
Rethinking Traditional Web Interaction
Vincent Balat

Univ Paris Diderot – Sorbonne Paris Cité – PPS, UMR 7126 CNRS, Inria – Paris, France
Email: vincent.balat @ univ-paris-diderot.fr

Abstract—Web sites are evolving into ever more complex distributed
applications. But current Web programming tools are not fully adapted
to this evolution, and force programmers to worry about too many
inessential details. We want to define an alternative programming style
better fitted to that kind of applications. To do that, we propose an
analysis of Web interaction in order to break it down into very elementary
notions, based on semantic criteria instead of technological ones. This
allows defining a common vernacular language to describe the concepts
of current Web programming tools, but also some other new concepts.
This results in a significant gain of expressiveness. The understanding
and separation of these notions also makes it possible to get strong
static guarantees, that can help a lot during the development of complex
applications, for example by making impossible the creation of broken
links. Most of the ideas we propose have been implemented in the Ocsigen
Web programming framework that make possible to write a client-server
Web applications as a single program. We will show that the interaction
model we propose is fully compatible with this kind of applications.

Keywords—Typing; Web interaction; Functional Web programming;
Continuations

I. INTRODUCTION

Nowadays, Web sites behave more and more like real appli-
cations, with a high-level of interactivity on both the server and
client sides. For this reason, they deserve well-designed programming
tools, with features like high-level code structuring and static typing.
These tools must take into account the specificities of that kind of
application. One of these specificities is the division of the interface
into pages, connected to each other by links. These pages are usually
associated to URLs which one can bookmark. It is also possible to turn
back to one page using the back button. This makes the dynamics of
the interface completely different from a regular application. Another
specificity is that this kind of applications is highly dependent on
standards as they will be executed on various platforms.

Web programming covers a wide range of fields, from database
to networking. The ambition of this paper is not to address them all,
nor to deal with the full generality of service oriented computing.
We concentrate on what we will call Web interaction; that is, the
interaction between a user and a Web application, through a browser
interface. We place ourselves in the context of writing such an
application, that communicates with one or several servers, and with
the ability to make part of the computation in the browser. A few
similar Web interaction systems have already been described before
(for example Links [1], or Hop [2]). The goal of this paper is mainly
to focus on one feature that has been very rarely addressed before,
namely: service identification, that is, how the service to handle a
request is chosen. We want to show that a good service identification
mechanism can help programmers a lot, and that the concepts we
present here allow to take into account very concrete needs of Web
developpers that are usually not addressed by more theoretical works.

We want to make a first step towards a formalization of this
interaction with a twofold goal. First, we want to increase the
expressiveness of Web frameworks. Second, we want to improve the
reliability of Web applications by using well defined concepts and
static validation of the code.

The concepts we present here have been implemented in the
Ocsigen Web programming framework [3], [4], [5] (Eliom project). It
allows to program fully in OCaml both the server and client parts of a

Work partially supported by the French national research agency (ANR), PWD project,
grant ANR-09-EMER-009-01, and performed at the IRILL center for Free Software
Research and Innovation in Paris, France

Web application, with a consistent abstraction of concepts. A compiler
to Javascript is used to run the client parts in the browser [6], [7].

A. A common vernacular language for Web interaction

Web development is highly constrained by technologies. First, it
relies on the HTTP protocol, which is non-connected and stateless.
Then, Web applications must be executable in various browsers that
implement more or less accurately common standards and recommen-
dations.

We want to detach ourselves as much as possible from these
constraints and think about how we would like to program Web
interaction. Obviously this is also a question of taste. But rather
than proposing yet another programming model from scratch, we
start by analyzing common Web programming practices, in order
to understand the notions they use. Then we decompose them in
very elementary notions that can be used to describe the features
of Web programming tools, from PHP to JSP or Miscrosoft.NET
Web Forms, etc. We will observe that current frameworks impose too
many artificial restrictions. Ideally, we would like to give a generic
language, flexible enough to describe all possible behaviours, without
imposing any artificial restriction due to one technology.

We place ourselves at a semantic level rather than at a technical
one. Moving away from technical details will allow to increase the
expressiveness of Web programming frameworks. In the domain of
programming languages, high-level concepts have been introduced
over the years, for example genericity, inductive types, late binding,
closures. They make easier the implementation of some complex
behaviours. We want to do the same for the Web. For example the
notion of “sending a cookie” benefits from being abstracted to a more
semantic notion like “opening a session” (which is already often the
case today). Also it is not really important for the programmer to
know how URLs are formed. What matters is the service we want to
speak about (and optionally the parameters we want to send it).

This abstraction from technology allows two things:

• First, it increases the expressiveness of the language by
introducing specific concepts closer to the behaviours we
want to describe (and irrespective of the way they are
implemented). From a practical point of view, this allows
to implement complex behaviours in very few lines of code.

• Having well-designed dedicated concepts also allows to
avoid wrong behaviours. We forbid unsafe technical pos-
sibilities either by making them inexpressible, or by static
checking.

B. Improving the reliability of Web applications

As Web sites are currently evolving very quickly into complex
distributed applications, the use of strongly and statically typed
programming languages for the Web becomes more and more helpful.
Using scripting languages was acceptable when there was very little
dynamic behaviour in Web pages, but current Web sites written with
such languages are proving to be very difficult to evolve and maintain.
Some frameworks are counterbalancing their weaknesses by doing a
lot of automatic code generation (for example [8]). But this does
not really improve the safety of programs. In the current state of
knowledge, we are able to do much better, and Web programming
must benefit from this.

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Static validation of pages: One example where static typing
revolutionizes Web programming concerns the validation of pages.
Respecting W3C recommendations is a necessity to ensure portability
and accessibility of Web sites. The novelty is that there now exist
typing systems sophisticated enough to statically ensure a page’s
validity [9], [10], [11] We do not mean checking the validity of pages
once generated, but really to be sure that the program that builds the
XML data will always generate something valid, even in the most
particular cases.

For example, even if a programmer has checked all the pages
of his site in a validator, is he sure that the HTML table he creates
dynamically will never be empty (which is forbidden)? What if for
some reason there is no data? He must be very conscientious to
think about all these cases. It is most likely that the evolutions of
the program will break the validity of pages. In most cases, problems
are discovered much later, by users.

In lots of cases, such errors will even make the generated
output unusable, for example for XML data intended to be processed
automatically. The best means to be sure that this situation will never
happen is to use a typing system that will prevent one from putting
the service on-line if there is the slightest risk for something wrong
to be generated.

For people not accustomed to such strong typing systems, this
may seem to impose too much of a constraint to programmers. Indeed,
it increases a bit the initial implementation time (by forcing to take
into account all cases). But it also saves such a huge amount of
debugging time, that the use of such typing systems really deserves
to be generalized. For now, these typing systems for XML are used in
very few cases of Web services, and we are not aware of any major
Web programming framework. Our experience is that it is not difficult
to use once one get used to the main rules of HTML grammar, if error
messages are clear enough.

Validity of Web interaction: Static checking and abstraction of
concepts can also benefit in many other ways to Web programming,
and especially to Web interaction. Here are a few examples: In a link,
do the types (and names) of parameters match the types expected by
the service it points to? Does a form match the service it points to?
Do we have broken links?

It is not so difficult to have these guarantees, even if almost
no Web programming framework are doing so now. All what is
needed is a programming language expressive enough (in the sense
we explained above).

Improving the ergonomics of Web sites: Lots of Web developers
are doing implementation errors resulting in reduced ease of use
(wrong use of sessions or GET and POST parameters, etc.). Take as
example a famous real estate Web site that allows to browse through
the results of a search; but if someone sets a bookmark on one of
the result pages, he never goes back to the same page, because the
URL does not refer to the advertisement itself, but to the rank in the
search. We will see that a good understanding of concepts can avoid
such common errors.

C. Overview of the paper

Sections II and III are devoted to the definition of our vernacular
language for describing the services provided by a Web application.
Section II explains the advantage of using an abstract notion of
service instead of traditional page-based programming and string
URLs. Section III presents a new service identification and selection
method. It shows how powerful this notion of service can be made,
by separating it into several kinds. This results in a very new
programming style for Web interaction.

II. ABSTRACTING SERVICES

As explained above, we want to formalize Web interaction, that
is, the behaviour of a Web application in reaction to the actions of
the user. What happens when somebody clicks on a link or submits a
form? A click often means that the user is requesting a new document:

for example a new page that will replace the current one (or one part
of it). But it can also cause some actions to take place on the server or
the client. Let us enumerate the different kinds of reactions. A click
(or a key strike) from the user may have the following main effects:

1) Modifying the application interface. That is, changing the
page displayed by the browser (or one part of the page), or
opening a new window or tab with a new page,

2) Changing the URL displayed by the browser (protocol,
server name, path, parameters, etc.),

3) Doing some other action, like the modification of a state
(for example changing some database values),

4) Sending hidden data (like form data, or files),
5) Getting some data to be saved on the user’s hard disk.

Two important things to notice are that each of these items is
optional, and may either involve a distant server, or be processed
locally (by the browser).

This decomposition is important, as a formalization of Web
interaction should not omit any of these items in order not to
restrict the freedom of the programmer. All these items are described
semantically, not technically.

A. The role of URLs

The item “Changing the URL” above is a really significant one
and is one key to understand the behaviour of Web applications. This
section is devoted to the understanding of that notion. URLs are entry
points to the Web site. Changing the URL semantically means: giving
the possibility to the user to turn back to this point of interaction later,
for example through bookmarks.

Note that, unlike many Web sites, a good practice is to keep the
URL as readable as possible, because it is an information visible to
users that may be typed manually.

1) Forgetting technical details about URLs: The syntax of URLs
is described by the Internet standard STD 66 and RFC 3986 and is
summarized (a bit simplified) here:
scheme://user:pwd@host:port/path?query#fragment

The path traditionally describes a file in the tree structure of a file
system. But this view is too restrictive. Actually, the path describes
the hierarchical part of the URL. This is a way to divide a Web site
into several sections and subsections.

The query string syntax is commonly organized as a sequence
of ‘key=value’ pairs separated by a semicolon or an ampersand, e.g.,
key1=value1&key2=value2&key3=value3. This is the part of
the URL that is not hierarchical.

To a first approximation, the path corresponds to the service to
be executed, and the query to parameters for this service. But Web
frameworks are sometimes taking a part of the path as parameters.
On the contrary, part of the query, or even of the host, may be used
to determine the service to call. This will be discussed later in more
detail.

The fragment part of the URL only concerns the browser and is
not sent to the server.

The item “Changing the URL” is then to be decomposed seman-
tically into these sub-tasks:

1) Changing the protocol to use,
2) Changing the server (and port) to which the request must

be made,
3) Choosing a hierarchical position (path) in the Web site

structure, and specifying non hierarchical information
(query) about the page,

4) And optionally: telling who the user is (credentials) and the
fragment of the page he wants to display.

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

2) URL change and service calls: There are two methods to send
form data using a browser: either in the URL (GET method) or in the
body of the HTTP request (POST method). Even if they are technical
variants of the same concept (a function call), their semantics are
very different with respect to Web interaction. Having parameters in
the URL allows to turn back to the same document later, whereas
putting them in the request allows to send one-shot data to a service
(for example because they will cause an action to occur).

We propose to focus on this semantical difference rather than
on the way it is implemented. Instead of speaking about POST or
GET parameters, we prefer the orthogonal notions of service calls
and URL change. It is particularly important to forget the technical
details if we want to keep the symmetry between server and client side
services. Calling a local (javascript for example) function is similar
to sending POST data to a server, if it does not explicitly change the
URL displayed by the browser.

Semantically speaking, in modern Web programming tools,
changing the URL has no relation with calling a service. It is possible
to call a service without changing the URL (because it is a local
service, or because the call uses POST parameters). On the contrary,
changing the URL may be done without calling a service. There is
only one reason to change the URL: give the user a new entry point
to the Web site, to which he can come back when he wants to ask
the same service once again, for example by saving it in a bookmark.

B. Services as first class values

The first main principle on which is based our work is: consider
services as first class values, exactly as functional languages consider
functions as first class valuesThat is: we want to manipulate services
as abstract data (that can for example be given as parameter to a
function). This has several advantages, among which:

• The programmer does not need to build the syntax of URLs
himself. Thus, it is really easy to switch between a local
service and a distant one.

• All the information about the service is taken automatically
from the data structure representing the service, including
the path to which the service is attached and parameter
names. This has a very great consequence: if the programmer
changes the URL of a service, even the name of one of its
parameters, he does not need to change any link or form
towards this service, as they are all built automatically. This
means that links will never be broken, and parameter names
will always be correct (at least for internal services, i.e.,
services belonging to the Web site).

Some recent frameworks already have an abstraction of the notion
of service. We want to show how to take the full benefit of it. Our
notion of service must be powerful enough to take into account all the
possibilities described above, but without relying on their technical
implementation.

A service is some function taking parameters and returning
some data, with possibly some side effects (remote function calls).
The server is a provider of services. Client side function calls can
also be seen as calls to certain services. The place where services
take place is not so significant. This allows to consider a Web site
with two versions of some services, one on server side, the other on
client side, depending on the availability of some resources (network
connection, or browser plug-ins for example).

The language must provide some way to define these services,
either using a specific keyword or just through a function call.

Once we have this notion, we can completely forget the old
“page-based” view of the Web where one URL was supposed to
be associated to one file on the hard disk. Thus, it is possible to
gain a lot of freedom in the organization and modularity of the code,
and also, as we will see later, in the way services are associated to
URLs. One of the goals of next section is precisely to discuss service

identification and selection, that is, how services are chosen by the
server from the hierarchical and non-hierarchical parts of the URL,
and hidden parameters.

III. A TAXONOMY OF SERVICES

A. Values returned by services

A first classification of services may be made according to the
results they send. In almost all Web programming tools, services send
HTML data, written as a string of characters. But as we’ve seen
before, it is much more interesting to build the output as a tree to
enable static type checking. To keep full generality, we will consider
that a service constructs a result of any type, that is then sent, possibly
after some kind of serialization, to the browser which requested it.
It is important to give to the programmer the choice of the kind of
service he wants.

A reflection on return types of services will provide once again
a gain of expressiveness. Besides plain text or typed HTML trees, a
service may create for example a redirection. One can also consider
using a service to send a file. It is also important to give the possibility
to services to choose themselves what they want to send. For example,
some service may send a file if it exists, or an HTML page with an
error message on the other case. The document is sent together with
its content type, telling the browser how to display it (it is a dynamic
type). But in other cases, for example when a service implements a
function to be called from the client side part of the program, one
probably want the type of the result to be known statically.

We also introduce a new kind of output called actions. Basically
sending an action means “no output at all”. But the service may
perform some action as side effect, like modifying a database, or
connecting a user (opening a new session). From a technical point of
view, actions implemented server side are usually sending a 204 (No
content) HTTP status code. Client side actions are just procedures.
We will see some examples of use of actions and how to refine the
concept in Section III-D2.

B. Dynamic services, or continuation-based Web programming

1) Dynamic services: Modern Web frameworks propose various
solutions to get rid of the lack of flexibility induced by a one-to-
one mapping between one URL and one service. But almost none of
them take the full benefit of this, and especially of one very powerful
consequence: the possibility to dynamically create new services.

For example, if we want to add a feature to a Web site, or even
if we occasionally want to create a service depending on previous
interaction with one user. For example, if one user wants to book a
plane ticket, the system will look in a database for available planes
and dynamically create the services corresponding to booking each
of them. Then it displays the list of tickets, with, on each of them,
a link towards one of these dynamic services. Thus, we will be sure
that the user will book the ticket he expects, even if he duplicates
his browser window or uses the back button. This behaviour is really
simple to implement with dynamic services and rather tricky with
traditional Web programming. Witness the huge number of Web sites
which do not implement this correctly.

If we want to implement such behaviour without dynamic ser-
vices, we will need to save somewhere all the data the service depends
on. One possibility is to put all this data in the link, as parameters, or
in hidden form data. Another possibility, for example if the amount
of data is prohibitive, is to save it on the server (for example in a
database table) and send only the key in the link.

With dynamic service creation, all this contextual data is recorded
automatically in the environment of the closure implementing the
service. This closure is created dynamically according to some
dynamic data (recording the past of the interaction with the user).
It requires a functional language to be implemented easily.

208Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

2) Continuations: This feature is equivalent to what is known
as continuation-based Web programming. This technique was first
described independently by Christian Queinnec [12], [13], [14], John
Hughes [16] and Paul Graham [15].

The use of dynamic services is a huge step in the understanding
of Web interaction, and an huge gain of expressiveness. Up until now,
very few tools have used these ideas. None of the most widely used
Web programming frameworks implement them, but they are used
for example in Seaside [17], PLT Scheme [18], Hop [2], Links [1],
and obviously Ocsigen.

The cost (in terms of memory or disk space consumption) is about
the same as with usual Web programming: no copy of the stack, one
instance of the data, plus one pointer to the code of the function.

C. Finding the right service

The very few experimental frameworks which are proposing some
kind of dynamic services impose usually too much rigidity in the
way they handle URLs. This section is devoted to showing how it is
possible to define a notion of service identification that keeps all the
possibilities described in Section II.

The important thing to take care of is: how to do the association
between a request and a service? For example if the service is
associated to an URL, where, in this URL, is the service to be called
encoded?

To make this as powerful as possible, we propose to delegate
to the server the task of decoding and verifying parameters, which is
traditionally done by the service itself. This has the obvious advantage
of reducing a lot the work of the service programmer. Another benefit
is that the choice of the service to be called can depend on parameters.

Let us first speak about distant (server side) bookmarkable ser-
vices, i.e., services called by sending a GET request to a server. We
will speak later about client side services, and hidden services.

1) Hierarchical services: One obvious way to associate a service
to an URL is by looking at the path (or one part of it). We will
call these services hierarchical services. These kinds of services
are usually the main entry points of a Web site. They may take
parameters, in the query part of the URL, or in the path. One
way to distinguish between several hierarchical services registered
on the same path is to look at parameters. For example the first
registered service whose expected parameters exactly match the URL
will answer.

2) Coservices: Most of the time one probably wants dynamic
services to share their path with a hierarchical service, at least those
which last for only a short time (result of a search for example). Also
one may want two services to share the same hierarchical position
on the Web site.

We will call coservices services that are not directly associated
to a path, but to a special parameter. This is one of the main
original features of our service identification mechanism and this
has a huge impact on expressiveness, as we will see on example
in Section III-D2. From a semantic point of view, the difference is
that hierarchical services are the entry points of the site. They must
last forever, whereas coservices may have a timeout, and one probably
want to use the associated main service as fallback when the coservice
has expired.

We will distinguish between named coservices and anonymous
coservices, the difference being the value of the special parameter.
Named coservices have a fixed parameter value (the name of the
coservice), whereas this value is generated automatically for anony-
mous coservice.

Like all other services, coservices may take parameters, that will
be added to the URL. There must be a way to distinguish between
parameters for this coservice and parameters of the original service.
This can be done by adding automatically a prefix to coservice
parameters.

3) Attached and non-attached coservices: We will also dis-
tinguish between coservices attached to a path and non-attached
coservices. The key for finding an attached coservice is the path
completed by a special parameter, whereas non-attached coservices
are associated to a parameter, whatever the path in the URL. This
feature is not so common and we will see in Section III-D2 how
powerful it is.

4) Distant hidden services: A distant service is said to be hidden
when it depends on POST data sent by the browser. If the user comes
back later, for example after having made a bookmark, it will not
answer again, but another service, not hidden, will take charge of the
request. We will speak about bookmarkable services, for services that
are not hidden.

Hidden services may induce an URL change. Actually, we can
make exactly the same distinction as for bookmarkable services: there
are hierarchical hidden services (attached to a path), hidden attached
coservices (attached to a path, and a special POST parameter), and
hidden non-attached coservices (called by a special POST parameter).

It is important to allow the creation of hidden hierarchical services
or coservices only if there is a bookmarkable (co)service registered
at the same path. This service will act as a fallback when the user
comes back to the URL without POST parameters. This is done by
specifying the fallback instead of the path when creating a hidden
service. It is a good idea to do the same for bookmarkable coservices.

Registering a hidden service on top of a bookmarkable service
with parameters allows to have both GET and POST parameters for
the same service. But bear in mind that their roles are very different.

5) Client side services: Client side service calls have the same
status as hidden service calls. In a framework that allows to program
both the server and client sides using the same language, we would
like to see local function calls as non-attached (hidden) coservices.
Hierarchical hidden services and (hidden) attached coservices corre-
spond to local functions that would change the URL, without making
any request to the server.

D. Taxonomy of services

1) Summary of service kinds: Figure 1 summarizes the full
taxonomy of services we propose. This set is obviously complete
with respect to technical possibilities (as traditional services are part
of the table). It is powerful enough for describing in very few lines
of code lots of features we want for Web sites, and does not induce
any limitations with respect to the needs of Web developers. Current
Web programming frameworks usually implement a small subset of
these possibilities. For example “page-based” Web programming (like
PHP or CGI scripts) does not allow for non-attached coservices
at all. Even among “non-page-based” tools, very few allow for
dynamic (anonymous) coservice creation. To our knowledge, none
(but Ocsigen) is implementing actions on non-attached services as
primary notions (even if all the notions can obviously be simulated).

2) Example cases: We have already seen some examples of
dynamic service creation: if a user creates a blog in a subdirectory
of his or her personal site, one possibility is to add dynamically a
hierarchical service to the right path (and it must be recreated every
time the serser is relaunched). If we want to display the result of a
search, for example plane ticket booking, we will create dynamically
a new anonymous coservice (hidden or not), probably with a timeout.
Without dynamic services, we would need to save manually the search
keyword or the result list in a table.

Coservices are not always dynamic. Suppose we want a link
towards the main page of the site, that will close the session. We will
use a named hidden attached coservice (named, so that the coservice
key is always the same).

We will now give an example where non-attached hidden coser-
vices allow to reduce significantly the number of lines of code.
Consider a site with several pages. Each page has a connected version
and a non-connected version, and we want a connection box on

209Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

Figure 1: Full taxonomy of services.

each non-connected page. But we don’t want the connection box to
change the URL. We just want to log in and stay on the same URL,
in connected version. Without non-attached services (and thus with
almost all Web programming tools), we need to create a version with
POST parameters of each of our hierarchical services to take into
account the fact that each URL may be called with user credentials
as POST parameters.

Using our set of services, we just need to define only one non-
attached (hidden) coservice for the connection. At first sight, that
service only performs an action (as defined in Section III-A): saving
user information in a session table. But we probably want to return
a new page (connected version of the same page). This can be done
easily by returning a redirection to the same URL. Another solution
if we don’t want to pay the cost of a redirection, is to define a new
kind of output: “action with redisplay” that will perform the action,
then make an internal (server side) request as if the browser had done
the redirection. The solution with redirection has one advantage: the
browser won’t try to resend POST data if the user reloads the page.

Now say for example that we want to implement a wiki, where
each editable box may occur on several pages. Clicking on the edit
button goes to a page with an edit form, and submitting the form
must turn back to the original page. One dirty solution would be to
send the original URL as hidden parameter in the edit link. But there
is now a simpler solution: just do not change the path. The edit form
is just a page registered on a non-attached service.

Our reflexion on services, also allows to express clearly a solution
to the real estate site described in Section I-B. Use (for example)
one bookmarkable hierarchical service for displaying one piece of
advertisement, with additional (hidden or not) parameters to recall
the information about the search.

3) Expressiveness: The understanding of these notions and their
division into very elementary ones induces a significant gain in
expressiveness. This is particularly true for actions with redisplay.
They are very particular service return values and seem to be closely
related to non-attached coservices at first sight. But the separation of
these two concepts introduces a new symmetry to the table, with new
cells corresponding to very useful possibilities (see the example of
the wiki above). It is noteworthy that all cells introduced in this table
have shown to be useful in concrete cases.

IV. CONCLUSION

A. Related work

A lot of modern Web programming frameworks (for example
GWT or Jif/Sif [19]) are trying to propose integrated and high level
solutions to make easier the development of Web application. They
often provide some abstraction of concepts, but most of them preserve
some historical habits related to technical constraints. It is impossible
to make a full review of such tools, as there are numerous. We will
concentrate on the main novel features presented here. One can try
to make a classification of existing Web frameworks with respect to
the way they do service identification.

The old method is what we called “page-based Web program-
ming”, where one path corresponds to one file. Modern tools are all
more flexible and make service identification and selection indepen-
dent of the physical organization of components in the Web server (for
example JSP assigns an URL to a service from a configuration file).
But very few belong to the third group, that allows dynamic services.
Among them: Seaside [17], Links [1] and Hop [2], Wash/CGI [20].
Their service identification models are more basic, and they don’t
have a native notion of coservice. Some of them are using an
abstraction of forms [20], [21] that is fully compatible with our model.

There have been few attempts to formalize Web interaction. The
most closely related work is by Paul T. Graunke, Robert Bruce
Findler, Shriram Krishnamurthi and Matthias Felleisen [22], [23].
Their work is more formal but does not take into account all the
practical cases we speak about. In particular their service model is
much simpler and does not fully take into account the significance
of URLs. Peter Thiemann [20] uses monads to create HTML pages,
which makes possible an original and interesting way of handling the
typing of forms, using Haskell’s type system.

We think our approach is compatible with more data driven
approaches [8], component based interfaces [24], or even code
generation techniques. One interesting work would be to see how
they can be mixed together.

B. Evolution of technologies and standards
This reflection about Web programming techniques has shown

that Web technologies suffer from some limitations that slow down
the evolution towards really dynamic applications. Here are a few
examples:

• As mentioned above, the format of page parameters and the
way browsers send them from form data does not allow for
sophisticated parameters types.

• (X)HTML forms cannot mix GET and POST methods. It is
possible to send URLs parameters in the action attribute
of a form that is using the POST method, but it is not
possible to take them from the form itself. This would open
many new possibilities.

• A link from HTTP towards the same site in HTTPS is
always absolute. This breaks the discipline we have to use
only relative links (for example to behave correctly behind a
reverse proxy). We have the same problem with redirections,
which have to be absolute URLs according to the protocol.

• There is no means to send POST data through a link, and it
is difficult to disguise a form into a link. Links and forms
should probably be unified into one notion, that would allow
to make a (POST or GET) request from a click on any part of
the page. This limitation is not really significant if we have
a client side program that does the requests itself when we
click on a page element.

• Having the ability to put several id attributes for one tag
would be very useful for automatically generated dynamic
pages.

210Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

• Probably one of the main barriers to the evolution of the
Web today is the impossibility to run fast code on the
browser (without plug-ins), even with recent implementa-
tions of Javascript. When thinking about a Web application
as a complex application distributed between a server and
a client, we would often like to perform computationally
intensive parts of the execution on the client, which is not
feasible for now. We want to make some experiments with
Google Native Client [25].

C. Concluding words and future works

This papers presents a new programming style for Web interac-
tion which simplifies a lot the programming work and reduces the
possibilities of semantical errors and bad practices. The principles
we advocate are summarized here:

1) Services as first class values
2) Decoding and verification of parameters done by the server
3) Dynamic creation of services
4) Full taxonomy of services for precise service identification
5) Same language on server and client sides
6) Symmetry between local and distant services

One of the main novel feature is the powerful service identifica-
tion mechanism performed automatically by the server. It introduces
the notion of coservice which make the programming of sophisticated
Web interaction very easy.

Beyond just presenting a new Web programming model, this
paper defines a new vocabulary for describing the behaviour of Web
sites, on a semantic basis. It is a first step towards a formalization of
Web interaction. We started from an analysis of existing Web sites and
we extracted from this observation the underlying concepts, trying to
move away as much as possible from non-essential technical details.
This allowed a better understanding of the important notions but above
all to bring to light some new concepts that were hidden by technical
details or historical habits. The main feature that allowed this is the
introduction of dynamic services, and also forgetting the traditional
page-based Web programming. There exist very few frameworks with
these features, and none is going as far as we do, especially in the
management of URLs.

Besides the gain in expressiveness, we put the focus on re-
liability. This is made necessary by the growing complexity of
Web applications. The concepts we propose allow for very strong
static guarantees, like the absence of broken links. But more static
checks can be done, for example the verification of adequacy of
links and forms to the service they lead to. These static guarantees
have not been developed here because of space limitation. They are
summarized by the following additional principles:

7) Static type checking of generated data
8) Static type checking of links and forms

This paper does not present an abstract piece of work: all
the concepts we present have been inspired by our experience in
programming concrete Web sites, and have been implemented. Please
refer to Ocsigen’s manual [26] and source code for information
about the implementation. Some implementation details may also be
found in [27] (describing an old version of Ocsigen that was using a
more basic model of services). Ocsigen is now used in industry (for
example BeSport [29], Pumgrana [28]). These concrete experiences
showed that the programming style we propose is very convenient
for Web programmers and reduces a lot the work to be done on Web
interaction.

This paper is not a full presentation of Ocsigen. Many aspects
have been hidden, and especially how we program the client side part
of the application [6], [7], [30] using the same language, and with
the same strong static guarantees. As we have seen, our notions of
services also apply to client side functions. Obviously we are using
the same typing system for services but also for HTML. It is not
easy to guarantee that a page will remain valid if it can evolve over

time [31]. We did not show how the server can send data to the client
at any time, or even call a function on client side.

REFERENCES
[1] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web pro-

gramming without tiers,” in In 5th International Symposium on Formal
Methods for Components and Objects (FMCO). Springer-Verlag, 2006.

[2] M. Serrano, E. Gallesio, and F. Loitsch, “Hop, a language for program-
ming the web 2.0,” in Dynamic Languages Symposium, Oct. 2006.

[3] The Ocsigen project, http://www.ocsigen.org [retrieved: 03,
2013].

[4] V. Balat, J. Vouillon, and B. Yakobowski, “Experience report: ocsigen,
a web programming framework,” in ICFP ’09: Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming.

[5] V. Balat, P. Chambart, and G. Henry, “Client-server Web applications
with Ocsigen,” in WWW2012 dev track proceedings

[6] B. Canou, E. Chailloux, and J. Vouillon, “How to Run your Favorite
Language in Web Browsers,” in WWW2012 dev track proceedings

[7] J. Vouillon and V. Balat, “From bytecode to javascript: the js of ocaml
compiler,” Journal of Software: Practice and Experience, 2013.

[8] Ruby on rails, http://www.rubyonrails.com/ [retrieved: 03,
2013]

[9] A. Frisch, “Ocaml + xduce,” in Proceedings of the international con-
ference on Functional programming (ICFP). ACM, 2006

[10] V. Benzaken, G. Castagna, and A. Frisch, “CDuce: An XML-centric
general-purpose language,” in Proceedings of the International Confer-
ence on Functional Programming (ICFP), 2003

[11] H. Hosoya and B. C. Pierce, “XDuce: A statically typed XML process-
ing language,” ACM Transactions on Internet Technology, vol. 3, no. 2,
May 2003.

[12] C. Queinnec, “The influence of browsers on evaluators or, continuations
to program web servers,” in International conference on Functional
programming (ICFP), 2000

[13] C. Queinnec, “Continuations and web servers,” Higher-Order and Sym-
bolic Computation, Dec. 2004.

[14] C. Queinnec, “Inverting back the inversion of control or, continuations
versus page-centric programming,” ACM SIGPLAN Notices, vol. 38,
no. 2, Feb. 2003.

[15] P. Graham, “Beating the averages”
http://www.paulgraham.com/avg.html [retrieved: 03,
2013].

[16] J. Hughes, “Generalising monads to arrows,” Science of Computer
Programming, vol. 37, no. 1–3 2000.

[17] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside – a multiple control
flow web application framework,” in Proceedings of ESUG Research
Track 2004, 2004.

[18] S. Krishnamurthi, P. W. Hopkins, J. Mccarthy, P. T. Graunke, G. Pet-
tyjohn, and M. Felleisen, “Implementation and use of the plt scheme
web server,” in Higher-Order and Symbolic Computation, 2007.

[19] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng, “Secure web applications via automatic partitioning,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 6, 2007.

[20] P. Thiemann, “Wash/cgi: Server-side web scripting with sessions
and typed, compositional forms,” in Practical Aspects of Declarative
Languages (PADL’02), 2002

[21] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “The essence of form
abstraction,” in Sixth Asian Symposium on Programming Languages
and Systems, 2008.

[22] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen,
“Modeling web interactions,” in European Symposium on Programming
(ESOP), April 2003

[23] S. Krishnamurthi, R. B. Findler, P. Graunke, and M. Felleisen, “Mod-
eling web interactions and errors,” in In Interactive Computation: The
New Paradigm. Springer Verlag, 2006.

[24] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in
WWW ’07: Proceedings of the 16th international conference on World
Wide Web. ACM, 2007.

[25] “Google native client,” http://code.google.com/p/nativeclient/
[retrieved: 03, 2013].

[26] V. Balat, “Eliom programmer’s guide,” Technical report, Laboratoire
PPS, CNRS, université Paris-Diderot, Tech. Rep., 2007

[27] V. Balat, “Ocsigen: Typing web interaction with objective caml,” in
ML’06: Proceedings of the 2006 ACM SIGPLAN workshop on ML

[28] “Pumgrana,” http://www.pumgrana.com/ [retrieved: 03, 2013].
[29] “BeSport,” http://www.besport.com [retrieved: 03, 2013].
[30] B. Canou, V. Balat, and E. Chailloux, “O’browser: objective caml

on browsers,” in ML ’08: Proceedings of the 2008 ACM SIGPLAN
workshop on ML.

[31] B. Canou, V. Balat, and E. Chailloux, “A declarative-friendly api for
web document manipulation,” in International Symposium on Practi-
cal Aspects of Declarative Languages (PADL’13). Springer-Verlag,
January 2013.

211Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

