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Abstract— Internet of Things (IoT) are globally connected 

devices which are able to collect and exchange information. The 

increasing usage of IoT-devices in industrial and private 

environments result in the need for higher security and constant 

surveillance of such devices. Since 2016 novel botnets, consisting 

only of IoT-devices, where observed to execute major 

Distributed Denial of Service (DDoS) attacks. Due to the 

autonomous nature of these IoT devices, a compromised device 

might never be detected by system administrators. This creates 

the need for continuous monitoring of IoT network traffic. A 

possible solution for this problem is the permanent monitoring 

of anomalies within the network traffic of the IoT devices. 

Anomaly Detection Systems (ADS) monitor the behavior of a 

system and flag significant deviations from the normal activity 

as anomalies. This paper presents a new three step approach for 

anomaly detection in unsupervised communication meta data 

by cascading X-means clustering, decision tree, and statistical 

analysis, in order to monitor and protect IoT networks. 

Keywords-anomaly detection; internet of things; unsupervised 

machine learning; intrusion detection and prevention 

I.  INTRODUCTION 

The Internet of Things (IoT) could be defined as a huge set 
of sensors and actuators, embedded in physical objects, which 
are linked through wired and/or wireless networks, often using 
the same Internet Protocol (IP), that connects the Internet [6]. 
The basic idea is that devices (things = sensors and actuators) 
perform tasks independently from human interaction and are 
connected to the Internet [7]. IoT devices work to a large 
extent with information from their immediate surroundings. 
This is to support people in their everyday life or in their work. 
As a rule, IoT devices behave as predictable as possible, since 
they are based on fixed implemented algorithms, and human 
influence on the devices is therefore minimal to non-existent. 

The use of IoT is becoming increasingly widespread 
worldwide. It is estimated that by 2020 more than 30 billion 
devices of this kind will be in use around the world. The 
rapidly developing market and the high price pressure on 
manufacturers often result in insufficient investment in the 
security features of the IoT devices. Software is usually 
updated only rarely or not at all. This and the easy accessibility 
of the IoT devices via the Internet increases the risk of possible 
compromise by attackers. At the end of 2016, IoT botnets 
were first widely used in Distributed Denial of Service (DDos) 
attacks around the world. One of these attacks on the provider 
Dyn reached a bandwidth of 1.2 Terabits per second (TBps) 

and temporarily crippled platforms like Twitter, Amazon, 
CNN, PayPal and many other sites. Therefore, the 
vulnerability of these IoT devices has therefore often been 
criticized by IT security experts and researchers in the past. 
However, the lack of security of IoT devices is not only a 
danger for potential targets of botnets, the owners of the 
devices also have a great interest in anticipating a 
compromise. Especially in industrial environments, IoT 
devices are playing an increasingly important role in business 
processes, for example as production machines, part of the 
infrastructure or as sensors. These devices could also be 
sabotaged or misused by attackers for espionage purposes. As 
the number of IoT devices in use increases, so does the threat 
to businesses and the global threat posed by botnets. It is 
therefore essential for companies to monitor their IoT devices 
to detect possible compromises. Anomaly Detection Systems 
(ADS) [8] monitor the behavior of the IoT system and flag 
significant deviations from the normal activity as anomalies 
[11]. This paper presents a new approach for anomaly 
detection in unsupervised communication meta data of IP-
based IoT devices by cascading X-means clustering, decision 
tree, statistical analysis, and the computation and monitoring 
of trust values for the monitored individual IoT devices. 

The paper is structured as follows. In Section II, the focus 
of work, field of application and validity, as well as a short 
overview of the requirement specifications and the restrictions 
of the new anomaly detection approach is given. Section III 
presents some related work. In Section IV, the concept and 
used methods are discussed in more detail, including the 
following topics: Anomaly-based intrusion detection and 
prevention,  unsupervised machine learning, the collection of 
meta data, the communication model and cascading three step 
approach, as well as computational trust. The overall 
conclusion  of the new approach for anomaly detection in 
unsupervised communication meta data by cascading X-
means clustering, decision tree, statistical analysis, is given in 
Section V. The paper ends with an outlook on future work, 
and points to an additional planned paper. 

II. FOCUS OF WORK AND PREREQUISITES 

Due to the wide variety of IoT devices and corresponding 
communications protocols, the focus on application and range 
of use of the new anomaly detection monitor for IoT devices 
will be specified in detail. In addition, all prerequisites and 
restrictions of the concept will be discussed. First of all it 
should be mentioned, that the new approach focuses on the 
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monitoring of internet protocol-based (IP-based) IoT devices 
only. Other network communication protocols will be 
neglected and are not taken into account. 

A second very important prerequisite and restriction of the 
new approach is the focus on request/response application 
protocols only. The two most important request/response 
application protocols are the Hypertext Transfer Protocol 
(HTTP) and the Constrained Application Protocol (CoAP) 
[12]. Other application layer protocols, which use, e.g., the 
Publish/Subscribe principle, will be neglected and are not 
taken into account for the new approach. 

The  Constrained Application Protocol (CoAP) [12] is a 
specialized web transfer protocol, made for communication 
with constrained nodes and constrained networks in the 
Internet of Things. The CoAP is mainly designed for machine-
to-machine (M2M) [5] applications, such as smart energy, 
intelligent buildings, home automation, smart grid, and smart 
factory applications. CoAP was developed as an Internet 
Standards Document, RFC 7252. CoAP is designed to use 
minimal resources, both on the device and on the network. 
Instead of a complex transport stack, CoAP use the User 
Datagram Protocol (UDP) over IP. Like HTTP, CoAP is based 
on the wildly successful Representational State Transfer 
(REST) model: Which means, servers make resources 
available under a Uniform Resource Locator (URL), and 
clients access these IoT resources using methods such as GET, 
PUT, POST, and DELETE. Since HTTP and CoAP share the 
REST model, both application protocols can easily be 
connected by using application-agnostic cross-protocol 
proxies. A Web client may not even notice that it just accessed 
a IP-based sensor resource. CoAP and HTTP can carry 
different types of payloads, and can identify which payload 
type is being used. CoAP and HTTP integrates with 
Extensible Markup Language (XML), JavaScript Object 
Notation (JSON), and many other data formats.  

Additional assumptions: It will be assumed that the IP-
based IoT devices show a normal communication behavior 
and behave predictably. Furthermore, it will be assumed that 
no tagged training meta data of the normal behavior of the 
individual IoT devices are available. In practice, it is very 
often the case, that no tagged trainings data are available for 
the particular IoT devices. The most important assumption is 
the following one: It will be assumed that the capable normal 
communication behavior of an individual IoT device can be 
observed and monitored, without compromising by malware, 
during a certain training time period. 

As short overview, the new anomaly detection approach 
and concept has the following prerequisites and requirements:  

 
 The IoT devices, to be monitored, communicate via the 

internet protocol (IP) and an IP network.   
 The anomaly detection approach shall have a good 

performance and may require little storage space.   
 The anomaly detection system should synchronize 

recognized connections with signatures.   
 A compromise of an IoT device should be detected by 

anomaly detection.   
 Payload of the data packets is ignored.  
 The training data are not labeled. 

 It is assumed that the monitored IoT devices work 
without human interaction and their behavior is largely 
predictable.   

 For the monitoring and detection of anomalies, the 
metadata of the individual connections between end 
devices is considered only. 

 Network traffic should be monitored both online and 
offline.  

 A separate communication model is trained for each new 
IP-based IoT device type.  

 Any anomalies that occur are saved and can be viewed by 
the system administrator.  

 A computational trust value shall be displayed to the 
managing system administrator for each device, which is 
to serve as an indicator of the trustworthiness of this 
particular IP-based IoT device. 

III. RELATED WORK  

Gaddam et al. [1] developed a two-stage algorithm that 
uses K-means and Iterative Dichotomiser 3 (ID3) decision 
tree algorithm. For this, they used labeled training data where 
each data set is marked as attack or normal traffic. In the first 
phase, the test data is divided into k clusters. Based on the data 
vectors assigned to a cluster, a decision tree is then trained via 
ID3. This avoids two main disadvantages of K-means:  

(1) forced assignment: If the value for k is smaller than 
there are real groups, dissimilar data vectors are 
assigned to the same cluster.  

(2) class dominance occurs when a cluster contains a 
large part of the data vectors. 

In theory, this two-step process should result in the trained 
tree recognizing more subclasses in the clusters. In order to 
decide whether a new connection represents an anomaly when 
applying the model, two rules are applied to the new data 
vector: First the nearest neighbor (cluster) is found and then 
the most similar rule of the corresponding ID3 tree is 
searched. Thereby, especially the decision tree algorithm ID3 
needs labeled training data. The authors of this method state 
that an accuracy of 96.24 percent in detection of attacks was 
achieved with a network anomaly data test (Network 
Anomaly Data NAD-1998 dataset) with a false positive rate 
of 0.03 percent.  

Meidan, Y. et. al. [14] presented how supervised machine 
learning can be applied to analyze network traffic data in order 
to detect unauthorized IoT devices by manual labeling. 

The new cascading three step approach discussed in the 
following sections would like to overcome the restriction of 
supervised learning and labeled training data.  

IV. CONCEPT AND USED METHODS 

Intrusion detection is the monitoring of networks with the 
aim of detecting security-relevant events. These can be 
breaches of security rules or malware transmitted over the 
network. Such rules, also called security policy, are rules laid 
down by system administrators to which users of a network 
must adhere. They are designed to prevent users from 
unknowingly making their devices vulnerable to malware or 
trying to obtain rights that they are not entitled to.  
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An Intrusion Detection System (IDS) [3] automates the 
process of this intrusion detection by permanently monitoring 
network traffic for communication typical of such actions. An 
Intrusion Prevention System (IPS) has the same capabilities as 
an IDS and can still prevent detected events [4]. 

 
The main tasks of an IDS are: 
 Recording information about discovered events.  
 Inform system administrators about events.  
 Creating reports. 
 

While IDS focuses on detecting suspicious events, one of 
the tasks of an IPS is to additionally prevent certain events.  

 
This can be done in various ways: 
 Stopping the attack.   
 Customize the security configuration.   
 Manipulating the attack. 
 
During anomaly-based intrusion detection, all network 

traffic is synchronized with a communication model that 
represents normal network traffic. If a significant deviation 
from the model is found, an intrusion report is triggered. This 
model can be configured for a network, user or computer. 
Statistical methods are often used for the comparison with the 
model. The advantage of Anomaly-Based Intrusion Detection 
is the ability to detect previously unknown attacks that could 
not be detected using a signature. 

A model representing the normal traffic of a network, user 
or computer is configured either manually or automatically 
during a training period. Training times can be static or 
dynamic. A static model remains unchanged during its useful 
life and can only be replaced with a new model. 

Dynamic models adjust their configuration during 
runtime. Both methods can cause problems over time, because 
networks change over time, and so the communication 
behavior of the network, computer or user can change. Static 
models therefore generate more false positive over time. 
Dynamic models do not have this problem, but are more 
susceptible to slow takeover by an attacker. This could only 
start with a small number of compromising network requests 
and increase them over time. A dynamic model would adapt 
to the behavior without triggering alarms. 

A. Unsupervised Machine Learning 

Unlike supervised machine learning, unsupervised 
machine learning does not require labeled training data.  In the 
context of anomaly detection, these algorithms are based on 
two assumptions: First, that the entire network traffic is 
normal, and only a small proportion of traffic are attacks.  
Second, abnormal traffic differs from normal traffic based on 
statistical data. Widespread Unsupervised Machine Learning 
algorithms are, e.g., the K-Means, k-Nearest Neighbor (k-NN) 
algorithm. 

Many unsupervised machine learning algorithms are 
based on clustering. During clustering, data vectors are 
grouped together based on their similarities. It is used in 
exploratory data mining, so it is an exploratory measure that 
examines and clustered the similarity of the data vectors. 

Depending on the algorithm used, outliers can also be 
detected. Outliers are individual data vectors that cannot be 
assigned to an existing cluster. Outliers could be anomalies in 
our context here. 

K-means clustering is one of the most commonly used 
clustering algorithms. K-means divides all data vectors into k 
clusters and guarantees that data within a cluster are similar. 
Here, the center of a cluster is determined, a "centroid", to 
which the distances of the individual data vectors are 
calculated. The distance function is the Euclidean distance. 
This method determines related data vectors. K-Means groups 
N data vectors into k clusters, where k < N must apply.  

The standard k-Means algorithm can only be used with 
numerical data, but has better performance than other 
comparable clustering algorithms. However, the parameter k 
must be set manually. Pelleg and Morre [9] therefore 
developed the "X-Means" method, in which the k-means 
algorithm is tested with different k's and the resulting clusters 
are tested using a density function. The parameter k, which 
generates the clusters with the highest density, is then 
recommended for cluster training. With given training data, 
the optimal value for k is therefore found with this algorithm 
without having to be configured manually in advance. The X-
Means algorithm will be used for the unsupervised machine 
learning and clustering of related data vectors into centroids. 

B. Collection of Meta Data  

Network metadata will be collected in the area of network 
administration for analysis purposes. For this purpose, the 
entire traffic of a network is observed and metadata about 
individual connections is recorded. In most cases, therefore, 
this is done at a central communication point, for example at 
a gateway. 

For the collection of meta data the Bro Network Security 
Monitor (IDS) [13] will be used. Bro IDS [15] is an open 
source network monitoring framework based on Unix, which 
has been extended by some IDS-typical functions. Bro IDS 
processes observed network traffic in two steps:  

 
(1) Event Engine: The Event Engine analyzes the observed 

network traffic live and detects events. The trigger for 
these events is defined in an associated enhancement. It 
is possible to collect further information about this event 
using these enhancements. Bro comes preinstalled with 
some extensions, such as signature and connection logs, 
but also application protocol events, like , e.g.,  Domain 
Name Service (DNS) and Dynamic Host Configuration 
Protocol (DHCP). 

 
(2) Policy Script Engine: Uses events triggered by the Event 

Engine to perform custom actions. Here further analyses 
of the generated data can be carried out and dependent 
behavior can be implemented. 

 
The Event Engine will be used to create connection logs. 

This information contains metadata for each detected 
connection. They consist of a mixture of numerical and 
categorical data, such as the number of transmitted packets, 
the contacted port, the IP addresses involved and much more. 
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In Bro IDS it is also possible to define signatures. If a 
recognized connection corresponds to the behavior of a 
defined signature, a corresponding event is triggered and a 
signature log is created.  

Bro IDS is able to monitor a network live at a central 
communication point, for example as a gateway.  However, 
there is also the option to analyze recorded network traffic.  
This would fulfill the requirement to be able to operate both 
online and offline. 

C. Communication Model and Cascading 3 Step Approach 

A communication model is the basis on which an ADS or 
IDS analyzes observed network traffic and detects anomalies. 
Based on the above requirements, a categorizing 
communication model is designed for the new anomaly 
detection approach. This means that all recognized connection 
metadata will be divided into categories. During the training 
phase, these categories are learned automatically using the 
procedure described below. If the assignment of new 
connection metadata to a category is not possible after the end 
of the training, during the application phase, the 
communication behavior is not known and therefore 
represents an anomaly. The new anomaly detection approach 
in unsupervised communication meta data of IP-based IoT 
devices is characterized by cascading X-means clustering, 
decision tree, and statistical analysis. The cascading three step 
approach works like this: 
 

Step (1): X-means clustering (see Figure 1): In the first 
step, unsupervised training meta data will be collected and 
categorized based on the numerical data it contains about 
clustering. Therefore selected numerical data tn from the 
connection metadata are used to categorize the training data 
into k clusters using k-means clustering. For the k-means 
algorithm, the parameter k, which determines the number of 
clusters to be formed, must be set. However, since the number 
of clusters is not known in advance, k must first be found. X-
means clustering is used for this. Additionally, the system 
administrators should be given the option to set the k 
parameter manually.  

 

 
Figure 1.  X-means Clustering  

After the clustering of the training data has been 
completed, only the centroids of the clusters are stored 
persistently. For the later classification of metadata on during 
the application phase, only the k centroids are required to 
determine the affiliation of a data vector to a cluster. Since a 
trained model should not change, moving the centroids as in 
the k-means algorithm is no longer necessary. The tn data 

vectors are therefore not needed for future use and can be 
deleted. 

 
Step (2): Generation of decision trees (see Figure 2): For 

all data within a cluster, categorical values of the connection 
metadata will be stored in a decision tree structure to divide 
the observed connections into further subcategories. As a 
result, the recognized categories are further subdivided by 
generating trees from the categorical data. Proven in practice 
and used in the approach are the following decision tree 
structure (from root to leaf): Transmission Protocol => 
Service => Port Number => IP Address. 

 

 
Figure 2.  Generation of Decision Trees by Categorical Parameters 

Step (3): Statistical evaluation (see Figure 3): The 
allocation of the connection metadata, collected during the 
training time to the individual categories, will be calculated 
proportionately in order to enable a statistical analysis later. 
As result of the statistical analysis, the distribution of the 
individual categories of the clusters and tree paths are 
calculated proportionately. 

 

 
Figure 3.  Statistical Distribution of the individual subcategories of the 

generated clusters and tree paths (an arbitrary example) 

D. Training data, parameters, and analysis 

The whole of all training data for a particular machine is 

referred to in this section as Ti, where i represents a particular 

machine. Ti consists of a series of data tuples t, each of which 

represents a connect log and contains all metadata of a 

connection. The objects in t consist of different data types: 

numeric (numbers) and categorical (characters and strings). 

 Not all metadata provided by logging frameworks are 

relevant for training communication models. Therefore, a 

series of data are selected from t, which are used for model 

creation. The numerical data is referred to as tn and the 

categorical data as tk. When the course is finished, the system 
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switches to the application phase. New metadata is 

recognized online or offline and applied to the 

communication model. Such a Conn log to be checked has 

the same design as t ∈ Ti and is called a  ∈ Ai. Ai is the set 

of recognized connection metadata during the application 

phase of a device identified by i. The communication model 

trained with the training data Ti is used to check the tuples a 

∈ Ai. An subset of a contains the same selected numerical 

data as tn, the same applies to ak subset of a and tk. 

In order to guarantee the accuracy of the model, different 

methods suitable for the properties of the data types are used 

for learning the subcategories. 

Numerical parameter: Numeric values are used to rank 

the scope of a connection.  For this purpose, five elements 

from t are used, which are summarized in a new tuple tn:  

1. Duration: duration of the connection.  2. OrigPkts: Number 

of sent packets of the connection initiator.  3. RespPkts: 

Number of packets received by the connection initiator.  4. 

OrigBytes: number of bytes sent.  5. RespBytes: number of 

received bytes. 

Categorical parameter: In contrast to numerical 

parameters, categorical parameters can only take a defined 

number of possible values. In this approach, the following 

four objects are transferred from t to tk:  

1. Transmission protocol: The used Layer 4 protocol (UDP 

or TCP). 2. Used Service: If detected, the application protocol 

used (like , e.g., DNS or DHCP) 3. Target port: The contacted 

target port. 4. Internet protocol destination address: The 

contacted IP address. 

Since it can be assumed that IoT devices behave 

predictably, the observed categorical values can be regarded 

as complete in all tk with sufficiently long training time. This 

means that all possible combinations of categorical values 

occur at least once during the training phase. Using the 

exploratory measure in the previous step, k categories for link 

metadata were found. Each cluster contains at least one t  ∈ 

Tix, where Tix represents a certain subcategory. Whose 

categorical values can be learned further in order to find 

further subcategories within a cluster. These categorical 

values must now be learned in such a way that it can be 

efficiently checked whether there is a matching tk for a given 

ak where ak = tk. Tree structures are suitable for this. All tk are 

grouped in a tree bj  ∈ Bi. Bi contains all the trees of a 

communication model, where i represents a specific device. 

Where j stands for the cluster for which this tree is trained.  

Each element of the tuple tk corresponds to a node in tree bj.  

The depth of the tree corresponds to | tk |. Please note that the 

tree levels are selected in such a way that an optimal tree 

structure is generated.  

For the categorical values selected above, this order is 

(from root to leaf): Transmission Protocol (TCP or UDP) => 

Service => Port Number => IP Address. The reason for this 

is that successive values must always be in a 1:n relationship. 

A transmission protocol such as TCP or UDP can be used 

by several services, one service can use several ports and 

several IP addresses can be addressed via the same port. 

Saving the different combinations of categorical values in 

trees removes redundant elements and simplifies matching 

with new data sets. Trees are generated for each 

communication model. Each leaf of the trees represents its 

own communication category. 

E. Computational Trust 

The anomaly detection generates positive and negative 

experiences. These are summarized in a trust model and used 

to calculate a computational trust value for every individual 

IoT device in the network. This value allows system 

administrators to evaluate the behavior of an IoT device at a 

glance. 

The concept of trust in a social context is well known from 

everyday life. Trust allows people to delegate tasks and 

assess whether information should be shared with another 

individual. Trust also enables us to evaluate information 

shared with us. Computational Trust raises the social 

construct of trust in the field of computer science to build 

trust or distrust between agents (devices or people). A 

practicable definition of trust has been specified by the 

sociologist Diego Gambetta [2]: “Trust (or, symmetrically, 

distrust) is a particular level of the subjective probability with 

which an agent assesses that another agent or group of agents 

will perform a particular action, both before he can monitor 

such action (or independently of his capacity ever to be able 

to monitor it) and in a context in which it affects his own 

action.” So trust is treated as something subjective, which is 

always associated with some form of prediction and 

expectation of behavior. Another important element of trust 

is reputation. 

During the application phase, the communication model 

generates positive and negative experiences based on the 

observed connection metadata and the results of anomaly 

detection. If it is possible to assign the received Conn log (a) 

to a category, a positive experience is saved. If this is not 

possible or if a distribution anomaly is triggered, a negative 

experience is stored. These experiences are persistently 

stored and used by a computational trust model, to calculate 

a trust value for each device. 

This value is the subjective probability value E, which 

indicates the probability with which future experiences with 

a device can be rated positive. The higher this value, the more 

trustworthy is an IoT device. This allows system 

administrators to control the behavior of an IoT device by 

checking a simple numerical value x ∈ [0, . . . 1] to evaluate. 

If the confidence value of a device decreases unexpectedly 

quickly, it can be assumed that the device will be 

compromised because the device triggers a high number of 

anomalies. 

However, not all triggered anomalies actually indicate a 

compromise of the IP-based IoT device. The particularly 

rigid communication model can lead to an increase in false 

positives. However, by calculating trusted information based 

on experience, these individual false positives do not have a 
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strong impact on trustworthiness, which does not 

unnecessarily upset the system administrator. Only with a 

compromise of the IoT device can be expected with an 

increased number of anomalies, whereby the trust value 

decreases permanently. Computational Trust is therefore 

used to find and eliminate the false positive anomalies 

triggered by anomaly detection. 

As trust model the proof-of-concept implementation will 

use Certain Trust, developed by Sebastian Ries [10], which 

allows to represent trust for ubiquitous computing and P2P 

systems in a way, which can be interpreted and updated by 

software agents as well as by users. A key feature of Certain 

Trust is that it is capable of expressing the certainty of a trust 

opinion, depending on the context of use. 

V. CONCLUSION AND OUTLOOK 

This paper has presented and discussed a new cascading 
three step approach for anomaly detection in unsupervised 
communication meta data of IP-based Internet of Things 
devices. The new approach cascades X-means clustering, 
decision tree, and statistical analysis (see Figure 4 below), in 
order to monitor and protect IoT networks. The new approach 
is restricted to IP-based IoT devices, and request/response 
application protocols. The cascading three step approach is 
designed for anomaly detection in unsupervised CoAP and 
HTTP communication meta data. Additionally a trust model 
has discussed in order to allow system administrators to 
control the behavior of an IoT device by simply checking the 
trust value of this particular IoT device. 

It is planned to write an additional research paper on the 
real proof-of-concept implementation of the presented three 
step anomaly detection approach for the next International 
Conference on Cyber-Technologies and Cyber-Systems. 
Additionally, a detailed evaluation of CoAP and HTTP 
communication meta data of IP-based IoT devices, including 
a verification of the false positive rate, shall be done. 

This work was supported by the Center for Research in 
Security and Privacy (CRISP), Darmstadt, Germany. 
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Figure 4.  Cascading Three Step Approach for Anomaly Detection in Unsupervised Communication Meta Data of IP-based Internet of Things Devices 
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