

Development Problems in XML Algebraic Parsing Process

Adriana Georgieva

 Fac. Applied Mathematics and Informatics
Technical University of Sofia, TU-Sofia

Sofia, Bulgaria
 e-mail: adig@tu-sofia.bg

 Bozhidar Georgiev
Fac. Computer Systems and Control

Technical University of Sofia, TU-Sofia
Sofia, Bulgaria

e-mail: bgeorgiev@tu-sofia.bg

Abstract - In this paper, are presented some problems
and solutions concerning the implementation of
proposed algebraic method for XML data processing.
The proposed theoretical researches and practical
realizations lead to faster XML parsing process. Here is
suggested a different point of view about the creation of
advanced algebraic parser. This point of view is in tight
connection with some popular concepts of the functional
programming. Therefore, here proposed nontraditional
approach for fast XML navigation using algebraic
tools contributes to advanced efforts in the making of
an easier user-friendly API for XML transformations.
This way, the programmer can avoid the difficulties
about the complicated language constructions of XSL,
XSLT and XPath languages. The choice of
programming language C# is a logical consequence,
which follows some previous experiments with other
high level programming languages. These activities
were carried out by the same authors. The discussed
specific search mechanism based on the use of algebraic
functions is theoretically and practically faster in
comparison with many other well-known XML parsers.
Finally, the conclusion is that in this area really exists a
possibility for creating new software tools, based on the
linear algebra theory, which can completely replace the
whole XML navigation and search techniques used for
the present by XSLT/XPath.

 Keywords - hierarchical XML tree structure,
functional programming (FP), XML transformations of
semi-structured data, algebraic modeling of XML
structures, module-finite algebra, XPath scripting
language, XML parser.

 I. INTRODUCTION

 The main purpose of this paper is the research
about the possibilities for application of one
nontraditional approach for addressing the
components in XML tree. This approach is based on
the principles of the functional programming (FP).
According to the cited incontrovertible sources
[1][12], the functional programming is a specific
programming technique tightly connected with
function definitions. In practice, the difference
between a mathematical function and the notion of a
"function" used in imperative programming is that
imperative functions can have side effects, changing

the value of already calculated computations. That’s
why, they lack referential transparency i.e., the same
language expression can result in different values at
different times [12] depending on the state of the
executing program. The formal description of BNF
(popular as Backus-Naur Form) template concerning
functional programming is: program::= set of
functions. Functional programming finds use in real
practice through several programming languages like
Mathematica (symbolic math), F# in Microsoft .NET
and XSLT (XML). Spreadsheets can also be
interpreted as FP languages. Actually, in the theory
are presented many different ways concerning
function description - tables, equations, definitions,
etc. In view of the fact that the paradigm FP is a
mathematical abstraction rather than a programming
language, we lay particular stress on types of
functions, which are widely used at present. Higher-
order functions are functions that can either take
other functions as arguments or return them as
results. Higher-order functions are closely related to
first-class functions [2]. Higher-order functions and
first-class functions both allow functions as
arguments and results of other functions [8][9]. The
distinction between the two functions is subtle:
"higher-order" describes a mathematical concept of
functions that operate on other functions, while "first-
class" is a computer science term describing
programming language entities that have no
restriction on their use (thus first-class functions can
appear anywhere in the program, including as
arguments to other functions and as their return
values).
 Actually, higher-order functions enable partial
application or currying, a technique, in which a
function is applied to its arguments one at a time,
with each application returning a new function that
accepts the next argument. In other words, functional
programming is a style of programming that
emphasizes the evaluation of expressions, rather than
execution of commands. The widespread use of XML
prompted the development of appropriate searching
and browsing methods for XML documents [4]. The
presented paper offers a particular point of view
focusing on the building of an algebraic formalism

165

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

for navigation over XML hierarchy connected with
functional programming theory. With the use of
XML query languages, users of XML retrieval
systems are able to exploit the structural nature of the
data and restrict their search to specific structural
elements within an XML documents [3].
 Definitely, most paradigms for defining a variety
of query languages are based on either way of the
two logics widely used in the context of trees – first-
order logic (FO), and monadic second-order logic
(MSO). MSO extends FO by the quantification and
navigation over the sets of nodes. In this paper, we
shall consider monadic second-order logic (MSO) as
first-order logic extended with “monadic second-
order variables” ranging over sets of XML elements.
In other words, the query languages for extraction of
data from XML documents (XSL, XSLT, etc.) are
grounded theoretically on MSO logic. XPath
language is rather related to FO logic [5].
 This article presents a nontraditional point of view
that connects the application of FP principles (as
illustration of the declarative style of programming)
with here proposed algebraic approach. The purpose
of this FP model representation is to make the
implementation of advanced linear algebra tools [9]
possible for XML data manipulations. In Section I
the main functionalities of FP and the basic goals of
this paper are shown. Section II describes the
conceptual model connected with the proposed
algebraic approach for faster search in XML
hierarchy. The exhibited in this section results follow
previous researches of the authors which have been
exposed in [2]. Here are discovered the internal links
between some theoretical formulae, which show the
possible substitution of complicated language
constructions (XPath, XSLT) with the discussed
above FP techniques. Section III presents some XML
parser architectures and program realizations along
with an algebraic search and hierarchy access.
Finally, in Section IV the general issues, conclusions,
the further researches and some open problems are
discussed.

II. ALGEBRAIC APPROACH FOR FASTER
SEARCH IN XML HIERARCHY

 To avoid the bottleneck, that characterizes the
languages XSLT/XPath for XML transformations,
there is necessity to accelerate the parser process and
node access in common XML hierarchy. This section
is dedicated to some possibilities for faster search and
navigation over XML hierarchical trees by means of
linear algebra tools. The presented formulae can be
considered like functions, based on module-finite
algebra tools [10]. According to cited researches [8]
[9] and as result of proposed theoretical model [7], in
this paper is given the unique determination of the
physical address of the object r

kO (object r from

level k) in common hierarchical structure i.e., the
number r

kp by the following way:

r
kp =

1

1

I
k

k

i
i

aα
−

=
+∑ = 1 2 1... I

kk aα α α − ++ + +

= 1 2 11 11. () . () . ()... k
I
kh h h aα α α −Φ Φ Φ ++ + + =

= 1

1

1
.)(
k

I
i k

i
h aα

−

=
+Φ∑ , (1)

where: - 1 0() 1h cΦ = = ;
 2 0 1 1() .h c ccΦ == ;
 2 23 0 1 1. .() . c ch c ccΦ == ; …. ;

0 2 11() ..k kh cc c c −Φ = = 2 11 kcc c −

are here defined transformed characteristic elements
from the tree;
 - 0 2 11, , kcc c c − - the number of
children (subordinated elements) of any element from
level i to level i+1; ic ∈ ; ordinary 0 1c = and
therefore:

1 1 2 2 1 1{...{(1). 1)}. ... (1)} 1I
k k k ka a c a c a c a− −= − + − + + − + −

 (2)

 Here I

ka is the code value ka in the
hierarchical level k. The calculations in formula (2)
are based on the formal description of the sets of
code values of XML nodes components. According
to suggested formal algebraic description [2] each of
the objects in a real XML hierarchical data structure
can be accepted as an element of the corresponding
hierarchical structure [9]. For XML physical data
design, in this article is chosen one-dimensional
address array with codes of all XML database
elements from the type:
 E (1 1 2 2,i k i k÷ ÷ , ... , n ni k÷), which presents the
XML data structure in increasing consistency in the
order of the corresponding hierarchical levels. On
this base the address of element r from level q in
common hierarchy can be determinate by:

1

1
(,) .

q

m m
m

ADR r q R D r
−

=

= +∑ , (3)

where: 1 1 1(1).m m m mR k i R− − −= − + and 1 1R = .

In other hand:

166

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

 (1) /m m mD k i= − + 1 1(1)m mk i− −− +

Here mD is the number of the subordinate elements
of level m-1 to level m. This formula is valid for
cases of the “balanced” hierarchical structures,
when the number of the subordinate elements to
every element of each level to the next one is
constant. That’s why, in dependence of the concrete
user applications of database structures, the formula
(3) is a program, realized so that every element from
each hierarchical level has a different number of
subordinate elements compared to the next one. If
we denote with 1 2, ,...,m m m

ma a aα the code value of
the elements from level m in common hierarchy, then
the expression m mk i− is a dimension of level m in
hierarchy for each m = 1, 2,3 ... ,n. This algebraic
approach allows comparatively simple search of
XML hierarchical data by means of the following
types of functions – specification functions and
nesting functions. As it was shown in [9], the
specification functions comprise three basic
manipulations for data handling: specification
manipulation on only one level, structural
specification manipulation that returns all lower
levels and quantity specification level – returns all
possible levels in horizontal and vertical order. As
can be seen in these specification functions, the
existent relationships between the elements of the
different hierarchical levels are mainly from two
types: relations between elements within the structure
– inside-structure relations and relations between
elements of the different hierarchical structures –
inter-structure relations. Most of these relationships
are either from type “one-to-one” or from type “one-
to-many”.
 Let we consider two basic hierarchical structures
T and P in one XML document and corresponding
relations between elements of them.
 Definition 2.1. The relations between elements
from the same hierarchical structure representing
relationships between them, as in the one hierarchy -
structure T (or in other hierarchy- structure P) we call
relations of strict order and strict inclusion [7][10].
 More complicated are the relations from the type
“one-to-many” that present the relationships between
elements of some hierarchical levels in the P-
structure – for example the relations between
elements of every couple of levels K and L. For these
relations is defined the operation “projection” (pr)
for each element from K to L.
 Definition 2.2. Each element ik K∈ correlates

with non-empty set of elements{ }jl L∈ , which we

call “intersection” by ik and will denote with

r (),i jk l .

 The intersections by ik i.e., given element is

a set of such subjects { }jl , that (),i jk l ∈r,

where i=1, …,n ; j=1, …,m (n is a number of
elements of K, m is a number of elements of L and it
is not obligatory i≠ j). For example, when:

 K={ }1 2 3 4, , ,k k k k , L={ }1 2 3, ,l l l and

r{ 1 1 1 3 2 1 2 2(,), (,), (,), (,),k l k l k l k l

 () () ()}3 2 3 3 4 4, , , , ,k l k l k l

then r[] { }1 1 3,k l l= ; r [] { }2 1 2,k l l= ;

r[] { }3 2 3,k l l= ; r[] { }4 3k l= ,

moreover always exist at least one r[]ik ≠ ∅ ,

because projection pr ()(), _ir k ≠ ∅ as, for

example, pr ()() { }1 3, _ ,ir k l l= ≠ ∅ … , etc.

 These intersections by 1,..., nk k K∈ present the
specific peculiarities of relation r between elements
of levels K and L in hierarchical structure P.
Similarly, here can be described the relations
between other couple of hierarchical levels from this
type in any XML document.

III. HOW THE PROGRAM SYSTEM
 (ALGEBRAIC PARSER) IS BUILT?

 For the purposes of presented research is assumed
that the physical records in the XML hierarchical file
are with fixed length. On Fig. 3.1 is depicted the
functionality of proposed in this article XML parser.
Usually, XML documents are stored in physical
memory of computer by means of a variety of index-
sequential methods. Each element from a given level in
the common hierarchy includes different number of
siblings and child elements. It means that any object

r
nO is represented with the code value (integer) r

np ,
which is defined from the disposition of the element in
XML hierarchy. Here n is the number of hierarchical
level in common structure and r is the place number in
the fixed level from left to right. This algebraic
processor supports a code table with the names of
elements of current XML document and the
corresponding integers r

np , which uniquely define the

place of the object (node) r
nO from level n in the real

hierarchical structure i.e., its address in the physical
XML database.
These algebraic presentations of the binary
relationships in hierarchical structures remove the
necessity from table’s work, relation schemes, etc. So
it operates only with rows of numbers, which leads to

167

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

use of ordinary algebraic tools for data transformation
from XML structures to their presentation on physical
level.

X M L I N P U T F I L E

P A R S I N G M E C H A N I S M

H I E R A R C H I C A L
 T R E E S T R U C T U R E

R E A D
 f u n c t i o n

D E L E T E
 f u n c t i o n

A D D
 f u n c t i o n

S E A R C H
f u n c t i o n

 Figure 3.1. Common scheme of functional XML parser

 The file information after the parsing processing
is saved in the same way as it is kept in the XML
input hierarchy. Search function gives the oportunity
to the user for tag searching procedure. Final results
show the content of the corresponding tag and its
position in XML hierarchy. The algebraic approach
makes obvious the possibilities for reaching linear
time functions in XML tree hierarchy handling. The
user can insert an additional information in XML file
according to previously defined input format. Some
operations for common use could be done as follows:
 - DELETE operation of element r

ka - in this case
r
ka =0 means removal of this element from the table

along with its descendants down in the hierarchy
until to the last level n.
 - GET operation uses the formula (1) for
immediate address search of an assigned in advance
element.
 - INSERT operation puts in the table the name of
element and its coordinates; here is necessary to
increase the index of other elements on the right side
of the element, for example 1m

ka + , etc.
 For more flexibility and best user convenience
there is foreseen the possibility that provides WEB
access to the parser. The presented diagram on Fig.

3.3. describes in details classes, used in project
realization.

U T F
D E C O D E R

CHARACTER
VALIDATOR

E L E M E N T
SC A N N E R

 P A R S E R M E C H A N I S M

X M L D O C U M E N T

S C H E M A
 V A L I D A T O R

A P I
 I M P L E M E N T O R

Algebraic
Processor

TO
APPLICATION

 Figure 3.2. XML Parser Architecture added to the algebraic
 searching and hierarchical tree access

 On Fig. 3.2 is defined a set of normative functions
for use with the proposed in this paper processor.
 For the program realization of XML parser here
is used MS Visual Studio environment. Visual Studio
[11] is chosen for this purpose in view of the fact that
this programming package provides wide spectrum of
software tools, used to develop both console
applications and WEB applications (and services) as
well. Visual Studio supports different versions of
programming languages C/C++, VB.NET, C#,
XML/XSLT, HTML/XHTML, JavaScript and CSS.
Other popular languages can be easly supplemented
to this MS program environment after simple
instalation. The following elements of MS Visual
Studio are used in the building process of XML
parser:
- Code editor which facilitates text colors and
recognizes variables, functions, methods and other
components through its core module IntelliSense.
- Debugger module is implemented for tracing
programing code about errors detection and
correction in input file.
- Designer modules: Windows Forms Designer for
creating Windows Forms graphical interface and
Web designer/development for WEB sites
aplications.
 The first practical realization of so proposed
algebraic parser uses programming tool Eclipse SDK
for Java [9]. This article is dedicated to the
acceleration process of this parsing mechanism using
language C#.

168

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 3.3. Functional class diagram of the parser

169

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

The results of both practical researches (JAVA and
C# realizations) demonstrate faster accomplishment
of discussed XML operations in comparison to some
traditional approaches, especially to these which are
based on the search in XML hierarchy
(XSLT/XPath).

IV. CONCLUSION AND FUTURE WORK

 This article is an author’s attempt to create a
mechanism for accelerating XML document
processing, connected with the main principles of FP.
The presented XML parser is built and practically
works by using advanced algebraic formulae. The
authors reveal several basic algebraic operations,
which are included in proposed in this article parser
and make logical connections with some concepts of
the functional programming. On the basis of this
model, that presents the addresses of elements in
XML hierarchical document as integer values, is
possible to work with common algebraic mechanism.
This mechanism is used in modeling of relationships
between the different XML hierarchical components,
data operations and standard specification functions
[6]. It allows a possibility to work with ordinary
linear operators in harmony with FP theory instead of
the more difficult operations, which are specific for
the widely used models. The algebraic approach
points out some opportunities for search and
navigation in different WS*-specifications especially
as WSDL, BPEL, UDDI, etc. Here are suggested
algebraic mechanisms for advanced algebraic
processor creation (with all necessary programming
modules). This nontraditional (functional) approach
about the faster navigation with the presented
algebraic tools promotes to build new interface for
XML search techniques and transformations. The
implementation of so proposed method in the area of
SOA could accelerate the various types of XML
message-based communications concerned WSDL,
UDDI, BPEL, SOAP, etc. This algebraic mechanism
can be dynamically located, invoked and combined
with other navigation techniques. It gives users the
opportunity to process their data messages easier and
faster, that is of critical importance to make service-
oriented paradigm operational in the real practical
environment. Finally, the proposed approach is
different in comparison with many other well known
query and transformational languages in respect of
their definition, expressiveness and search
techniques. Several research questions remain as it is
mentioned below:

 - The results of this paper justify a natural fixed
point in the development of some future
possibilities for matrix presentation of the
relationships between the elements of the different
hierarchical levels in XML hierarchy (inside
structure and inter-structure relations). Actually,
using matrices will be very convenient for conceptual
representation and programming realization of
hierarchical relationships between every two levels in
the whole data structure.
 - The presented paper offers an algebraic point of
view for building of algebraic processor (with
appropriate software and programming techniques).
Therefore, this particular point of view about an
algebraic processor based on the tools of linear
algebra and motivated from FP theory, conducts to
software results, which eliminate the complicated
language constructions of XSL, XSLT and XPath.

REFERENCES

[1]. J. Darlington, P. Henderson, and D. A. Turner, Functional
programming and its applications, Cambridge university press,
 ISBN 0 521 24503 6, 1982
[2]. A.Georgieva and B. Georgiev, “A Navigation over XML
Documents through Linear Algebra Tools”, The Fourth
International Conference on Internet and Web Applications and
Services - ICIW 09, Venice/Mestre, Italy, 24-29 Мay 2009,
Published by IEEE Computer Society, ISBN: 978-0-7695-3613-
2/09.
[3]. J. Keogh and K. Davidson , XML DeMYSTiFied, McGraw-
Hill, Emeryville, California, USA, 2005.
[4].World Wide Web Consortium, http://www.w3.org/TR/2004/.
Extensible Markup Language (XML) 1.0. W3C Recommendation,
third edition, February 2004.

 [5]. L. Libkin, “Logics for unranked trees: an overview”,
Department of Computer Science, University of Toronto, 2006.

 [6]. B. Georgiev, “An Approach for Some Implementations of
W3C-Standard XML”, Second International Scientific Conference,
Kavalla, Greece, 2005.

 [7]. A. Georgieva,”Algebraic Modelling of Hierarchical Data
Structures on Conceptual Level”, Proceedings of Second
International Scientific Conference “Computer Science’2005,
Chalkidiki, Greece, Part II, pp.113-118.
[8].A. Georgieva and B. Georgiev,” Conceptual Method for
Extension of Data Processing Possibilities in XML Hierarchy”,
Forth International Scientific Conference, Kavalla, Greece, 2008.
[9]. B.Georgiev and A.Georgieva, “Realization of Algebraic
Processor for XML Documents Processing”, AIP Conference
Proceedings of 36-th International Conference AMEE-2010,
vol.1293, pp. 279-286.

 [10]. L. Garding and T. Tambour, “Algebra for Computer
Science”, Spring-Verlag, N.Y., 1988.
[11]. J.Sharp, Microsoft Visual C# Step by Step, Microsoft Press,
Washington, 2008
[12]. P. Hudak, “Conception, Evolution, and Application of
Functional Programming Languages”, ACM Computing Surveys
21/3, 1989, pp. 359-411.

170

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

