
A Community Cloud: Archive Retrieval in Multiple Language Services

Wei-hua Zhao
1
 Zhan-wei Liu

2
 Zheng-xu Zhao

3

Shijiazhuang Tiedao University

Hebei, Shijiazhuang, P R China

1. e-mail: zhaoweihua9@hotmail.com

2. e-mail: hoson@126.com

3. e-mail: zhaozhengxu@staff.stdu.edu.cn

Abstract—This paper presents a common method and practice

in implementing a community cloud, where archives have to

support the services in multiple languages and cultures. It

demonstrates an internationalization process, the development

of software, the migration of archive data and the integration

of archive retrieval system. The paper shows how such archive

retrieval is carried out and how the system is implemented.

Although it does not claim to be the best or the only possible

solution, the method provides practical and useful tools for

establishing and managing digital archives that serve as a

community cloud where it essentially requires

internationalization or globalization or localization. The main

achievement of the paper resides in the presentation of a

complete and useful method for archive retrieval in multiple

languages.

Keywords-community cloud; digital archive; globalizaton;

internationalization; information organization

I. INTRODUCTION

Cloud computing is considered as web-based processing,
whereby shared resources, software, and information are
provided to computers and other devices such as smart
phones on demand over the Internet [1]. A community cloud
may be established where several organizations have similar
requirements and seek to share infrastructure so as to realize
some of the benefits of cloud computing. Examples of
community cloud include Googles "Gov Cloud" [2]. It could
be interesting to consider that archive services are evolving
from their traditional form toward an emerging digital
domain as a community cloud. Literatures [3,4] reveal that a
phenomenal proliferation of digital data clearly underscores
the ease with which it is being produced and the capacity in
which it is to be accessed. While effective archiving and
retrieval the information still remain a work in progress, the
importance of and the challenge for accessing it in multiple
languages with multiple cultures are being recognized and
thus there have been a various efforts made to address the
needs in specific areas like education services, government
administration and enterprise management.

Archive services across difference communities and
cultures have evolved into a massive digital media and files
in various forms and different languages, yet the current data
retrieval practices, due to the limitation of software tools and
archive systems, still confine their purposes within specific
languages and culture orientations. Those practices in nature

are normally carried out in the native or original forms of the
archived documents. For example, the archive system
deployed in the Shijiazhuang Tiedao University holds the
live data records, predominately in Chinese, of staff and
students for over 60 years span in hundreds and thousands of
individuals. However each year there have been an
increasing amount of service demands for retrieval,
translation and interpretation of those native documents into
various languages to suit for offshore business, overseas
collaborations and of course for those whose are to work and
study abroad. The workload in transforming those
documents into its specific needs and purposes poses a
phenomenal challenge both in time and accuracy [5]. This
paper reports an investigation into the method that retrieves,
translates and interprets the native documentation into
multiple languages and cultures to cater for different service
needs. The objective is to establish a useful practice that can
utilize various tools currently available to transform the
archives from their native form into different languages and
culture needs. It is expected that this practice will be an
essence for effective data translation, index and migration,
thereby providing technical solutions to the aforementioned
problems.

The text to follow gives a brief description of
internationalization in Section II. Section III presents the use
of methodology management in the system design and
Section IV details the functions of the system. Section V
provides the implementation of the system which is followed
by conclusions and future works included in Section VI.

II. INTERNATIONALIZATION

Globalization, internationalization and localization are
terms referring to the process of developing software systems,
media products, documentation and other collateral material
for people who speak foreign languages or constitute a
specific cultural group with a large language community.
They are long words and people took the habit of writing
abbreviations instead. As a result, the three terms are
abbreviated as g11n, i18n, l10n, with the intervening number
referring to the number of letters between the first and last of
each word [6].

A. Terminology

By i18n, it refers to the process by which a program or a
set of programs turned into a package is made aware of and

237

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

able to support multiple languages. This is a generalization
process, by which the programs are untied from calling only
English strings or other English specific habits, and
connected to generic ways of doing the same, instead.
Program developers may use various techniques to
internationalize their programs. Some of these have been
standardized. GNU Gettext offers one of these standards [7]
and this paper will be based on GNU Gettext.

By l10n, it means the operation by which, in a set of
programs already internationalized, a program is given all
needed information so that it can adapt itself to handle its
input and output in a fashion which is correct for some native
language and cultural habits. The formal description of
specific set of cultural habits for some country, together with
all associated translations targeted to the same native
language, is called the locale for this language or country.
Users achieve localization of programs by setting proper
values to special environment variables, prior to executing
those programs, identifying which locale should be used [7].

For globalization, or g11n, one could consider that it
stands for a much broader activities than for some specific
technology areas such as software design and system
development.

B. Development of i18n

Organizational bodies and commercial companies are
always looking for competitive strengths and improved
business practices. As Perrow [8] stated, in today's economy,
this translates to a demand for better software. The increased

demand has to do with a growing recognition that,
throughout the new economy, software is the means for
conducting business, tapping new markets globally, and
connecting suppliers, manufacturers and end users in a
worldwide domain. While the Internet serves as a vital tool
for transaction and communication, the software systems
themselves - often on either end of an Internet connection –
do the heavy lifting and represent the greatest challenges and
opportunities for business growth.

An i18n process represents the way in developing such
modern software systems that enable organizations to exploit
strategically localized advantages and economies of scale to
leverage a competitive edge world-wide. The concept of i18n
describes the establishment of a network of cross-border
activities between and within companies in which any or all
of the organizations’ departments may be involved. The
main standard motives for i18n are seeking market, resource,
efficiency and strategic asset [9,10,11]. By any measure,
i18n is not a solved problem. Although i18n has become a
mainstream software development process, achieving it in
streamlined, flexible and standardized manner remains a
grand challenge [12]. This may be partially due to the
misinterpretation of certain problem areas of i18n [13]. Table
I lists the key problem areas and the related questions that
are extracted from the discussion, with each area being
represented by a question to highlight the fundamental
problems for the i18n practice.

TABLE I. PROBLEM AREAS PERTAINING TO THE SOFTWARE DEVELOPMENT PROCESS OF I18N

Problem Area Description

User interface Does i18n mean that software can be simply translated via externalising its user interface?

Software translation Can software translation in i18n process always use the best phrase in the target language?

Programming tool Can programming tools that themselves have i18n always produce i18n code?

Unicode support Is software that supports Unicode an i18n system or product by itself?

Open source Does the use of open source in software product mean that i18n requirements are not applicable for the

product?

Standard encoding Is a standard encoding is automatically making a product having i18n?

Internal tool Is it true that all company employees speak English so only English needs to be supported by internal tools?

Administration interface Do administration interfaces need i18n?

Product module or component Does every product, module or component need i18n?

Product version Does it mean by adding i18n in the last release a job well done?

Customer feedback If something is wrong, will the customers’ feedback to the developers?

Multilingual capability Can a software product that works in a foreign language be considered to have i18n?

Base code Is i18n implemented after the base product is written by a separate group of engineers?

Software engineering Is i18n only needed in the software development department?

III. METHODOLOGY MANAGEMENT

Methodology management, normally called design
methodology management (DMM), originated from
computer aided design frameworks that are software
environment that integrate design tools and programs
required for prototyping computer operating systems and
managing the data being generated [14]. To attain rapid
design processes of high level automation, frameworks have
to select and execute tools automatically for lower-level

tasks to enable designers to concentrate on higher-level
decisions. The sequence of design tools is called
methodology and the functionality of selecting and executing
the tools is called methodology management. A software
environment, often part of a framework for selecting and
executing design methodology, is called methodology
management system [15].

As the design automation community begins to
understand the benefits of the technology, its expectations
grow: less error-prone design, rapid prototyping systems,

238

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Designing and
coding sources
(Programming
tools)

Editing PO
mode source
code
(Programming
tools)

Marked
software
source code

Compiling
and debugging
(Programming
tools)

GNU gettext
library

Installing
and executing
software
(Programming
tools)

System locations
and data file
folders

Software
output

Software
specification
and system
requirements

i18n requirements Software source
code and
documentation

Executable
software and
documents

Application
input

User
interaction

new and customer-tailored product development, high
product quality and improved productivity. A good DMM
system can bring these benefits to different categories of
users such as product designers, tool developers, system
developers, chief designers and company managers [14].
DMM is relevant not only to electrical design, but also to
software design and other fields like mechanical design.
Nevertheless it has not yet become a subject of much
discussion in either research community [16] or i18n process.
This article introduces DMM into i18n practice to develop an
i18n framework and it does so for three purposes. The first
one is to demonstrate how an integrated and streamlined i18n
process can be carried out and thus to give an insight into the
i18n process from an implementation perspective and with
sufficient technical details. The second is to provide a
practical approach with useful techniques and tools for
packaging of software with complete i18n support. The last
one is to help in understanding the i18n process in relation to
the questions in Table I.

IV. INTERNATIONALIZATION OF ARCHIVE RETRIEVEAL

Operations for i18n are often accomplished using
software tools, both interactive and automatic, and DMM
addresses the need to manage the manner in which these
tools are executed to achieve a desired function. According
to Fiduk et al [17], this paper adapts the definition of
following terms.

1) Execution environment: it is a computing environment
to manage the tools, tasks, flows, data and information
movement that are essential for an i18n process to be
accomplished.

2) Tool: this is a single executable program capable of
performing a specific function toward i18n.

3) Task: it is an abstraction of a function toward i18n, for
example, translation of an error message or version check of
a source code file.

4) Flow: it is the order in which tasks are executed. The
definition and manipulation of flows provide a mechanism to
describe a sequence of tools that make up a process or task
and tasks make up a methodology.

5) Process: this is a specific combination of tools and/or
other processes that performs a function toward i18n.

6) Tool invocation: This is the selection of a tool and the
use of it to perform what is needed to be done.

7) Operation: it is an atomic action within a process.
8) Methodology: this is a specified sequence of tasks.

A. The Framework

In general, DMM should have an execution environment
that is responsible for user interaction, launching tasks,
monitoring processes, automatically executing flows, and so
on. For this paper, the execution environment has following
specifications:

 It is operated under the common MS Windows XP

operating system.

 All tools and software are run as Win32 programs

(similar tools and software with different

compilations should be used for other operating

systems).

 The i18n development language is C/C++ under

Microsoft Visual Studio .NET 2003.

 The i18n software to be developed is open source,

so are all internal tools for the i18n process.

 The execution environment is compliance to open

source community’s Native Language Support

Library and Tools, GNU Gettext Tools, Version

0.14.4 [7].
Based on the above specification, the execution

environment is set up and its flow graph is shown in Fig.1.
The graph formalism represents individual methodologies. It
is actually a bipartite cyclic directed graph that has two types
of nodes wherein all edges connect one type to the other and
there are no paths from a node back to itself. The two types
of nodes are task nodes and specification nodes. Each task
node is labelled with a task description. There are two types
of task nodes: terminal and non-terminal. A terminal task
node represents a run of an i18n tool or programme and is
called a tool invocation; it is drawn with single circle.

Figure 1. DMM information flow graph of the execution environment for

i18n of softwar.

The graph representation of the execution environment is
arranged in a top-down manner by applying transformations
to nodes that represent non-terminal tasks. Fig. 2 shows the
next level graph (or sub-graph) that describes a process
where the Marked software source code is inputted to the
Extracting translatable code task by which a portable object

239

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Generating
MO files
(msgfmt tool)

Source code
translating (PO
mode involving
poEdit tool)

Marked software
source code

Extracting
translatable
code (xgettext
tool involved)

New target
language
PO files

Comparing
and refreshing
(msgmerge tool)

New PO
compendium

Target
language
PO files

PO compendium

PACKAGE.pot

Target language
MO files

Installing
target language
binary
(Perl scripts)

Software
output

Target language
PACKAGE.mo files

Run-time
linking
(Programming
tools)

template (POT) file named as PACKAGE.pot is generated
through the xgettext tool. The Comparing and refreshing task
is to obtain updated Target language PO files. Note that a
target language PO file is a PO file that has the translation of
a target language for all original program strings (in file
PACKAGE.pot); it is generally named as LANG.po where
LANG will be replaced by an ISO639-1 language code [18]
when it must refer to the name a specific target language PO
file. For example, ru.po is the name of a Russian language
PO file.

Then the Comparing and refreshing task executes the
msgmerge tool to refresh an already existing Target
language PO file by comparing it with the up-to-date
PACKAGE.pot file. The Source code translating task is
similar to the Editing PO mode source code task in the flow
diagram shown in Fig. 1, but it is a task of translating the PO
files into the target language PO files using poEdit tool (see
more description about the poEdit tool below in Section C).
The Generating MO files task turns the target language PO
files into files of machine-oriented (MO) format.

Finally, the marked software sources code is compiled
and linked with the GNU Gettext libraries. This task is
automated with Perl [19] scripts managed by the Perl tools.
This will result in an executable software installed
somewhere that users will find it.

Figure 2. DMM information flow sub-graph of the execution environment

for i18n of software.

B. The Archive Retrieval Tools

The archive retrieval a tool is the building block of the
framework. With the tools, the framework must define how

to use them and in what order to use them. The first refers to
task and the second to flow. The tools in each category are
described as follows.

 Programming Tools: These are found with Microsoft
Visual Studio .NET 2003, mainly the C/C++
compiler and linker. Programming tools includes
creating and compiling source code and debugging
and converting the source code into libraries,
components and executables.

 Internal Tools: These are mainly the GNU Gettext
utilities. Once the GNU Gettext is installed in the
execution environment, these tools are available for
the i18n framework to use. The i18n framework
reported in this paper only uses following internal
tools and invoke each tool with standard commands.
a) xgettext tool creates the PO template file

PACKAGE.pot.
b) msginit tool creates a new target language PO file

LANG.po from the PO template file
PACKAGE.pot.

c) msgmerge tool updates an existing target language
PO file LANG.po based on a newer version of
the PO template file PACKAGE.pot.

d) msgfmt tool generates binary MO files.

 Manipulation Tools: GNU Gettext also provides a
range of manipulation tools to manipulate PO files in
a way that is better performed automatically than by
hand. The i18n framework does not use these PO file
manipulation tools. Instead, it uses following two
open source tools: (1) poEdit is a cross platform
message catalogues editor which is software for
manipulation and translation of PO files. (2) SciTE is
a text editor that is specialized in source code
manipulation and it is used in the i18n framework
for text file editing and for manipulating source code
and Perl scripts. (3) Another set of tools used is from
Perl [19] which creates and runs Perl scripts to
automate the i18n tasks such as Generating MO files
and Installing target language binary.

C. Archive Translation and Interpretation

The definition and manipulation of tasks enable a
framework to carry out planning without users knowing the
details of operations and how they are implemented. Tasks
are performed by invoking specific processes. A task could
be, for example, encoding Unicode to transform character
sets for supporting multilingual languages. For the i18n
framework as illustrated in Fig.1 and Fig. 2, the tasks to be
performed are non-terminal and terminal. The non-terminal
tasks include:

1) Designing and coding sources is a combination of
tasks and processes for creating and programming source
code. Tools used in this task are programming tools.

2) Editing PO mode source code marks the source code
according to the GNU Gettext convention toward i18n.

3) Compiling and debugging is normally to generate the
source code into executable software and components which
do not necessarily have i18n.

240

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

4) Installing and executing software is to arrange the
software, data files, linked libraries, the source files and
documentation in organized filing structures so that they can
be accessed by all i18n tools.

5) Extracting translatable code is to find translatable
code or strings from all source files and then to generate the
PO template file. This task mainly uses the xgettext tool.

6) Source code translating performs all translation of the
marked code and strings in the source code from the
common language (English) to the target languages. It is
carried out using poEdit tool.

7) Installing target language binary is automated with
Perl scripts. This task compiles each target language source
code and then links with a MO file into a linked library
(dynamic linked library) and installs the results in a specific
filing location.

The i18n framework has following three terminal tasks:
1) Comparing and refreshing uses the tool msgmerge to

update PO files whenever the source code is changed.
2) Generating MO files uses msgfmt tool to generate MO

files from target language PO files. This task can be
integrated with the Installing target language binary task
using Perl scripting to form an automated process.

3) Run-time linking is carried out during testing and
debugging phase of the final software. It will execute the
software by run-time linking the library generated by the
Installing target language binary task for a specific target
language. For CJK (Chinese, Japanese and Korean) and
other Unicode languages, appropriate font files must be
made available for this task to accomplish i18n (generating
font file is beyond scope of this paper).

D. The Retrieval Process

There are three general processes involved in the i18n
framework. The first one is for preparing source code; the
second is for translating the source code; the third is for run-
time generating linked library. Each process is of course a
combination of tasks and sub-processes.

The first process includes creating and marking the
source code. This process is formed by the tasks in Fig. 1.
The second process involves in creating and updating the
template PO file and editing, updating and manipulating PO
files. The third process generates for each target language PO
file a target language MO file and then creates a run-time
link library for that target language. After the source code is
compiled into executable software, this run-time link library
enables the software with i18n. This process is the
combination of tasks Installing target language binary,
Generating MO files and Run-time linking as shown in Fig. 2.

V. SYSTEM IMPLEMENTATION

The framework shows how the complete i18n processes
could be carried out. It is certainly not the only possible
solution, but it provides a skeleton for real i18n packaging,
i.e. the key tasks that have to be accomplished.

A. System Requirements

The key requirement is a version of GNU Gettext Tools
(Version 0.14.4 for this paper) which is essential for i18n.

All other internal tools (see the above Section IV) must be
installed as part of the execution environment. It must be
noted that Perl tools should be installed and program
compiler and linker tools should also be made accessible in
command line mode if Perl tools and Perl scripts are used to
automate some of the i18n tasks in the i18n framework.

B. Source Preparation

This is about programming or creation of software source
code. In this paper, it is C/C++ source. Bringing GNU
Gettext convention into software package is to identify in the
sources those strings which are meant to be translatable and
those which are untranslatable. Beside this, some simple and
standard changes are needed to initialize the GNU Gettext
library. Changes to the source code fall into three categories.
First, the programmer has to make the localization functions
known to all modules needing message translation. Second,
the programmer should properly trigger the operation of
GNU Gettext library when the program initializes, usually
from the main function. Last, the programmer should
identify and especially mark all translatable strings in the
source code [7].

As illustrated in Fig. 1, from the Designing and coding
sources task to the Marked software source code
specification, all work should be achieved by programming
tools. From this point, the source code is marked according
to the GNU Gettext programming convention and can be
either compiled into package without i18n or brought to the
next stage for translation toward i18n (see Fig. 2).

C. Generating PO template File

Once the source code has been modified and marked, the
Extracting translatable code task makes invocation of the
xgettext tool. This tool will find and extract all translatable
strings from the source code files and then create the PO
template file PACKAGE.pot. Below is a typical example of
the invocation of the xgettext tool:

xgettext -a --files-from=POTFILES.in -o PACKAGE.pot

where -a is an optional command to instruct the xgettext tool
to extract all marked strings from the source code files that
are listed in the input file POTFILES.in. The --files-
from=POTFILES.in lets the xgettext tool to read the names
of the input source code files from the POTFILES.in file.
The -o optional command makes the xgettext tool to write
output to the file PACKAGE.pot.

D. Using PO Files

PO files store the translations; every target language
should have a single PO file. For instance, a Chinese
translation process will translate a PO file into a Chinese
(target language) PO file [18]. Normally, a translated PO file
contains previous translations provided by the translators.
The update of a PO file is done by the msgmerge tool.
Following is an example of the invocation of the msgmerge
tool to update the zh.po file:

msgmerge -u zh0.po PACKAGE.pot –output-file=zh.po

241

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

where -u is to instruct the msgmerge tool to update the old
version of PO file, zh0.po, into a new version zh.po in
reference to the new version of file PACKAGE.pot.

E. Generating MO files

For each PO file (in corresponding to each language), the
i18n framework will generate one MO file via the msgfmt
tool. Below is an example that shows how the msgfmt tool is
invoked:

msgfmt -c zh.po --output-file=zh.mo

where -c instructs the msgfmt tool to perform a check on
language dependent format strings, contents of the source
file header entry and conflicts between domain directives and
the --output-file option. As the generated zh.mo file is a
binary file, it is ready for the programming tools (compiler
and linker) to use in generating a run-time link library such
as the dynamic link library zh.dll. It should be pointed out
that the i18n framework described above is only necessary
for software package maintainers or developers. End users
do not have to perform any of the tasks showed in Fig. 1 and
Fig. 2.

VI. CONCLUSION AND FUTURE WORKS

The i18n in an archive retrieval system does not mean
that information is simply translated via externalizing its user
interface. It is a process that demands for a collaborative
effort from managers, designers, programmers, translators
and it depends on users’ feedback for further development.
Every software, module or component needs i18n, but i18n
is not a simply a software translation. Translators may not be
able to choose the best phrase in the target language for any
text that may possibly be seen by an external user, that is,
error messages, help messages and the like. Archive
translation software should be concurrently carried out
within the whole software development cycle so that
translators are able to work within the context about the
software and the project. Software that supports Unicode is
not necessarily an i18n system or product. Unicode is a
coded character set. Only characters or parts of characters are
encoded, but there is no information about language, locale
and font. If a software product can support Unicode, it only
recognizes single characters. Unicode is for supporting
languages around the world, but it is not a panacea for i18n.

Further works are needed to (1) implement a language
code interpreter, (2) increate the vocabulary in the indexing
database and (3) test and validate the reliability of the system
tools.

ACKNOWLEDGMENT

The work carried out in this paper is partially funded by
the China National Science Funding Council No. 60873208.

REFERENCES

[1] Wikipedia, “Cloud Computing”. The free encyclopedia
http://en.wikipedia.org/wiki/Cloud_computing. Retrieved November
2010.

[2] T. Claburn, "Google's "Gov Cloud" Wins $7.2 Million Los Angeles
Contract". The Internet On-line Resources: Informationweek.com
http://www.informationweek.com/news/services/saas/showArticle.jht
ml?articleID=221100129. Retrieved August 2010.

[3] NIST, “Long Term Knowledge Retention (LTKR): Archival and
Representation Standards”, Gaithersburg, MD 20899, March 2006.

[4] B. Swanson, “The Coming Exaflood”, The Wall Street Journal,
http://online.wsj.com/article/SB116925820512582318.html.
Retrieved August 2010.

[5] Z. X. Zhao and L. Z. Zhao, 2008, “Small-world phenomenon: toward
an analytical model for data exchange in Product Lifecycle
Management”, International Journal of Internet Manufacturing and
Services, Vol. 1, No. 3, pp. 213-230.

[6] The ACC Localization Advisory Board, “ACC Globalization
Internationalization Localization”, Austin Community College,
http://www.austincc.edu/techcert/accGIL.html. Retrieved March 2009.

[7] U. Drepper, J. Meyering, F. Pinard, and B. Haible,, “Native Language
Support Library and Tools, GNU Gettext Tools, Version 0.14.4
(Edition 0.14.4, 8 March 2005”, GNU Project - Free Software
Foundation (FSF), Free Software Foundation, Inc.,
http://www.gnu.org/software/gettext/. Retrieved August 2009.

[8] M. Perrow, “Editor’s Notes: Better Software Require A Better
Process”, The Rational Edge, January, 2001, pp. 1-2.

[9] J. H. Dunning, “Recent developments in research on multinational
enterprises: an economist’s view”. In Lars-Gunnar Mattson and Finn
Wiedersheim-Paul (eds), Recent Research on the Internationalization
of Business. Proceedings from the Annual Meeting of the European
International Business Association, Uppsala, Sweden, 14-17
December 1977. Uppsala: Uppsala University, pp. 1-16.

[10] J. H. Dunning, “Location and the multinational enterprise. A
neglected factor”, Journal of International Business Studies, Vol.29,
No.1, 1998, pp. 45-66.

[11] A. Heinrich, “Internationalisation, market structures and enterprise
behaviour. The Janus-faced Russian gas monopoly Gazprom”. In Kari
Liuhto (ed.), East Goes West. The Internationalization of Eastern
Enterprises. Lappeenranta: University of Technology, 2001, pp. 51-
87.

[12] J. L. Nhampossa, and P. Nielsen, “Experiences of internationalizing
Information Systems: The challenge of standardization”, Presentation
at the Oslo/Cambridge IS Workshop at University of Cambridge, UK.
http://www.hisp.info/confluence/download/attachments/2374/cambrid
ge_2004_nielsen_nhampossa.pdf? Retrieved December 2007.

[13] A. Vine, “All Things International, only Some of Them Software”,
The I18n G. A. L, Sun Microsystems, Inc.,
http://blogs.sun.com/i18ngal/. Retrieved September 2008.

[14] S. Kleinfeldt, M. Guiney, J. K. Miller, and M. Barnes, “Design
methodology management”, Proceedings of the IEEE, Vol.82, No.2,
1994, pp. 231-250.

[15] R. A. Baldwin, and M. J. Chung, “A formal approach to managing
design processes”, Computer, IEEE Computer Society, February,
1995, pp. 54-63.

[16] Z. X. Zhao, “A methodology management approach to computerised
process planning”, International Journal of Computer Integrated
Manufacturing. Vol.10, Nos1-4, 1997, pp. 83-91.

[17] K. W. Fiduk, S. Kleinfeldt,, M. Kosarchyn, and E. B. Perez, "Design
Methodology Management - A CAD Framework Initiative
Perspective", Proceedings of the 27th ACM/IEEE conference on
Design automation, 1991, pp. 278-283.

[18] ISO639 Joint Advisory Committee, “Codes for the Representation of
Names of Languages”, ISO639.2, November 2006,
http://www.loc.gov/standards/iso639-2/php/English_list.php.
Retrieved March 2009.

[19] ActivePerl, “ActivePerl: Version5.8.8.817”, ActiveState Software Inc.
http://www.activestate.com/Products/ActivePerl/. Retrieved October
2010.

242

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

