
Engineering Security Protocols with Modelchecking – Radius-SHA256 and Secured
Simple Protocol

Florian Kammüller, Glenford Mapp, Sandip Patel, and Abubaker Sadiq Sani
Middlesex University

Computer Communications Group
f.kammueller@mdx.ac.uk, mapp@mdx.a.cuk, sp1264@live.mdx.ac.uk, ss1234@live.mdx.ac.uk

Abstract—This paper presents Radius-SHA256, an adap-
tation of the Radius protocol for remote authentication for
network access to the secure hash function SHA-256 and a
Secure Simple Protocol. Both protocols have been formalized
in the Avispa model checker, an automated verification tool
for security of protocols. The work on Radius utilizes the
existing formalization of the standard Radius protocol thereby
establishing general validity and transferability of the estab-
lished security proof and showing how refactoring can be
applied in security protocol engineering. The development of a
secured version of the SP protocol shows how gradually adding
cryptographic keys to a transport protocol can introduce
verified security while maintaining a level of trust in the
adapted protocol.

Keywords-Security protocols; Model Checking; Cryptographic
Hashes; Simple Protocol.

I. INTRODUCTION

Radius, a remote authentication protocol used for building
up secure communications of clients with networks via
network access servers, uses the message digest function
MD5, a hash function which has meanwhile been proven
to have security weaknesses. By contrast, the hash function
SHA-256 still remains unchallenged. Although seemingly
straightforward and thus tempting, simply replacing MD5
by SHA-256 in the Radius protocol must be considered
potentially harmful since authentication protocols are ex-
tremely sensitive to minor changes as the history of attacks
shows. In December 2008, an attack on the SSL protocol
has been demonstrated based on the previously discovered
collisions of the MD5 hash function [10]. The engineers of
that attack recommend the discontinuation of use of SSL
based on MD5. Fortunately, for SSL the use of the hash
function is already by design a choice point. For Radius,
this flexibility is not yet established; this is the subject and
result of this paper. Triggered by the alarming history of
attacks of security protocols, formal verification techniques
have long been deemed to be a way out.

Model checking, a push-button technology for mathemat-
ical verification of finite state systems has been discovered
to be a suitable tool for security analysis of authentication
protocols [4]. Ever since, this technology has proved to
be useful for the engineering of secure protocols, e.g., for
adaptation of the Kerberos protocols to mobile scenarios [3].

We investigate whether Radius-SHA256 – our proposed
adaptation of the Radius protocol – can provide better
security guarantees than its original. To provide evidence
based on mathematical rigor we use the Avispa model
checker. Fortunately, we can rely on the rich data base of this
tool providing a model of the original protocol. By adapting
this model to our Radius-SHA256 and checking that the
original security guarantees still hold, we prove two things
(a) that Radius-SHA256 is secure and (b) that the security
guarantees have general validity, i.e., they can be carried
over to protocols Radius-X for hashes X. The latter result
corresponds to a reduction of Radius security to the security
of the underlying hash function.

The Simple Protocol (SP) [5] is a new protocol that
is currently being developed by the Ycomm group [13].
As a second engineering exercise, we report on a secured
version of the SP protocol. This exercise shows how a new
development of a special purpose protocol can profit from
a simultaneous modelling and analysis with a dedicated
modelchecker like Avispa.

This paper is based on the Masters Theses of two of
the authors [6], [8]. In this paper, we first provide the
prerequisites of this project: brief introductions to the Radius
protocol, the Simple Protocol, Avispa model checking, and
hashes (Section II). From there, we develop our new version
Radius-SHA256 by introducing its model in Avispa in
detail (Section III) and illustrate how this model can be
efficiently used to verify security goals (Section III-D). Next,
we show how a protocol can be extended step by step
introducing cryptographic keys to add authentication and
secure it (Section IV). We finally offer conclusions and an
outlook (Section V).

II. BACKGROUND

A. Radius

One of the major issues with networks is their security and
one response to this challenge are authentication protocols.
Radius is a popular protocol providing security to commu-
nication channels. Radius stands for Remote Authentication
Dial in User Service and serves to secure communication be-
tween Network Access Servers (NAS) and so-called Radius

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

servers. Radius satisfies the AAA (Authentication, Autho-
rization and Accounting) protocol standards in both local
and roaming situations. In January 1997, Radius standards
were first introduced in RFC 2058 and Radius accounting
in RFC 2059. After that RFC 2138 and RFC 2139 were
published and they made the previous RFC obsolete. They
both were made obsolete in turn by RFC 2865 and RFC
2866 respectively.

Assume that there is an Internet service provider (ISP)
and he has two NAS. A NAS allows a user to connect
directly to the ISP’s network and be accepted by a core
router which directly connect with ISP’s network backbone.
When a user wants to access his services, he sends a request
to the NAS which forwards the user request to the main
server to check the supplied credentials. This process is
called authentication.

After authentication, the NAS has to check the access list
of the user and then decide which services are permitted
to this user. The RADIUS server then replies to the NAS
with Access Reject, Access Challenge, or Access Accept
as illsutrated in above Figure [12]. This information is
forwarded by the Radius server to the NAS. This is called
authorization. Once a user is authenticated and authorized
successfully, the NAS creates a connection between the user
and the main server through which both can exchange their
information. This secure connection is called a session. All
the information regarding the session will be saved by the
NAS for its accounting purposes. It includes start time of
session, termination time of session, size of total received
and sent data, amongst other information for accounting.

B. Simple Protocol

A new trend in next generation networks is the divergence
between local area networks (LAN) and wide area networks
(WAN) because there is still an increase of efficiency to be
expected in LANs. Additionally, the ubiquity of computing
devices and common usage of mobile devices asks for a
flexibility that is better supported with fixed core networks
and flexible wireless networks at the periphery. A recon-
sideration of the TCP/IP seems appropriate since adaptation
of TCP to the often heterogeneous requirements of local
wireless networks is not easy. The Simple Protocol (SP) [5]
is intended to be used in combination with TCP but TCP for
the WAN and SP for the LAN communication. SP is part
of a wider development of the Y-Comm framework [13] –
a new architecture for mobile heterogeneous networking.

Figure 1. Avispa: language formats and tool architecture [1]

A specially LAN-centric transport protocol has different
requirements from a WAN transport protocol, e.g., TCP,
since performance issues differ. These requirements mark
the design decision that define SP [5]. Since most LAN
communications consist of messages or transactions, SP
supports a message-based communication in contrast to TCP
streams. The higher speed available in LAN is exploited by
using a larger window size for SP than WAN protocols: SP
supports 4MB message sizes by default and can even be
increased. In order to keep packet processing simple, SP
uses a small number of connection states as well as packet
types. Flexibility is achieved by allowing Quality of Service
(QoS) to be set using the packet types.

In this paper (Section IV), we summarize briefly how the
Avispa support helped in designing a secure extension of
SP by hybrid cryptography. Extending the initial connection
part of the protocol, we add public-key based authentication
while simultaneously exchanging symmetric session keys for
the following secured data exchange of SP. The protocol
achieves authenticity by public keys while preserving its
efficiency to an extent through the use of faster symmetric
key encryption.

C. Avispa

Avispa stands for Automated Validation of Internet
Security-sensitive Protocols and Applications [1]. To model
and analyze a protocol, Avispa provides its own High-Level
Protocol Specification Language (HLSPL). In order to check
security, Avispa translates the given HLSPL specification in
the intermediate format IF, which is then the basis for four
different verification machines that can be applied to model
check security properties on a protocol expressed as depicted
in Figure 1. Avispa uses Dolev-Yao channels annotating
them as a type as channel(dy). This means that the attacker
is assumed to be able to do eavesdropping, intercepting and
faking on these channels. Protocols can be very naturally
specified in Avispa using the role concept. Every principal is
modeled as such a role which enables encapsulating its com-
munication parameters, local variables and constants. Based
on that, a role describes state changes by defining transitions

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

between states that may depend on pre- and postconditions
of the current state. Roles can furthermore be instantiated in
other roles. This enables the composition of the single roles
representing the single principals into a protocol session
while synchronizing them on their communication. It also
enables specifying an attacker. Once the protocol is thus
specified predefined HLSPL propositions, most prominently
secrecy and authentication can be automatically verified.
We introduce more details on HLSPL constructs, their IF
translation, and the verification features when applying them
to formalize Radius-SHA256 in the following section.

D. Hash Functions

Hash functions – also known as message digests or
compression functions – map arbitrary length inputs to fixed
size outputs. They are considered as cryptographic hash
functions if they provide the following three properties: (a)
they cannot be inverted, i.e., given y = H(x), the input x
cannot be found, (b) it is impossible to find collisions, i.e.,
we cannot find x, y with H(x) = H(y), and (c) given an
input hash pair it is impossible to find another input with
the same hash value, i.e., for H(x) = y we cannot find
x′ such that H(x′) = y. The latter two properties resemble
each other expressing the idea of collision resistance but the
second one is stronger.

These basic properties of good hashes give rise to use
them for cryptography. However, since a hash is a de-
terministic function it has as such not the same quality
as an encryption algorithm: anyone can apply the hash.
However, a hash can be easily combined with a shared
secret to provide authentication which is often used for so-
called message authentication codes (MAC). For example,
let Kcs be a shared secret. Then, H(Kcs) can be used as an
authentication token since only principals who have access
to Kcs can produce this token.

III. RADIUS-SHA256

In this section, we present the protocol Radius-SHA256
as derived from the classical Radius of RFC2865/66 by
replacing MD5 by SHA-256. At the abstract protocol level
this replacement seems simple but in order to ensure that
this change of the original protocol preserves the security
properties, we start from the formal presentation of the orig-
inal Radius protocol and develop the new Radius-SHA256
on that formal basis. This enforces a detailed investigation
of the necessary adjustment to the old – no longer secure
– version of Radius and in addition enables comparison
to the previously established security guarantees showing
whether they still hold. From an engineering perspective, this
procedure corresponds to a kind of refactoring of a protocol
specification: re-engineering the previous security specifi-
cation enables re-invocation of the previous verification by
rerunning security check routines.

role client(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text,
SND, RCV: channel(dy))

played_by C def=
local State: nat,

NAS_ID, NAS_Port: text,
Chall_Message: text

const kcs: protocol_id,
sec_c_Kcs : protocol_id

init State := 0
transition

t1. State = 0 ∧ RCV(start) ⇒
State’:= 1 ∧ NAS_ID’:=new()
∧ NAS_Port’:=new()
∧ SND(NAS_ID’.NAS_Port’.SHA256(Kcs))
∧ secret(Kcs,sec_c_Kcs,C,S)

t2. State = 1 ∧ RCV(NAS_ID.Access_accept) ⇒
State’:= 2 ∧ SND(NAS_ID.Success)

t3. State = 1 ∧ RCV(NAS_ID.Access_reject) ⇒
State’:= 3 ∧ SND(NAS_ID.Failure)

t4. State = 1 ∧ RCV(NAS_ID.Chall_Message’) ⇒
State’:= 4 ∧ SND(NAS_ID.Chall_Message’_Kcs)

∧ witness(C,S,kcs,Kcs)
t5. State = 4 ∧ RCV(NAS_ID.Access_accept) ⇒

State’:= 5 ∧ SND(NAS_ID.Success)
end role

Figure 2. Client role of Radius-SHA256 in HLSPL

We introduce the protocol Radius-SHA256 by its formal
model in HLSPL, the specification language of Avispa. Its
level of abstraction is sufficient to comprehend just the major
gist of the protocol. This model contains four roles: client,
server, session, and environment. The idea is that the client
role represents the NAS and the server role represents the
Radius server. In applications, client and server might as well
be represented by proxies depending on the type of network.
For the formal presentation of the protocol, we simplify
by summarizing the scenario as a client-server session. As
a session, we consider the time period of a client-server
communication. The attacker is modeled by the role of
the environment that specifies the basis for the attacks on
protocol executions.

Each of these components client, server, session and
environment is modeled by a so-called “role” in HLSPL.
Client (Section III-A) and server (Section III-B) define the
two matching sides of the protocol; their composition as
defined in the role session only gives the full protocol (see
Section III-C and Figure 4), which can again be instantiated
to model legal session and attacker.

A. Client-side Protocol

The client role is specified in Figure 2. This role definition
defines the protocol by specifying the necessary entities, like
identifiers, messages and used cryptographic primitives, e.g.,
the symmetric key Kcs in its header. Note, here how we
define SHA256 to be a hash function in this header by using

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

role server(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text,
SND, RCV: channel(dy))

played_by S def=
local State: nat,

NAS_ID, NAS_Port : text,
Chall_Message : text

const kcs: protocol_id,
sec_s_Kcs : protocol_id

init State := 11
transition
t1. State = 11 ∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒

State’:= 12 ∧ SND(NAS_ID’.Access_accept)
∧ secret(Kcs,sec_s_Kcs,C,S)

t2. State = 12 ∧ RCV(NAS_ID.Success) ⇒
State’:= 13

t3. State = 11 ∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 14 ∧ SND(NAS_ID’.Access_reject)

t4. State = 14 ∧ RCV(NAS_ID.Failure) ⇒
State’:= 15

t5. State = 11 ∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 16 ∧ Chall_Message’:=new()

∧ SND(NAS_ID’.Chall_Message’)
t6. State = 16 ∧ RCV(NAS_ID.Chall_Message_Kcs) ⇒

State’:= 17 ∧ SND(NAS_ID.Access_accept)
∧ request(S,C,kcs,Kcs)

t7. State = 17 ∧ RCV(NAS_ID.Success) ⇒
State’:= 18

end role

Figure 3. Server role of Radius-SHA256 in HLSPL

the Avispa keyword hash_func. This function is applied
in the first transition of the following client-side of the
protocol specification. In detail, the steps of the protocol are
defined as state transitions that are conditional on logical
conditions of a current state State ∈ {1, . . . , 5}: each
of the five rules in the transition section in Figure 2
defines a precondition for this current state (to the left of
the implication arrow ⇒) and a postcondition on the post
state State’ of a transition after the ⇒. The conditions are
conjoined by logical conjunction with ∧. The initial state is
State zero. For example, the first transition t1 in Figure
2 can be read as follows. If the precondition holds, i.e.,
the current state is “state 0” and the role receives on its
input channel RCV the message start, then the transition t1

is enabled. If this transitions fires, the post-state is “state
1” and the message NAS_ID.Success is sent on the output
channel SND. The following transitions can be read in the
same manner. Since the client represents only one principal
in this protocol, we need to need to define the server side
of the protocol to complement it.

B. Server-side Protocol

Figure 3 now shows the definition of the second principal
in the model of Radius-SHA256: the Radius-server. The
transitions defined in the role server correspond to the
transitions of the client. Each SND on one side corresponds

to a RCV on the other side. However, in order to put
these building blocks together, we first have to define the
composition. This is done in a further role for the session,
presented in the following section.

C. Session and Attacker

The two roles of client and server are combined by defin-
ing a role for the session. Session uses the composition

keyword to couple the two instances of client and server
synchronized by common parameters.

role session(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text) def=

local
S1, S2 : channel (dy),
R1, R2 : channel (dy)

composition
client(C,S,Kcs,SHA256,Success,Failure,

Access_accept,Access_reject,S1,R1) ∧
server(C,S,Kcs,SHA256,Success,Failure,

Access_accept,Access_reject,S2,R2)
end role

The synchronization couples the transitions of the client with
the server over their connecting channels. For example, the
message SND(NAS_ID.Success) of t2 in client is now
being sent over S1 and coupled via R2 to the message
RCV(NAS_ID.Success) of server. The composition that is
defined in the role session actually defines the protocol
between the roles client (Section III-A) and server (Section
III-B) by instantiating their channels such that they mutually
connect; the overall protocol is best illustrated graphically
(see Figure 4).

The environment represents the attacker and uses a com-
position, now in turn of two session instances, where the
first is one between two agents c1 and s1 and the second
generalizes the first agent to be i – an unspecified agent that
triggers the search for intruder possibilities incorporating
agents. Note, also that the SHA256 is given openly to the
environment signifying that the attacker knows it and can
use it which formalizes the idea of a hash that it is applicable
by everyone (see Section II-D).

role environment() def=
const c1,s1: agent,

sha256: hash_func,
succs, fails: text,
acc_acp, acc_rej: text,
kcsk, kisk, kcik: symmetric_key,
kcs: protocol_id

intruder_knowledge = {c1,s1,sha256,kisk,kcik,
succs, fails, acc_acp, acc_rej}

composition
session(c1,s1,kcsk,sha256,succs,fails,acc_acp,acc_rej)
∧
session(i, s1,kisk,sha256,succs,fails,acc_acp,acc_rej)
end role

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

Figure 4. Composition of client and server yields protocol.

The representation is abstract enough to be comprehensible
while being in places a bit superficial. We dig deeper down
into the lower levels of the Avispa model in the next section
to investigate the influence of the hash function on the
Radius-SHA256.

D. Security Verification

This section now illustrates how the actual model check-
ing process of the Avispa tool automatically translates the
high level protocol model in HLSPL defined in the previous
section and performs a complete state analysis over the
resulting internal Kripke structure representing this model.
The verification is relative to a set of security properties
specifying the goals of the authentication that we will
illustrate first.

E. Security Properties and Verification Process

Given the implementation of the protocol as described in
the previous section, we can now use the inbuilt features of
Avispa to verify security in a push-button manner. Avispa
provides two features for protocol verification: secrecy of
keys and authentication. The secrecy of the server and client
keys and authentication of client and server are given as
verification commands to Avispa as follows.

goal
secrecy_of sec_c_Kcs, sec_s_Kcs
authentication_on kcs

end goal

The meaning of these two formulas can be illustrated more
closely by inspecting their translation into the IF format.

We apply all four back-ends OFMC, CLAtSE, SATMC, and
TA4SP of the Avispa tool to the Radius-256 specification.
For the full IF representation and the performance details of
the analysis see [6]. The main observation is that the original
security guarantees shown for Radius can be carried over to
the protocol Radius-SHA256 by simply replacing the hash
function MD5 by SHA-256 in the specification. The above
secrecy and authentication properties verify just the same.

To understand the effect that the choice of a particular
hash function, i.e., MD5, SHA-256, or any other crypto-
graphic hash function has on the security guarantees, we
need to inspect the IF version in more detail. First of all,
a hash function application in HLSPL like SHA256(Kcs) is
translated into IF as apply(SHA256,Kcs). According to the
Avispa semantics [1], this apply operator is reserved for the
application of hash functions which manifests itself in the
following type.

apply(F,Arg) apply: message × message → message

However, there seems to be no further semantics attached to
the type. The defining properties of a cryptographic hash
function are provided implicitly by defining the intruder
knowledge for hashes as follows.

step gen_apply (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) ⇒
iknows(apply(PreludeM1,PreludeM2))

Since the apply-operator can produce a hash, the intruder
can apply a hash himself but Avispa’s intruder semantics
provides no rule to inverse a hash function nor any rule
enabling collision detection for the intruder.

F. Evaluation and Generalization

Wrapping up the discussed security verification we see
that the verification of Radius-SHA256 yields exactly the
same guarantees as the classical Radius of RFC 2865/6.
In this final section, we show up the consequences of this
mechanized verification.

Primarily, the re-engineered modelling and verification for
the Radius-256 protocol in Avispa shows that the guarantees
of secrecy of keys and mutual authentication that have
already been shown for the classical Radius version MD5
equally hold for Radius-256.

Next, our construction process reveals that the exchange
of MD5 by another hash function in the Avispa model
is simply replacing one (presumably) secure cryptographic
hash function by another. As we have observed in the
previous section, the Avispa semantics of a hash models hash
functions abstractly. Thus, we observe that the verification
depends only on the general assumption that some hash
function is used in the protocol. Therefore, the derived result
can be generalized to all secure hash functions.

Theorem 1: The Avispa guarantees of secrecy of keys and
authentication of the Radius protocol hold for all secure
cryptographic hash functions.

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

Note, however, that this verification does presuppose a
secure hash function. That is, the proved result is not valid
if the assumed cryptographic strength of the hash function
is flawed, like in the case of MD5.

Since the Avispa model cannot cover the implicit part of
the hash function security proof, the analysis does not reveal
possible attacks. However, the aforementioned attack on SSL
[10] could be used as a guideline to produce a similar attack
on the classical Radius protocol based on MD5. On the other
hand, the generalization presented in this paper is not trivial:
its proof relies on the re-engineering of the Radius for SHA-
256 and the observation that this re-engineering is applicable
to any secure hash function.

IV. SECURE SIMPLE PROTOCOL

The protocol SP consists of two parts: the connection part
and the data transmission. The connection part establishes
a communication between processes A and B to prepare
a data transmission according to these established connec-
tion parameters. Thereby, a “connected” state is reached
during which data may be transmitted before the connec-
tion is closed again. During data transmission, SP uses
synchronization numbers (SYNC_NO) for each message and
acknowledgments replying those message numbers to en-
sure safe transmission. This sequential message numbering
can be used as well to secure the protocol against replay
attacks, i.e., resending of previously intercepted messages
by adversaries. However, to ensure this security, we need to
keep the message numbers secret. To do that, we establish a
session key in the connection part of SP. We assume that a
global public key infrastructure provides certified identities,
that is for every principal X on the network we have a
signed pair (KX , X)K−1

C
of a public key KX associated

to the principal’s identity (for example the MAC of his
device). This key-identity pair is signed with the secret key
of the certification authority K−1C and can be verified by
both parties A and B even off-line.

Now given this setup, the secure-SP connection part
extends the basic exchange of request and reply (REQ, REP)
by additional time stamps T , nonces N (where indices
∈ {A,B} indicate the sender and receiver), sender, and a
symmetric session key KS for the future data transmission.
The contents of the following two messages are encrypted
using the public keys KA and KB so that only the intended
recipient A or B can read the message contents.

A 7→ B : REQ+ {SYNC_NOA, TA, A,NA}KB

B 7→ A : REP+ {SYNC_NOB , TB , B,NB , NA,KS}KA

If this two step challenge response protocol succeeds, a
connection between A and B is established. In the course
of that connection, A and B can now exchange messages
whose SYNC_NO and shared secrets NB and TA are cryp-
tographically protected by the symmetric key KS that has

been exchanged.

A 7→ B : {SYNC_NOA, NB , TA, A}KS
+ data message

Note, that the authentication of A to B is only complete
after the third step, i.e., the first data transmission, where
A shows possession of the private key K−1A by decrypting
and re-encrypting NB , TA, and KS . This protocol has been
formalized and successfully verified with Avispa. Confiden-
tiality and integrity of the data communication part holds
as long as the session keys are not broken. This additional
assumption is necessary and explicit in Avispa: it is beyond
the scope of the protocol verification since we abstract from
key length and duration of use. The same applies for the
above mentioned public key infrastructure.

The secured SP protocol’s communication part bears a
strong resemblance to the (corrected) Needham-Schroeder
asymmetric authentication protocol. This is no surprise,
as the NS-asymmetric protocol is the essence of remote
authentication.

V. CONCLUSIONS

In this paper, we have shown that an adapted version of
the Radius protocol using SHA-256 instead of MD5 provides
exactly the same security guarantees as the RFC version
based on MD5. The verification is a fully automatic analysis
in the Avispa toolkit, a specialized model checker for secu-
rity protocols. We could generalize this result to guarantee
security for Radius protocols using secure hash functions,
even other than SHA-256. We furthermore illustrated on the
example of the simple protocol SP that modelchecking can
be used to stepwisely introduce security to a transport layer
protocol. The verification process has shown the feasibility
of model checking as an engineering tool.

Although the authors of [9] provide a model for the
Radius protocol as defined in the RFC, they have failed
to sufficiently generalize their results. In some sense, our
approach resembles a refactoring of the formal model: refac-
toring is a technique from software engineering supporting
the change in software without affecting desired properties;
we change the formal model of Radius by replacing MD5 by
SHA-256 without losing desired security properties. In the
process of following the earlier design, we discovered that
the model is by no means limited to the classical Radius
but can indeed be generalized to a more secure Radius-
SHA256, and that this generalization can be extended to
arbitrary hashes.

The generalization or refactoring could be an interesting
concept to explore because for the working security engineer
it provides an easy to use extension making the rather
complex model checking process easy to access and provide
a practical tool to allow more flexibility in network security
engineering. Apart from facilitating the process of protocol
engineering, this could also advocate the use of formal

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

specification and automated model checking in the domain
of network security.

REFERENCES

[1] Avispa v1.1 User Manual. Available at http://www.
avispa-project.org, [retrieved: April, 2012], 2006.

[2] I.-G. Kim and J.-K. Choi. Formal Verification of PAP and
EAP-MD5 Protocols in Wireless Networks: FDR Model
Checking. AINA. 2004.

[3] Y. Kirsal-Ever. Development of Security Strategies using
Kerberos in Wireless Networks. PhD Thesis, Middlesex
University, 2011.

[4] G. Lowe. Breaking and Fixing the Needham-Schroeder Se-
curity Protocol. Information Processing Letters, Elsevier,
1995.

[5] yRFC2: The Simple Protocol (SP) Specification,
12.1.2012. http://www.mdx.ac.uk/Assets/yrfc2\ sp\
protocol.doc, [retrieved: April, 2012].

[6] S. Patel. Implementation and Analysis of Radius Proto-
col using Avispa. Master’s Thesis. Middlesex University,
2011.

[7] R. Rivest. Message-Digest MD5. Network Working
Group, RFC: 1321. http://www.kleinschmidt.com/edi/
md5.htm[retrieved: April, 2012], 1992.

[8] A. S. Sani. Verifying the Secured Simple Protocol in
AVISPA. Master’s Thesis, Middlesex University, 2012.

[9] V. Sankhla. Formalisation of Radius in Avispa. http:
//www.avispa-project.org/library/RADIUS-RFC2865, [re-
trieved: April, 2012], University of Southern California,
2004.

[10] Rogue CA certificate signed by a commercial Certifica-
tion Authority. http://www.win.tue.nl/hashclash/rogue-ca/
\#sec71 [retrieved: April, 2012], Presented at the 25th
Chaos Communication Congress, Berlin 2008.

[11] X. Wang and H. Yu. How to Break MD5 and Other
Hash Functions. Advances in Cryptology, Eurocrypt 2005.
LNCS 3439, Springer 2005.

[12] Wikipedia RADIUS, http://en.wikipedia.org/wiki/
RADIUS, [retrieved: April, 2012].

[13] The Ycomm Framework. Offical Web-Site, Middlesex
University. http://www.mdx.ac.uk/research/areas/software/
ycomm\ research.aspx, [retrieved: April, 2012].

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-201-1

ICIMP 2012 : The Seventh International Conference on Internet Monitoring and Protection

