

Remote Filesystem Event Notification and Processing for Distributed Systems

Kushal Thapa†‡, Vinay Lokesh*#, Stan McClellan†§
†Ingram School of Engineering

*Dept. of Computer Science

Texas State University

San Marcos, TX, USA

 e-mail: ‡k_t260@txstate.edu, #v_v183@txstate.edu, §stan.mcclellan@txstate.edu

Abstract— Monitoring and safeguarding the integrity of files

in local filesystems is imperative to computer systems for many

purposes, including system security, data acquisition, and other

processing requirements. However, distributed systems may

have difficulty in monitoring remote filesystem events even

though asynchronous notification of filesystem events on a

remote, resource-constrained device can be very useful. This

paper discusses several aspects of monitoring remote filesystem

events in a loosely-coupled and distributed architecture. This

paper investigates a simple and scalable technique to enable

secure remote file system monitoring using existing Operating

System resident tools with minimum overhead.

Keywords— Secure Remote Filesystem Monitoring; Firewall;

Distributed Architecture; Secure Network Communication; SSH;

Secure Shell Protocol; Filesystem.

I. INTRODUCTION

 Most modern computer systems incorporate local storage
containing files associated with user data, application data, and
other important data, such as trade secrets and passwords [1].
The vast majority of attacks to such classified files are well
known issues in day-to-day operations so it is vital to ensure
the integrity of the file system. There are two general
approaches to monitoring filesystems for unauthorized access:
(a) Hash-based file integrity (b) Real-time file integrity. The
hash-based approach is to scan critical files on systems on a
regular schedule, detecting changes by comparing the current
file hash to the previous version. In a real-time approach, the
information is provided on not just file changes, but also on all
the file read, write, and create events so determining a
violation becomes much simpler [2].

 Although most modern computer systems have several
tools that are capable of tracking local file system events, it
becomes much more complex to monitor file system events
remotely from a central location [3].

 Each system in distributed architecture is typically capable
of monitoring filesystem events, such as creation, deletion,
and changes in local files. This can be performed by tools like
inotify [4], kqueue [5], FSEvent [6], direvent [7] etc. However,
these tools inherently lack the ability to monitor remote
filesystems. Tools like Secure Shell Protocol Filesystem
(SSHFS) [8][9] allow a user to mount remote directories into
the local system; however, file monitoring is not possible with
SSHFS. Asynchronous notification of filesystem events on a
remote, resource-constrained devices can be very useful,
particularly in distributed acquisition architectures and other
scenarios where data is processed asynchronously.

 In distributed architecture, one of the complexities
introduced by Internet-based (IP) networking is a firewall
[10][11]. Firewalls are vital for network security; however, the
presence of an intervening firewall can make communication
between distributed systems much more complex. Many

networking solutions and architectures allow the users to
circumvent certain firewall restrictions, thus increasing
complexity while introducing security risks. Here, we leverage
the well-known network architecture where an Internet-
reachable system acts as a middleman to establish a secure,
bidirectional network connection between firewalled devices.
This approach is not new, however, comprehensive analysis
of various parameters is difficult to obtain, so we provide some
results and discussion regarding the various configuration
options and performance of this architecture.

 In Section II of this paper, we describe various tools that
are generally used to monitor local filesystem events. We also
briefly discuss about Secure Shell Protocol Filesystem
(SSHFS) [9] and Secure Shell Protocol (SSH) [12]. Section III
presents our approach to an experiment, which presents
different network architectures and usage of those
architectures with SSHFS and SSH. In Section IV we evaluate
local filesystem monitoring and network communications
using metrics for (a) complexity, (b) portability, and (c)
efficiency/speed. We conclude the paper in Section V
describing the overall summary of our experiment.

II. BACKGROUND AND RELATED WORK

 Inotify [4] is a filesystem event notification tool for Linux
operating systems. This tool allows user to add an automated
watch to a file or directory which can monitor certain
filesystem event(s) (for example: open, write, modify, close,
etc.). When those events occur on the file or the folders being
watched, this tool provides asynchronous, event-driven
notification to the user for user interaction. Inotify-tools
provides command-line interface to inotify [13][14].
Inotifywait is a shell utility included in inotify-tools that waits
for changes to files or folders, and outputs the description of
these changes when made. There are many options available
for this command [15] through which the user can specify the
target for the watch, the nature of the watch and the format of
the output. These options, along with the fact that multiple
watches can be made simultaneously, makes this tool very
easy-to-configure, user-friendly and scalable. However,
inotify is a kernel feature, which only monitors local file
system events, and thus, remote filesystem events, not
implemented in the local kernel, are not registered by inotify
[13][15].

 iWatch [16] is a kernel feature written as a Perl wrapper
for inotify to monitor changes in specific directories or files,
sending alarms to system administrator in real-time. iWatch
can run as a daemon, as well as via the command-line. The
daemon mode uses an Extensible Markup Language (XML)
configuration file to register a list of directories and files to
monitor. The command line mode will run without a
configuration file. In the XML configuration file, each
target can have an individual email contact point. This contact

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

mailto:k_t260@txstate.edu
mailto:v_v183@txstate.edu
mailto:stan.mcclellan@txstate.edu

point allows an email notification for any modification in the
monitored targets.

 kqueue [3][5] is an event notification interface in
FreeBSD, supported by other operating systems such as
NetBSD, OpenBSD, DragonflyBSD, and macOS. kqueue
monitor demands a file descriptor to be opened for every file
which is being watched hence restricting its application to very
large file systems [5]. kqueue does not provide direct support
for generic events such as ‘create’ for files and its Application
Programming Interface (API) is designed with higher
dependency on the local kernel, limiting the ability to work
asynchronously with remote file system monitoring.

 Filesystem Notification Events (FSEvents) [6] is an
event notification API designed for macOS. FSEvents is a
kernel feature and has a device file called /dev/fsevents. It
follows a simple process where all the primal event
notifications are passed to the userspace through this device
file. The event stream it is then filtered by a daemon to publish
notifications. The macOS version 10.7(lion) added the
capability to watch filesystem [6]. The FSEvents monitor is
not constrained by requiring unique watchers and thus scales
well for large systems with huge number of directories.
Although FSEvents can monitor a directory that is within a
remote mounted volume and provides a callback for local
changes, it cannot detect changes made by users on other
machines.

 FileSystemWatcher [17] is a specific class in the
System.IO namespace, which is used to monitor and detect file
system changes in Windows. It triggers events for every
change that appear in file or directory which is being watched.
It generates a new instance for FileSystemWatcher with
arguments required to specify the directory and type of files
which needs to be monitored, and a buffer into which all the
file changes are written. The kernel then reports file changes
by writing to that buffer. This suffers event loss when large
number of changes are pushed into the buffer. One of the
drawbacks of filesystem watcher is that it can only establish a
watch to monitor directories, not files. To monitor a file, its
parent directory must be watched in order to receive change
events for all of the directory’s children.

 Tripwire is one of well-known file integrity
program[18][19]. Tripwire was essentially built as a strong file
integrity checker for Unix systems. The original Tripwire was
termed as Academic Source Release (ASR) which has features
such as strong set of supported hash functions, the power to
examine file attributes, and a good configuration. It was a
freely available program with reporting capabilities limited to
results displayed only on the terminal screen. It also lacks
database protection and verification capability.

 The Python Watchdog module [20] is used to monitor file
system events. Python Watchdog has a standard API for
developers to select and deploy a monitor. Facebook’s
Watchman [21] is similar to Python’s Watchdog module
which also provides a similar interface for initiating different
monitors. However, both these tools are operating system
dependent making it infeasible for remote file monitoring and
processing.

 Direvent, like inotify, is a filesystem monitoring tool.
However, direvent works in GNU/Linux, BSD and Darwin
(Mac OS X) systems [7]. This allows for uniformity, and
possibly integration of file monitoring processes, across
diverse systems in a network. The files and directories to be
watched, along with their corresponding target event, are
specified in the direvent configuration file with ‘watcher’

statements. Filesystem events can be divided into two major
groups. (a) system-dependent events that are specific for each
kernel interface (b) generic events that do not depend on the
underlying system. They provide a higher level of abstraction
and make it possible to port configurations between various
systems and architectures. However, direvent relies on the
local event monitoring Application Programming Interface
(API) provided by kernel [22]. As a result, it is not natively
compatible with remote file system monitoring. When
compiling with Berkeley Software Distribution (BSD)
systems direvent uses kqueue – another kernel event
notification mechanism.

 Secure Shell Protocol Filesystem (SSHFS) [9] is a file
system in user space (FUSE) that uses the SSH File Transfer
Protocol (SFTP) to locally mount a remote file system. The
mounted file systems can be accessed and used the same way
a local file system is, both from the command line or using
other tools. Unfortunately, inotify is not aware of filesystem
changes on an SSHFS mount which are initiated from the
remote end of the link.

 Secure Shell Protocol (SSH) [12][23] is a secure network
communication paradigm that operates at the Open System
Interconnection (OSI) session level. All session data
transferred through an SSH connection is transparently
encrypted. This encryption is transparent, which means it gets
decrypted by SSH client daemon at the specified destination,

and thus, users do not have to deal with decrypted data,
because of its utility and security features, SSH is widely used
for remote system management tasks and can incorporate
multiple use-cases, including forwarding graphical sessions,
automating “jump” behavior to access systems behind
firewalls, and so on.

a) Multiplexing

SSH has the ability to carry multiple sessions over single

TCP connection via “multiplexing”. One of the benefits of

multiplexing is that it speeds up certain operations that utilize

an SSH session.

b) Reverse Port Forwarding

Figure 1. Working of SSH Reverse Port Forwarding [24].

Figure 1 shows the working of Reverse SSH port

forwarding. It is a technique through which systems that are

behind a firewall can be accessed from the outside world.

With this technique, a port on a remote machine can be

forwarded to the local machine while still initiating the tunnel

from the local machine. This works by listening to the port on

the remote side, and whenever a connection is made to this

port, the connection is forwarded over the secure channel to

the host port from the local machine.

III. APPROACH

Our evaluation of these several alternatives consists of

two parts: (a) building a simple and secure network

architecture to communicate between devices, and (b) using

that architecture to test remote, asynchronous filesystem

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

https://en.wikipedia.org/wiki/Filesystem_in_Userspace

monitoring. The network architecture as well as file

monitoring test setup that is designed and described in this

paper is simplified to only two devices, however, this system

is scalable to include any number of devices.

A. Network Architecture

Network communication is one of the primary challenges

when creating a system where interconnectivity between

devices is required. For this research, we have chosen an SSH

based network architecture which leverages an IP reachable

system acting as a “jump server” to establish communication

between devices behind their individual firewall. Figure 2

shows the basic components of this three-prong architecture.

Figure 2. Representation of three-prong architecture.

As shown in Figure 2, system A is used to control remote
devices behind a firewall, represented by System B. Both A
and B are behind network firewalls, so a direct SSH
connection cannot be made from A to B or vice versa. Thus,
the need of system C, which is an open IP reachable server.
Both A and B can communicate with C because firewalls
allow outgoing connections. Using port forwarding, an SSH
tunnel can be made from A to B via C. In this architecture,
system C acts merely as SSH reflector, and no special
configuration is necessary.

 One of the main advantages of this architecture over
other architectures and network solutions that circumvent the
firewall restrictions is its simple configuration. The
configuration for establishing this network begins when the
first host (A) which creates an SSH connection to C.
Similarly another host (B) also creates an SSH connection to
C. Finally, to create connection between A and B ports from
A and B are forwarded to a common port in C, thereby cre-
ating a continuous tunnel from A to B. Two other simpler
network architectures (referenced as Arch-0 and Arch-2 in
this paper) were built using the components of our primary
architecture (Arch-1) to compare the results. The design of
these two architectures are shown in Figure 3 and Figure 4,
respectively.

i. Arch-0

Figure 3. Representation of systems and network connection behind a
common firewall.

As shown in Figure 3, there is a common architecture
between systems in the same network where there is no
firewall between hosts. System A can SSH directly into
system B. This architecture is used as a control and as a
baseline in this study.

ii. Arch-2

Figure 4. Representation of components, security zones and connections

in a client-server architecture.

 Figure 4 shows the network architecture that is used more
commonly as an alternative for our three-prong architecture.
Here, the peripheral devices indicated by system B are
controlled directly by an open IP reachable server. The system
C cannot directly form an SSH connection to B because of the
presence of a firewall. Thus, B needs to initiate a special SSH
tunnel which is used by C to form a reverse SSH channel back
to B.

 In this architecture, C acts as the control center. Thus, the
main difference between our three-prong architecture and this
architecture lies in the role of the server. In this architecture,
the server’s resources are heavily utilized. This can be
advantageous if the server is powerful. However, since the
server is internet reachable, it can pose security risks if its
configuration is too complex. The main advantage of the
three-prong architecture is in “hidden complexity” because the
control unit is protected by firewall, so the exposed attack
surface is minimized.

 To evaluate these architectures, we used multiplexed SSH
combined with a simple timing test which is shown using a
vertical line diagram in Figure 5. This test program sends a
simple UNIX command via regular and multiplexed SSH
tunnels, and records the time taken to send, execute and
receive the output of this command. To account for the
variability of network speed at different times, this program
was run every hour of every day for about a month. The results
of this experiment are compiled in Section IV.

 Figure 5 shows the three network architectures of interest,
Arch-0, Arch-1 and Arch-2. In this case, Arch-1 indicated by
red is a “three prong” network architecture, whereas Arch-0
shown in Figure 3 and Arch-2 shown in Figure 4. indicated
blue and green respectively, are two other simpler
architectures built using the primary Arch-1 architecture. The
bold lines represent multiplexed connections of these three
architectures while the thin lines represent non-multiplexed
connections. The dashed lines represent connections
necessary for their corresponding architecture. For our timing
test, both system A and B are on the same network. In case of
Arch-1 the connections goes through System C hence the
firewalls can be separate.

Figure 5. Vertical line diagram to represent three network architecture,
Arch-0, Arch-1 and Arch 2.

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

B. Remote Filesystem Monitoring

Application specific file monitoring is useful in detecting

certain changes and responding to those changes. However,

tools such as inotify and direvent lack capability to monitor

files and directories of other devices in the network. To

overcome this challenge, we took two approaches:

1) Using SSHFS

Secure Shell Protocol Filesystem SSHFS [11] enables

the user to mount remote filesystem in the local filesystem.

The user can access and monitor the mounted files and

directories manually. To automate this monitoring process,

we tried coupling SSHFS with inotify by mounting a remote

filesystem and monitoring changes on it.

In general terms, inotify is not aware of filesystem

changes on an SSHFS mount which are initiated from the

remote end of the link. This is because SSHFS is built on top

of SFTP; hence, it is a client view of the remote filesystem

and does not export filesystem events from the remote

system.

2) Using SSH

Using Secure Shell Protocol (SSH) [16], we devised a

two-step method for remote filesystem monitoring which is

simple, intuitive and scalable, and utilizes the light pre-

existing OS-resident tools. The target file or directory in the

local system is monitored using a tool such as inotifywait.

 Then, using the event registration of the monitored target

as a trigger, a command is sent to the other end of the

channel using SSH. Such SSH appended commands can be

a simple OS command or another trigger to a script, and thus

can be easily modified according to application

requirements.

Figure 6. Remote Filesystem monitoring using SSH and inotify tools.

As shown in Figure 6, an inotifywait is issued on a top

secret directory in System A, so whenever a filesystem event

occurs in that watched section of the filesystem, the event is

transmitted to the remote monitoring configuration on System

B along with a timestamp of the event.

IV. RESULTS

 We evaluate different network architectures mentioned in

Section III along with a timing data as shown in Figure 7 and

Figure 8. Multiplexed SSH connections significantly reduce

connection time because the TCP handshake and keying

interaction to set up the SSH session is already performed,

and is being re-used and efficiently. From Figure 7 and

Figure 8, it is clear that Arch-0 exhibits the fastest

communication time in both multiplexed and non-

multiplexed architectures, which is reasonable since both

systems are on the same network, with no firewall.

Figure 7. Timing data by hour of the day.

Figure 8. Timing data by date.

 Also from Figure 7 and Figure 8, the multiplexed

connection of Arch-1 recorded lower time than non-

multiplexed version of Arch-0, which is interesting because

in Arch-1 a firewall exists between systems, so TCP/keying

lags are substantial, even for systems on the same network.

The non-multiplexed connections exhibit substantial random

latencies due to multiple network transits of TCP handshakes

and keying interchanges, whereas corresponding points in the

multiplexed configuration do not exhibit the same issues due

to the more efficient re-use of multiplexed connections. The

performance of multiplexed connections is much more

consistent.

V. CONCLUSION

 This paper discusses the use of various filesystem

monitoring tools which support local file system monitoring,

but inherently lack ability to monitor remote filesystems. In

distributed and loosely coupled architectures, monitoring of

filesystem events on remote systems, possibly behind

firewalls, can have important application-layer benefits and

utility. To examine the performance of various system

configurations, we evaluate network architectures with both

multiplexing and non-multiplexing techniques, concluding

that a simple and scalable technique using multiplexed SSH

connections and inotify tools enables secure remote file

system monitoring with minimum overhead. By recording

timing of filesystem events on each of these network

architectures, we note that multiplexed SSH connections are

consistent, and much more efficient than other methods, even

with complex distributed architectures involving exposed

systems, multiple firewalls, and “three prong” SSH tunnels.

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

REFERENCES

[1] K. P. Suresh, U. Himanshu, and L. Leonel, “File integrity
monitoring tools: issues, challenges, and solutions,” [Online].
Available from:
https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.5825
[retrieved April 2021]

[2] S. Evangelou, “How to verify File Integrity using hash
algorithms in Powershell,” [Online]. Available from:
https://stefanos.cloud/blog/kb/how-to-verify-file-integrity-
using-hash-algorithms-in-powershell/ [retrieved April 2021]

[3] A. K. Paul et al. "FSMonitor: Scalable File System Monitoring
for Arbitary Storage Systems," in IEEE International
Conference on Cluster Computing (CLUSTER) Cluster
Computing (CLUSTER), Albuquerque, 2019, pp. 1-11.

[4] R. Love, "Kernel Korner - Intro to Inotify," Linux Journal,
2005.

[5] J. Lemon, "Kqueue – A generic and scalable event notification
facility," in Proceedings of the FREENIX Track: USENIX
Annual Technical Conference, Boston, 2001, pp. 1-14

[6] Apple, "File System Events Programming Guide," 13
December 2012.[Online]. Available from:
https://developer.apple.com/library/archive/documentation/Da
rwin/Conceptual/FSEvents_ProgGuide/Introduction/Introducti
on.html#//apple_ref/doc/uid/TP40005289-CH1-SW1.
[retrieved April 2021].

[7] S. Poznyakoff, "GNU Direvent," 13 July 2019. [Online].
Available from:
https://www.gnu.org.ua/software/direvent/manual/direvent.ht
ml. [retrieved 06 August 2020].

[8] N. Rath, "libfuse/ sshfs," [Online]. Available from:
https://github.com/libfuse/sshfs. [retrieved March 2021].

[9] M. E. Hoskins, "SSHFS: Super Easy File Access over SSH,"
Linux Journal, 2006, pp. 1-6.

[10] J. R. Vacca and S. Ellis, Firewalls : jumpstart for network and
systems administrators, Elsevier Digital, 2005.

[11] W. Noonan and I. Dubrawsky, Firewall fundamentals,
Indianapolis, Cisco, 2006.

[12] D. J. Barrett, R. G. Byrnes, and R. E. Silverman, "Introduction
to SSH," in SSH, The Secure Shell: The Definitive Guide : The
Definitive Guide, O’Reilly Media, Inc., 2011, pp. 1-15.

[13] A. Schwab, "inotify-tools," [Online]. Available from:
https://github.com/inotify-tools/inotify-tools. [retrieved April
2021].

[14] C. Fischer, "Linux Filesystem Events with inotify," Linux
Journal, 2018. pp. 1-17.

[15] R. McGovern, "inotifywait(1) - Linux man page," [Online].
Available from: https://linux.die.net/man/1/inotifywait.
[retrieved April 2021].

[16] C. Wirawan, “iwatch - realtime filesystem monitoring program
using inotify,” Ubuntu man page [retrieved 25 March 2021]

[17] Microsoft. FileSystemWatcher. https://docs.microsoft.com/en-
us/dotnet/api/system.io.filesystemwatcher?redirectedfrom=M
SDN&view=netframework-4.7.2, 2010. [retrieved April
2021].

[18] D. Armstrong, “An introduction to file integrity checking on
unixsystems,” [Online] Available from:
https://www.giac.org/paper/gcux/188/introduction-file-
integrity-checking-unix-systems/104739. [retrieved April
2021].

[19] G. Kim and E. H. Spafford, “The Design and Implementation
of Tripwire A File System Integrity Checker,” In:2nd ACM
Conference on Computer and Communications Security, pp.
18–29. ACM, Fairfax, VA, USA (1994)

[20] Python Watchdog. [Online]. Available from:
https://pypi.org/project/watchdog/, 2010. [retrieved April
2021].

[21] Facebook Watchman. “A file watching service.
https://facebook.github.io/watchman/, 2015”. [retrieved April
2021].

[22] M. Kerrisk, "Filesystem notification, part 2: A deeper
investigationof inotify," 14 July 2014. [Online]. Available
from: https://lwn.net/Articles/605128/. [retrieved April 2021].

[23] T. Ylonen and C. Lonvick, "The Secure Shell (SSH) Protocol
Architecture," RFC 4251, January 2006. [Online]. Available
from: https://www.rfc-editor.org/info/rfc4251. [retrieved April
2021].

[24] J. Knafo, “What is reverse SSH Porting” Available from:
https://blog.devolutions.net/2017/3/what-is-reverse-ssh-port-
forwarding. [retrieved March 2021]

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

