in seconds−1, update rate in seconds−1}

represent these characteristics.
To sum up, our web page model is represented by a

DAG where the edges represent the aggregation relationships
and they are labelled with the state of the aggregation (the
contents are joined or not in the server). The vertices have
a direct correspondence with the content fragments of the
web page. Sink vertices are pure content fragment (user or
third-party generated), source vertices are the user web pages
and the rest of vertices are groups of aggregated contents.
Each vertex has additional information about its request rate,
update rate and size (Figure 2).

In Figure 2 we can observe a ODG example. The labels
of the edges and the values of the characterization attributes
vector have been chosen randomly. We can observed, in
one hand, that the web server, using this model, has all the
information to determine how to serve the web pages (labels
of the edges). In the other hand, our design optimization
algorithm also has all the information required to determine
the states of the aggregation relationships (characterization
vector and number of incoming and outgoing edges).

IV. APPLICABILITY OF THE SOLUTION

Our propose is applicable to web architectures that are
able to manage fragments of contents. In these types of
architecture, web server is able to serve fragments of the
web pages instead of only complete HTML document. These
fragments must be related using special tags inside the
HTML code. Edge Side Includes (ESI) is the de facto
standard used for that.

If a server responds using fragments of the pages, they
must be gathered together in other tier of the system in
order to to create the complete web page. This task could be
done by client browsers, CDN networks, web proxies, web

125

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

Figure 3: Architecture of content aggregation systems and
fragments Web Caching

caches, etc. Nevertheless, if the task is done by elements
placed between the user and the web cache, the web cache
is able to manage fragments of web pages (it is able to
store fragments independently and request them to the web
server). As a result of this, the minimum cacheable units
are content fragments instead of whole page. Therefore, the
performance of the web cache will depend on the groups
of fragments, i.e., the content fragments that the web server
will join or not.

In Figure 3 we can observe the general architecture of a
content aggregation web system. In this model, the cache is
the element in charge of create the HTML documents using
the fragments responded by the web server. The applications,
which are based on this model, are able to manage the
contents independently. The contents can be extracted from
local databases, third-party applications or by the use of
feeds. The application server requests all the contents and
gets together them according the page design. The main
goal of our research work is that the web server will
create the design which makes the web cache experience the
best performance. In this paper we present an optimization
algorithm to solve the problem of obtaining the best web
page design.

This application layout is not applicable to all kind of web
applications. The applicability is restricted to web systems
where the pages can be easily fragmented. Aggregation
content applications satisfy this feature. In these types of
applications, the atomic fragments of the page can be
associated with the independent contents extracted from data
sources. These correspond to pure content elements in our
model. There are an important number of applications that
are based on the aggregation of contents. Next elements can
be considered as pure content elements which are aggregated
to create complete web pages: news in a newspaper website;
entries in a weblog; user update advices in social networks;
users update advices in social networks; gadgets in per-

sonalized home page systems; bookmarks in social tagging
systems; feeds in online feed reader systems; etc. Therefore,
the solution we propose can improve the performance of
a wide range of traditional web applications and in the
most of Web 2.0 applications.These types of applications
usually are developed allowing to the web server to manage
fragments of the pages. If not, the additional work to develop
this feature is not very difficult because the pure content
fragments are managed independently. In both cases, the
web application has to be upgraded to manage groups of
fragments. It has to join the contents with joined state. But
this feature is also simple to be implemented.

V. OPTIMIZATION ALGORITHM

In previous sections, we have presented the problem we
have to deal with: adapt the design of the content fragments
of a web page to improve the performance of a cache
system. To adapt the design, we limit the parameters to
use to a subset of the ones available before that the web
page is requested. As we have justified in Section III, these
parameters are: (a) request rates; (b) update rates; (c) content
sizes; (d) number of aggregations of and over a fragment. We
name them as characterization parameters . Therefore, these
parameters are the inputs of the classification algorithm we
want to create.

The output of our algorithm is the fragment design of
a web page. The algorithm decides which fragments must
be requested grouped (or joined) and which ones must
be requested independently (split). So, the outputs of the
algorithm are the states of each aggregation relationship.

Once we have decided the inputs and outputs of our
algorithm, we need to determine the scope of action of the
algorithm. The set of characterization parameters to be used
by the algorithm can be done taking into account: all the
vertices of the ODG; a subset of vertices; only one vertex;
the pair of vertices related by an aggregation. In [11] we
study how the characterization parameters of the related pair
of vertices are enough to decide the state of relationship (if
both vertex are delivered joined or split).

In order to develop the classification algorithm, we have
decided to mining the data monitored on an emulation
application. The model for the pages and the behaviour of
the users is synthetic. We randomly produced the pages of
an content aggregation system: we produced enough content
fragments to cover a wide range of values for every charac-
terization parameter; these contents are randomly aggregated
to create several web pages. We assigned update rates
randomly to each content fragment (during the emulation
phase, a daemon uses these values to change the content).
Finally, we developed a user-emulator that uses random
values to request the web pages. All the random values of
all the parameters are created using uniform distributions.
There are a wide number of studies that determine that these
parameters follows specific statistical distributions in real

126

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

systems [12], [13]. But in this first phase, we are not only
interested in samples from usual scenarios. We also want to
cover a wide range of values in order to study a big search
space. This search space will give us information either of
usual scenarios and extreme ones. This is the reason because
we use uniform distributions to create the samples.

Data mining algorithms need a set of data that is used
to extract knowledge from it. This is usually called training
data set. It usually also needs a second set of data to evaluate
the credibility of the knowledge extracted from the first set.
This is called test data set. This second set is used to test the
outputs of the knowledge model created. This is the reason
because we created two different page models. Each of the
models had over 5000 pure content fragments and 12000
aggregation relationships creating over 1500 user web pages.

To study the influence of the aggregation states in the
performance of the web cache, we randomly assigned
joined and split states to the aggregation relationships and
we changed periodically the state of one of the aggregation
of each web page. By this way, we could monitor the user
observed response time of the web pages for both states
of a given aggregation relationship. Both web page models
are emulated during the enough time to get confiable
meanings. At this point, we were able to create a vector
with the characterization parameters of the father fragment
and the child fragment of the aggregation and performance
information for the aggregation states (joined and split). This
performance information is represented by an attribute which
indicates if the performance is better for split or joined state.
The vector pattern is:: ((CharacterizationParametersfather),
(CharacterizationParameterschild), ResponseTimejoined,
ResponseTimesplit) where (CharacterizationParametersi)
is (RequestRatioi, UpdateRatioi, Sizei, FathersNumberi,
ChildrenNumberi).

We preprocessed the data before we applied data min-
ing on it. We transformed both response time attributes
in a class one (PerformanceClass = {JoinedClass, Split-
Class}). This (ResponseTimejoined > ResponseTimesplit)
(ResponseTimejoined < ResponseTimesplit). Finally, the at-
tributes ChildrenNumberchild and FatherNumberfather does
not influence on the performance; so, they were eliminated
from the data set.

At this point we had two data set represented by instances
of the vector of characterization parameters which was used
as input of the data mining algorithm and a class attribute
which is the attributed to infer with the knowledge extracted.
In [14], we presented a rule-based system that infers the class
attribute. The rules were created manually observing the
classes created after apply a clustering process to the input
data set. The clustering process was done using WEKA [15].
WEKA is a collection of machine learning algorithms for
data mining tasks which could be used in a GUI application
or integrated in your own JAVA programs. With the obtained
rules we assigned the states of the aggregation to a ODG

Table I: Summary of the complexity of the classification
trees

Number of leaves Size of the tree
CTreeabs 46 91
CTreerat 32 63

of a real web site and we emulate the behaviour of the user
to obtain performance results (in Section VI we explain the
details of the validation process). The results obtained were
positive but not very significant: the optimized page model
had an average speedup of 1.0488 with the page model
where all the aggregation are split (all the fragments are
served independently); and it had an average speedup of
1.1970 with the page model where all the aggregation are
joined (all the fragments are served together). The reason of
these modest results is the low credibility of the data mining
process. We obtained a coverage of 40% after testing the
rules over the test data set, This low coverage is explained by
the way the process to extract the rules was made: manually
by the observation of the obtained clusters.

This previous result helped us to conclude we have
to improve the data mining process. This is the reason
because we changed the algorithm to assign the states of
the aggregations. Instead of a group of rules extracted from
a clustering process, we have tried to develop an algorithm
based on classification trees. The machine learning scheme
used to obtain the classification tree is C4.5 algorithm [16].
We have used WEKA to obtain the classification tree. The
implementation of the C4.5 algorithm in Weka is called J48.
We used the default set up parameters of the C4.5 algorithm.

We have used two different input data sets. The data
was the same in both sets but not the way to express
it. In one of them we represented the absolutes values
of all the parameters. In the second one, we used
the ratios of the characterization parameter shared by
both fragments: RequestRatefather/RequestRatechild,
UpdatetRatefather/UpdateRatechild and
Sizefather/Sizechild; while we used the absolute values
of the rest of the parameters: ChildrenNumberfather and
FatherNumberchild. We have respectively called CTreeabs
and CTreerat the trees obtained from these data sets.

In this section, we have explained how has been created
the classification trees. These models are used to optimize
the design of the web pages in order to improve the
performance. In the next section (Section VI), we analyse
how the web design models obtained with both classification
trees affect this performance.

VI. PERFORMANCE ANALYSIS

In order to validate the method we have proposed to
improve the performance of web cache systems we need
to monitor a real application and compare the results using
the traditional fragment designs (all the fragments joined

127

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

and all the fragments split) with the results using the
fragment design determined by our classification algorithm.
To achieve this goal we have to deal with three problems:
(a) how to create a model of a real system (b) how to monitor
and execute the emulator; (c) and how to compare the results.
We explain them in following sections.

A. Modelling a real system

The training data set used to obtain the classification trees
was randomly created using uniform distributions because
our goal was to cover a wide range of values. Otherwise, we
are interested in using results from a real system in order to
validate the use of our design optimization algorithm. Due
to we are not able to use our solution in a representative
web system, we need to emulate it. The models used by
the emulator can be created by the use of suitable statistical
distributions or mining data from a real system. We have
used a combination of the two alternatives.

The model created for our emulator is based on the The
New York Times web site. We have mined all the data
which a final user can do. This data is related to structure
of the pages. Thus, we have mined data about the structure
of the aggregation relationships (news and pages created as
aggregation of news) and about the size of the contents of
each news. This process took place during one week on
March 2010, and we got 3082 fragments aggregated in 482
pages using 13979 relationships.

We are not able to obtain information about the behaviour
of the users and publishers of the The New York Times web
site. This is the reason because we have to use statistical
distributions in order to create the parameters of the model
referred to update rates and request rates. The number
of studies which characterize the behaviour of the users
of current web system is very large. But it is commonly
accepted that the popularity of web objects follows a power
law distribution [13], [1]. These studies also detail the
more usual values for the parameters of these statistical
distributions. In our case, the usual accepted solution is a
power law with α = 0.83 for request rates and α = 0.54
for update rates, both with R2 = 0.99 [17].

B. Monitoring emulator performance

The emulator has been executed several periods of time to
obtain performance results for the four fragment design sce-
narios. The four emulation scenarios are: (a) SplitScenario,
fragments are served independently, so the almost 14000
relationships of our model are labelled as split (0 joined and
13979 splitted); (b) JoinedScenario, fragments are served
joined, relationships are labelled as joined (13979 joined and
0 splitted); (c) CTreeabsOptimizedScenario, relationships are
labelled using the classification tree created with data set of
absolute values, CTreeabs (12815 joined and 1164 splitted);
(d) CTreeratOptimizedScenario, in this last scenario we use
the classification tree created with data set of ratios values,

Table II: Summary of the states for the four scenarios

Number of joined Number of split
states states

JoinedScenario 13979 0
SplitScenario 0 13979

CTreeabsOptimizedScenario 12815 1164
CTreeratOptimizedScenario 8544 5435

Table III: Hit ratios and byte hit ratios of the emulation
scenarios

Hit ratio (%) Byte hit ratio (%)
JoinedScenario 8.4184 10.4679
SplitScenario 91.7699 80.7882

CTreeabsOptimizedScenario 60.0031 18.2495
CTreeratOptimizedScenario 78.9625 18.2986

CTreerat (8544 joined and 5435 splitted). Table II is a
summary of the states values for each of the scenarios.

For each of the scenarios, we have run the emulator the
enough time to obtain reliable mean values of the response
times. After deleting all the samples of the transient period,
we get more than 300,000 requests during 20 hours of execu-
tion for each of the scenarios, obtaining a concurrence level
of 4 requests/second. The transient period is the initial period
of the execution where the elements in the architecture are
not in a stationary state. We consider the stationary state is
reached when the hit ratio of the cache is stabilized.

C. Results analysis

To show the strength of our new sce-
narios (CTreeabsOptimizedScenario and
CTreeratOptimizedScenario), we need to compare with
other scenarios. We have considered that the traditional
scenarios for aggregation applications are good comparison
elements. These scenarios are the ones in which : the
fragments are all served independently (SplitScenario)
and the fragments are served as a whole web page
(JoinedScenario). We have focused in the user response
time metric to study the performance of the system, because
we are more interested in improve the user performance
metrics than in the server performance metrics.

In general, CTreeabsOptimizedScenario shows the best
response times (Figure 4). This is explained because the
classification tree used to create the fragment design of this
scenario is more complex than the one used to create the
design of the CTreeratOptimizedScenario. Usually, when
you have a more complex classification tree, the result
of the classification is more accurate. We need to study
if the complexity of the tree influences the computational
requirements. In this case, we will have to balance the over-
head of the execution of the algorithm and the performance
improvement obtained by its page model. This work is out
of the scope of the presented work, but it is considered as
future work.

128

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

If we compare the performance of the optimized scenarios
with the traditional ones (Figure 4), we can observe the
speedup is bigger when we compared with the JoinedSce-
nario than with the SplitScenario. This is because, as we
mentioned in Section I, one of the first improvements for
caching in content aggregation applications is to serve the
fragments of content independently [18].

Finally, we analyse the hit ratios for the scenarios. In cur-
rent web systems, where the updates are more usual and the
pages are more personalized, invalidation times are shorter
and, as a result of this, the system reduces its hit ratios. We
can see that in Table III for the JoinedScenario, which has
lower ratios in comparison with the other scenarios. If we
compare the number of joined elements (Table II) and the
hit ratios (Table III), we can observed a clear correlation
between them. The bigger the number of joined elements is,
the worse the hit ratio is.

The scenarios with best response times are not the ones
which has the best hit ratio. As we explained at the beginning
of the document, it is best to sacrifice the hit ratio (by
joining fragments) in order to reduce the overhead times of
having too many fragments. This is the reason because the
CTreeabsOptimizedScenario shows the best response time
and the worse hit ratio. The CTreeabsOptimizedScenario
takes profit of reducing overhead times in spite of it gets
worse the hit ratio.

It can be very surprising that, between the optimized
scenarios, the byte hit ratio is almost equal, but the hit ratios
are considerably different. It is also to emphasize the high
difference between the hit ratios and the byte hit ratios of
both optimized scenarios. This can be explained considering
that the mining process was able to inference that it is more
important to obtain cache hits in small fragments than in big
ones [19], [20].

After the analysis of the results, we can conclude that
the optimized scenarios show best response times in spite
of their worse hit ratios. So it is interesting to adapt this
improvement if we focus on improving user performance
metrics. To get conclusions about server performance met-
rics, we would need to analyse how affects these worse hit
ratios to the performance of the servers. This study is out
of the scope of this work. It is consider as future work.

VII. CONCLUSION

We have presented an improvement for web caches used
in content aggregation systems. These systems have worse
cache performance than others because content aggregation
systems have high content update rates and high page per-
sonalization level. To solve this problem, we have presented
a algorithm based on classification trees, which tries to
find the best fragment design of the web page in order to
minimize the overload times of communication and joining
process and to maximize the hit ratios of the web cache.

50 100 150 200 250 300 350 400 450
01

5

10

15

20

25

30

35

Rank order

S
p
ee
d
u
p

CTreeratOptimizedScenario mean=2.7169

CTreeabsOptimizedScenario mean=6.7230

(a) SplitScenario (Speedup =
RTSplit

RTCTreeOpt
)

50 100 150 200 250 300 350 400 450
01

5

10

15

20

25

30

35

Rank order

S
p
ee
d
u
p

CTreeratOptimizedScenario mean=4.4365

CTreeabsOptimizedScenario mean=8.2061

(b) JoinedScenario (Speedup =
RTJoined

RTCTreeOpt
)

Figure 4: Rank order chart of the response time speedups

To create the classification trees we have used data mining
techniques, more concretely, we have used the J48 algorithm
(the Weka’s implementation of the C4.5 algorithm). The
inputs of the algorithm are a subset of the characterization
parameters of the content fragments of the web pages. The
output of the algorithm is the state for an aggregation
relationship between two content fragments. These states
(joined and split) indicate if the server has to serve the
fragments together or independently. We have extended the
fragment web pages representation presented in [10] in order
to cover all our modelling requirements.

The training and test data sets have been created with
the results monitored in an emulation application. The
page models and user behaviour models have been created
randomly. They cover a wide range of values for the charac-
terization parameters. Depending on the way we express the
characterization parameters we can obtain different data sets
and different classification trees. We have studied the cover-
age level of the most usual ways to express the parameters

129

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

and we have finally chosen two classification trees: one tree
using the absolutes values of the parameters (CTreeabs) and
the other using the ratios of the parameters shared between
the two related fragments (CTreerat).

In order to validate the use of the classification trees,
we have tested them in a emulation application which
uses a page model extracted from a real web site, and
a user behaviour model created using the most suitable
statistical distributions. We have monitored the user response
times in the execution of the emulation scenarios (the two
corresponding to the classification trees, the scenario with all
the fragments joined and the scenario with all the fragments
split).

As future work, we need to contrast the results obtained
in these experiments with others web pages to validate that
the strength of our solution in general terms. Finally, we
need to study how influence alternative classification trees.

ACKNOWLEDGMENT

This work is partially financed by the Spanish Ministry
of Education and Science through TIN2007-60440 project
and TIN2009-11711 project.

REFERENCES

[1] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon,
“I tube, you tube, everybody tubes: analyzing the world’s
largest user generated content video system,” in IMC ’07:
Proceedings of the 7th ACM SIGCOMM conference on In-
ternet measurement. New York, NY, USA: ACM, 2007, pp.
1–14.

[2] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Auto-
matic fragment detection in dynamic web pages and its impact
on caching,” IEEE Trans. on Knowl. and Data Eng., vol. 17,
no. 6, pp. 859–874, 2005.

[3] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge
caching/offloading for dynamic content delivery,” IEEE
Trans. on Knowl. and Data Eng., vol. 16, no. 11, pp. 1411–
1423, 2004.

[4] C. Guerrero, C. Juiz, and R. Puigjaner, “The applicability
of balanced esi for web caching,” in Proceedings of the 3rd
International Conference on Web Information Systems and
Technologies, March 2007.

[5] G. Pallis, A. Vakali, and J. Pokorny, “A clustering-based
prefetching scheme on a web cache environment,” Comput.
Electr. Eng., vol. 34, no. 4, pp. 309–323, 2008.

[6] Y.-F. Huang and J.-M. Hsu, “Mining web logs to improve hit
ratios of prefetching and caching,” Know.-Based Syst., vol. 21,
no. 1, pp. 62–69, 2008.

[7] C. Kumar and J. B. Norris, “A new approach for a proxy-
level web caching mechanism,” Decis. Support Syst., vol. 46,
no. 1, pp. 52–60, 2008.

[8] O. A.-H. Hassan, L. Ramaswamy, and J. A. Miller, “Mace:
A dynamic caching framework for mashups,” in ICWS ’09:
Proceedings of the 2009 IEEE International Conference on
Web Services. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 75–82.

[9] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg,
and Y.-M. Wang, “Webprophet: automating performance
prediction for web services,” in Proceedings of the
7th USENIX conference on Networked systems design
and implementation, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855711.1855721

[10] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting, “A
fragment-based approach for efficiently creating dynamic web
content,” ACM Trans. Internet Technol., vol. 5, no. 2, pp. 359–
389, 2005.

[11] C. Guerrero, C. Juiz, and R. Puigjaner, “Web cache perfor-
mance correlation with content characterization parameters in
content aggregation systems,” in Proceedings of the XXXVIth
Latin American Informatics Conference, 2010.

[12] M. A. Goncalves, J. Almeida, L. Santos, A. H. Laender,
and V. Almeida, “On popularity in the blogosphere,” IEEE
Internet Computing, vol. 99, no. PrePrints, 2010.

[13] L. Guo, E. Tan, S. Chen, X. Zhang, and Y. E. Zhao,
“Analyzing patterns of user content generation in online
social networks,” in KDD ’09: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery
and data mining. New York, NY, USA: ACM, 2009, pp.
369–378.

[14] C. Guerrero, C. Juiz, and R. Puigjaner, “Rule-based system
to improve performance on mash-up web applications,” in
Distributed and Artificial Intelligence: 7th International Sym-
posium, 2010.

[15] Weka Machine Learning Project, “Weka,” URL
http://www.cs.waikato.ac.nz/˜ml/weka, October 2010.

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed. San Francisco, CA:
Morgan Kaufmann, 2005.

[17] F. Duarte, B. Mattos, A. Bestavros, V. Almeida, and
J. Almeida, “Traffic characteristics and communication pat-
terns in blogosphere,” in Proceedings of the International
AAAI Conference on Weblogs and Social Media, 2007.

[18] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge
caching/offloading for dynamic content delivery,” in WWW
’03: Proceedings of the 12th international conference on
World Wide Web. New York, NY, USA: ACM, 2003, pp.
461–471.

[19] L. Cherkasova, “Improving www proxies performance with
greedy-dual-size-frequency caching policy,” HP Technical
Report HPL-98-69, Tech. Rep., 1998. [Online]. Available:
http://www.hpl.hp.com/techreports/98/HPL-98-69R1.html

[20] L. Cherkasova and G. Ciardo, “Role of aging, frequency, and
size in web cache replacement policies,” in In Proceedings of
HPCN Europe. Springer-Verlag, 2001, pp. 114–123.

130

ICDT 2011 : The Sixth International Conference on Digital Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-127-4

