
Development of a Quality Metrics Definition, Evaluation and Quantification

Framework for EUD Web Components

David Lizcano

School of Computer Science

UDIMA

Madrid, Spain

david.lizcano@udima.es

Andrés Leonardo Martínez

Google Software Department

Madrid, Spain

aleonar@gmail.com

Sandra Gómez, Ana Isabel Lopera, Miguel Ortega,

Luis Ruiz, Juan Francisco Salamanca, Genoveva

López

Conwet Lab

UPM

Madrid, Spain

{sgomez, alopera, mortega, lruiz, jfsalamanca,

glopez}@conwet.com

Abstract—Web components technology improves Internet

applications development. Although still at the experimental

stage, there is a growing interest in its quality metrics. We aim

to define a reference and evaluation framework for measuring

the quality of web components and mashups. This paper

presents the pilot phase of a real experimentation environment

for comparing reference metrics built from existing software

quality metrics with curated metrics based on user-perceived

quality. The preliminary results of the evaluation of the alpha

version conducted by the developers who participated in

platform design and development speak for the suitability of

the selected approach.

Keywords-quality metrics; web components; end-user

programming.

I. INTRODUCTION

Web components are programmable HTML tags built
using a compendium of open technologies. Web components
are elements independent of external libraries that are built
into web browsers and are able to encapsulate HTML,
JavaScript and CSS in reusable functional modules. They
improve web development componentization, improving
quality and productivity. Although still at the experimental
stage, they are being implemented using technologies like
Polymer or Bosonic. Alongside technology development,
there is a growing interest in quality metrics. This is not
currently a hot topic, however, as highlighted by the articles
related to web components [1].

We aim to define a reference and evaluation framework
for measuring the quality of web components and mashups
composed by interconnecting several components. This
paper presents the pilot phase of a real experimentation
environment for comparing reference metrics built from
existing software quality metrics with mature metrics based
on user-perceived quality.

The absence of a universally accepted formal framework
that can be applied to determine the quality of web
components has led to the adaptation of traditional standards.

However, some trial standards have been launched. For
example, there is the Gold Standard Checklist [2], which is
modeled on the W3C checklist for Web Content
Accessibility Guidelines (WCAG) [3], or the idea of
establishing quality control as the main point for quality in
web components [4]. Neither standard provided a sound
groundwork for our approach. Therefore, we decided to
devise a new framework.

This approach has resulted in the definition of a set of
metrics for assessing quality based on real user experiences.
For this purpose, we developed an online platform which
provides a social network hub. This platform displays
different versions of components for experimental groups
composed of real users and gauges perceived quality for
comparison against the traditional models.

The user platform operates like a testbench where end
users interact with the web components under evaluation in
order to gather the key events associated with the use of
these elements. This provides a black-box view of the
component, and the analysis focuses on the functions
evaluated by an end user when he or she uses the user
platform.

The main functions implemented in the experimentation
platform enable users to log in with OpenID, define groups,
aggregate information from different social networks and
follow the posts by other members as a group. The
components considered in this study consume data from
several social networks, including Twitter, Facebook and
LinkedIn.

From the conducted evaluation (of the illustrated in
Figure 1 and Figure 2 or similar components), we found that
most users had problems moving components. On this
ground, this is one of the aspects to be improved.

Section 2 describes the state of the art of web
components. Section 3 includes the technical details for
developing the evaluation platform. Section 4 explains how
the metrics elicited from users will be validated. Section 5
reports the preliminary evaluation of the platform, followed
by the conclusions of the paper.

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

Figure 1. List of login components

Figure 2. Examples of timeline components (Github and Instagram).

II. THEORETICAL FRAMEWORK

Web components refer to technologies for creating new
HTML tags or components using conventional web
development languages (HTML, Javascript and CSS) [5].
These new elements are easy to reuse and can embed all the
component implementation details, which renders them
transparent to the document in which they are used. Web
components are a way of modularizing web elements,
creating more complex tags to extend the tools available for
building web applications or mashups.

There are four key enabling technologies, based on new
standards defined by W3C [6]:

- Shadow DOM: enables the definition of a new
subtree of document object model (DOM) elements
separate from document rendering.

- Template: enables inert elements, which can be later
activated, to be inserted into the document.

- Custom elements: establishes how the user can create
new tags and new interfaces.

- HTML imports: defines how to insert templates and
custom elements into the document.

There are no codes of good practice or standards related
to web component development. As a result, end users may
have to deal with a very large unstructured catalogue of
components, including many elements designed to serve the
same purpose. In other cases, there may be components that
constitute a potential source of security vulnerabilities or
data loss. This is a problem for end users because they do not
know a priori how to tell which component is the best for the
job that they are doing and are unable to detect
vulnerabilities. On this ground, there is a need for a system

capable of establishing and quantifying the quality of a
component.

Formal metrics are used to establish software quality.
These metrics define which aspects measure the quality
perceived by the users that consume the software. There are
several rules defining software quality, which, however, all
have two clearly distinct concepts in common: software
structure quality and software functionality quality.
Functional quality stresses software conformance with a
design based on defined software specifications. On the other
hand, structural quality addresses the analysis of the internal
structure and non-functional requirements of the software,
such as security and maintainability.

There are several quality assessment models. Most are
based on the ISO 9126 quality standard. For many years, this
was the international software quality assessment standard.
ISO 9126 defines software quality as the combination of a
number of characteristics that represent attributes whose
quality can be measured and evaluated. Some of these
attributes are functional adequacy (satisfaction of stated or
implied needs), performance efficiency (level of
performance of the software and the amount of resources
used under stated conditions), compatibility (capability of
two or more components to perform their functions when
they share the same hardware or software environment),
usability (component understandability, learnability, ease of
use and attractiveness for users), reliability (capability of
software to maintain its level of performance under stated
conditions for a stated period of time), security (capability of
data protection so that unauthorized people or systems
cannot read or modify data), maintainability (capability of
the component to be effectively and efficiently modified) and
portability (capability of a component to be effectively and
efficiently transferred from one hardware, software,
operating or application environment to another) [7]. This
standard has been replaced by ISO 25010 [8], including a
reworked software product quality model.

This new ISO standard covers two more aspects than its
predecessor: security and compatibility. Additionally, some
subcharacteristics have been renamed or added. The ultimate
aim of ISO 25010 is to highlight the importance of software
quality of use for users.

Although these formal models describe software quality,
they do not cover all the facets of web component quality, as
they neglect the user. The usability quality attribute does
indicate that user needs to understand the component, but
makes no mention of the fact that the target user’s opinion is
equally important, because component quality depends on
whether or not it is used. There are not many web component
and mashup quality model proposals that focus on web
usability research. These models attribute the quality of the
mashups and their respective components to their functional
characteristics and their usability, such as service quality [9].
Although other models define metrics for establishing
quality like SOA-based quality assessment [10], they address
code aspects or in-development assessments, but do not take
into account the user. There is also a mashup-specific model
[11]. In no case, however, do they take into account external

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

component attributes such as the availability of
documentation about operation, social impact or data quality.

On this ground, the ConWet Laboratory DEUS work
group, based at the School of Computer Engineering,
Technical University of Madrid, has set up a portal in which
the users can interact freely with social network web
components. We have created different component versions,
each with different characteristics. Users will interact with
these versions at random to assess and rate the quality of the
components. We will also collect user interaction data in
order to discover how users interact with components and
thus adapt the components to their way of thinking.

However, the focus of the approach is not entirely new,
as there have been solutions that have focused on user-driven
component interconnection. Two such approaches are
Yahoo! Pipes [12] and Wirecloud [13]. Yahoo! Pipes is a
solution for filtering the content of one or more queries in
order to translate their content or answer the question. The
deployed interface is rather complex for end users (which are
the target audience of this platform). On this ground, we
believe that ours is a better approach. On the other hand,
WireCloud resembles our approach more closely, insofar as
this solution also operates on individual elements that can be
connected with each other. It has an easier to use interface
than the Yahoo! Pipes. Even so, it has several buttons that do
not clearly specify the functionality that they represent.
However, element interconnection is highly automatic, as
this platform does not work with web components like the
ones used in this solution.

Additionally, there were other solutions aimed at creating
web pages by interconnecting components (no web pages
were created in the above examples). These solutions were
based on end-user web site development. Some of these
solutions were: Marmite [14], QED Wiki [15], PopFly [16]
and JackBe Presto [17]. Marmite is a tool operating on the
Firefox browser enabling users to gather information by
searching the Internet. To do this, users had several operators
(sources, filters, processors and sink) that they could use to
gather the above information. On the other hand, QED Wiki
is a mashup builder developed by IBM that was based on the
Wiki concept. This solution simplified much of the
technology side, like editing, commenting or publishing.
Apart from web pages, users were able to quickly develop
prototypes using this tool. On the other hand, PopFly was a
solution developed by Microsoft whose main goal was to
enable users to create their own web portal by adding content
(like images or text), as well as adding a title and page
profile. Content could be added to other spaces, like
Facebook, or blogs, like WordPress. Finally, the Jackbe
Presto tool provides users with a choice of filters and
connections in order to visualize the collected data and build
custom applications. Note that some of these solutions are no
longer in use, as only the tools that achieve some level of
maturity have managed to survive and remain active.

III. DEVELOPMENT

In this section, we explain the underlying architecture of
the platform, detailing the technologies used on each side

(client and server) and the implementation of the formal
metrics considered in the early phase of the development.

A. User environment architecture

The user environment is organized as a client-server
architecture, with separate technologies for each side. The
languages used on the client side, which is divided into
different modules, are JavaScript, HTML and CSS,
accompanied by technologies like AngularJS or Polymer.
Polymer is used exclusively to create web components,
whereas AngularJS is used, among other things, to integrate
the components into the portal.

As shown in Figure 3, the client and server side are split
into different modules. The client side is divided into four
modules, each of which pursues different goals to the others.
The first is the client interface, which takes care of defining
what users see and how they interact with the portal. The
second is responsible for connecting with the server side in
order to send and receive data, which also offers components
depending on the data that it receives. The third module is
responsible for interconnecting components that are part of a
user profile. Using this module we can take measurements
illustrating how a user interacts with the components.
Finally, the fourth module collects the measurements
gathered from user interaction with the dashboard.

Figure 3. User environment architecture (Picbit)

The server side, on the other hand, is divided into two

layers. One layer addresses the application logic and the
other is responsible for data persistence and storage. The first
layer is divided into two modules, one of which defines a
REST API to enable the client to access defined resources of
different types, including user type, component or credential.
We have defined a different API (application programming
interface) for each resource, and another to support auxiliary
operations. The other module is responsible for processing
the metrics of the different components: it fetches the events
generated on the client side, calculates the metric values and
assigns the respective value to each component.

On the other hand, the data sublayer is composed of a
single module that takes care of the persistence of the
generated data. To do this, we used the NDB (non-relational
database) Python API to define the entities required to store
this information. We opted for a non-relational model,

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

defining different entities to store information related to the
data managed by the application.

We chose a non-relational model in preference to a
relational model because of the way in which the data were
to be generated. Relational models are perfectly well-suited
to applications storing ordered data. For example, this model
is ideal for projects where user data are to be stored.
However, a non-relational model which is better at
processing continuous query reception and should be used if
the information is generated more continuously and it is not
so important whether or not the information is ordered.
Although we need to store user information in this case too,
the priority is to store all the information received as a result
of user interaction with the portal. Therefore we opted for a
non-relational model.

B. Technology selected for the user environment

Figure 4 and Figure 5 show the distribution of these
technologies on the client and server sides, respectively.
Although some of these technologies are used to connect
modules, they are not illustrated below as we are concerned
with the module technologies.

Figure 4. Client-side technology diagram

Figure 5. Server-side technology diagram

There are now a wide range of technologies available for

creating a user interaction portal. On this ground, we had to
select the ones best suited to the target objectives. The
selected technologies are detailed in the following.

1) Polymer
Web component development framework promoted by

Google which implements W3C-defined standards. This
technology is used as a library capable of managing the
implementation, reuse and injection of web components.
Web components are inserted into a new HTML document
as if they were a new tag that is defined in the respective
language.

Polymer is capable of implementing simple components,
like a button, and even creating elements that may constitute
a proper application.

 2) Angular JS
Framework implementing the model-view-controller

pattern (MVC), which is capable of creating dynamic web
applications, aimed at increasing the availability of frontend
development tools, and simplifies and eliminates the web
application code. In our case, it is used to integrate different
web components into the portal.

 3) App Engine
The Google App Engine is used as the platform as a

service (PaaS) to deploy the portal, exploiting its
manageability and maintenance features. Some specialized
services built into the platform, like NDB for information
management and storage and Memcache for temporary data
storage in cache memory, are also used. NDB is just a
storage service offering an API for operating on the Google
App Engine Datastore, whereas Memcache is a service that
operates like a cache memory for storing some data that need
to be saved during the user session.

 4) Mixpanel
MixPanel satisfies the need for a service capable of

monitoring user-portal interaction behaviour and collecting
component interaction data. MixPanel stores these data for
later retrieval using an API.

The collected data are used to see if changes to the
latency, completeness and usability metrics affect user-
perceived component quality. To do this, different sentences
(mixpanel.track (name_event, [properties_event])) [18] are
included on the client side that sends the data to the service
(the module has to be have been loaded as specified in the
reference).

 5) Bower
The user platform is responsible for managing which

dashboard version is served to the user. The Bower
framework is used to manage the dependencies of a
particular dashboard. The components belonging to a
dashboard version are contained in a specified bower file,
loaded from the client side. The platform server side is
responsible for specifying the components that are part of the
dashboard for the client side.

C. Determination of end user-based metrics

User-application interaction data are useful for
calculating quality metrics for the components that they are
using. The first thing to do in order to assess component
quality is to look at which metrics are best suited for the
stated goals and which user actions the platform will offer.

Firstly, we decided to use a small number of metrics to
get a rough idea of the quality of the components. These
metrics are calculated internally by the component and do
not require user interaction.

We had to decide which of the set of metrics studied for
the SOA architecture and mashup to include in the first

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

version of platform. Due to the complexity of the metrics
presented in Section VII, we decided to look for metrics that
were easier to define, leaving the adoption of the metrics
specified in the related work section for a more advanced
stage.

The metrics considered under these circumstances are as
follows:

- Completeness: aims to measure the accuracy of the
output component data. It takes into account a set number of
messages, gathered first from the social network server and
then from the component, and checks that the messages
received from both sources are equal.

GeneratedOutputData ÷ SearchedOutputData
The metric value is generated by assigning values to the

different accuracy levels shared by both sources. Assignment
is nonlinear, that is, 70% completeness is not equivalent to a
metric value of 7, that is, a reasonable weighting system has
to be defined to try to understand how missing data affect
component quality.

- Latency: is defined as the time that it takes to
execute the component from the time when the query is sent
to the server until the component displays the data on screen.

- Data refresh time: aims to determine the time that
it takes the component to refresh the information when there
is system data input. For example, how long does it take for a
component to visualize the new information from a tweet
published at a specified time? Different automatic refresh
times are tested to find out which is the best accepted by the
users. The refresh time is set by measuring the difference
between the time at which the message is displayed by the
component and the time at which the message is received by
the server.

- Usability: evaluates user interaction aspects,
covering most aspects of usage. As this is such a broad
dimension, theoretical usability is first evaluated based on
the checklist published and approved by W3C. The
procedure is to rate the component against the checklist
items to assign the first rating. This aspect will later be rated
more directly through site rating. In this manner, the
theoretical usability can be compared against real usability.

The assumption is that the metrics are established by
comparing data output by the social network server and by
our components. Accordingly, a series of conditions should
be agreed with the social network provider by means of
service level agreements (SLA), specifying a service
between the above service provider and service users.

At this stage of the research we have analysed mature
web components developed by our work group. Mature
components are subject to continuous development, as
feedback is received from the values recorded for the
dimensions measured during the research (completeness,
latency and usability).

The analysed components play the role of specific social
network consumers. We developed several versions of each
individual component including slight variations (as shown
in Figure 6). Each version introduces a change that will have
an impact on one of the dimensions to be measured in order
to determine the impact of this variation on the overall

quality of the component. Accordingly, there are four
versions of each component:

- Stable version of the component, with high metric
values.

- Version including changes to latency dimension.
- Version including changes to data completeness

dimension.
- Version including changes to usability dimension.
The different versions described above are used to

compose different dashboards for one and the same user and
evaluate the user experience in each case. For each user,
there are four different dashboard variations, and each
variation includes components from a specified version.

C#: Version of a given component

FR: Final Release

Figure 6. List of component versions

As a result of user interaction with the components in
their dashboard, MixPanel fetches the events generated on
the client side, acting as an analytical platform. Each event is
associated with a particular dimension.

A distinction is made with respect to the dashboard from
which this event is fetched in order to calculate the metrics
for each dashboard. Each event type is included in the
calculation of one of the four defined metrics, which are also
divided into two different groups of metrics:

- Inter-user metrics. Measured on the interaction
events between all the platform users.

- Intra-user metrics. Measured on the interaction
events associated with a particular user.

IV. VALIDATION

Once the platform has been tested internally, users can
start to interact with the components in order to collect data
from real users. The aim of this process of validation is to
find out what impression the components make on real users
who are given the chance to rate these components. This will
output metric values assigned by users and the internally
output values will be able to be compared with the ratings
based on end-user interaction with the platform.

A. Data collection on user interaction and metric

calculation

User interaction is monitored to ascertain how users
perform with the different components built into the portal.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

TABLE I: CHARACTERIZATION OF USERS

Users interact with mature components. The users of the

beta versions advise on which aspects of the components
could be improved. New component versions will then be
created that behave differently with respect to different
aspects. Only one characteristic of each component will be
changed, such as refresh time or an intentional data input
error to alter a metric. These components are assigned a
default rating greater than they warrant based on their real
quality.

When users log in to the portal, they are presented with a
random version of the components, and their interaction is
monitored. They will then be able to rate their user
experience. The user ratings should gradually correct the
component quality rating until it stabilizes at a more realistic
value.

During user interaction with the portal, data, such as the
time spent using each component, portal tab closure or how
long the user was logged in to the portal for, are sent to
MixPanel. These data are later collected in order to calculate
the respective metrics. The main purpose of these data is to
validate user outcomes, for example, by not storing a rating
by a user that has only interacted with the component for one
second, as it would be unreliable.

Data is collected by means of a daily server task which
fetches and stores the data from MixPanel. When these data
are available, another task is launched to recalculate the
metrics and update the respective values.

B. Analysing data normality (normal use conditions)

Normal data refers to data that are repeated over a long
period of time. For example, the collection of training data
can take up to a week. The data collected over this time are
useful for establishing a baseline that we will take to be the
normal behavior. By establishing this baseline of normality,
we can assure that the use conditions of both the modified
and standard component versions are as similar as possible.

Accordingly, it is more feasible to draw conclusions about
the behavior of the components from the user viewpoint.

V. EVALUATION

The first component evaluation was conducted in a very
controlled environment with a very definite user profile. This
profile matches users aged from 20 to 30 years with
programming experience. The evaluation was held on the
development work group premises. A total of 15 users were
assembled for 10 minutes (the profile of the users can be
viewed in Table I). They were given some brief instructions
and asked to interact with the platform and components to
complete a number of tasks. This test was conducted as a
litmus test. However, we intend to run tests with other user
profiles before releasing a stable version, as we believe that
this platform has the potential to be a real solution for users
and not just a mere test box.

The purpose of this study is to establish a correlation
between the defined target metrics (completeness, latency,
data refresh time and usability) and user opinion in order to
determine the success of the metrics and measure web
component quality from two perspectives. The metrics are a
formalization of aspects that are considered to have an
impact on component quality and have to be compared with
user-perceived quality. This determines how sensitive users
are to a deviation from the metric baseline values.

The experiment lasted no more than 15 minutes and was
divided into several parts. During the first part, users were
given a brief description of the purpose of the survey and of
the platform, as well as some very basic instructions to
follow. During the second part, the user performed the tasks
and a team member made observations. During the third
part, the users completed the survey addressing their opinion
of platform use and some personal and professional data in
order to put together a profile of the users that participated
in the experiment. Two members of the development team
were with the user at all times. One team member answered
any questions that the user had about interacting with the
interface and the other took notes on the actions that the user
performed to complete the set tasks.

Below, in Figure 7, is a photo of the interaction process.

Figure 7. Interaction process.

Characterization Group 1

Gender

Male

Female

15

0

Age

20-30 years

Over 30 years

13

2

Educational attainment

Secondary School

Vocational Training

Bachelor’s Degree
Master’s Degree

5

1

5
4

Employment

Student
Employee

Both

5
2

8

Experience and previous knowledge

Python

JavaScript

HTML
CSS

15

14

12
14

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

After receiving instructions, the user started to interact
with the platform and completed a series of tasks (log into
the system using the network of choice, add two
components to the work environment, move one of the
added components, delete the unchanged component, log
out and log in again using the network of choice). This did
not take them longer than five minutes. As they performed
these operations, some users made comments that were
taken down by the experiment observer. These comments
will be discussed later along with the results and opinions of
the users that took the survey. After interaction, the users
completed a survey on their user experience. This survey is
available at [19]. Based on the above interaction and survey,
we were able to infer a number of quantitative and
qualitative findings, as well as gather the impressions that
the platform made on users.

The results of the survey and the values selected during
the user interaction will be analyzed by the work group in
order to change the aspects that users found hardest to use.
The main goal of this study is to improve the platform for
alpha testing involving a larger number of people in order to
prevent misunderstandings of its features. User comments
after platform use are very important for this purpose.

In order to assure that user characteristics did not bias
the study, we conducted an ANCOVA. The analysis showed
that user characteristics had no impact on the analysed
features. Thus, there is no statistical evidence of the results
being biased by the users who took part in the evaluation. In
any case, more studies will be executed with a higher and
more heterogeneous population in order to completely rule
out the possibility of the results being biased.

First, let us detail how the users expressed their opinion.
We were able to gather user opinions in different ways. First
we analysed the comments that the users made while
interacting with the platform. These are usually comments
suggesting improvements or pinpointing aspects of the
platform that are not absolutely intuitive. These comments
were taken down by the experiment observer. Second we
analysed the opinions that the users expressed in the surveys
taken after interaction with the platform. These opinions
were mostly consistent with what users had mentioned as
they performed the tasks. All these comments and opinions
are discussed below.

The observer took note of the users’ first impressions of
platform use, possible improvements or any aspects that
they did not find altogether intuitive. Additionally, we
recorded whether or not the user performed the task. We
found that actions related to user dashboard modification are
the hardest for the users to complete. The dashboard-related
tasks with the highest error rate on the part of the users were
add and modify dashboard components with an error rate of
60% and 80%, respectively. Exceptionally, we had to help
some users out, in one case to add and in two cases to
modify components. The interaction of these actions needs
to be redesigned in future platform versions for the purpose
of improving interface usability. After observing user
behaviour, our conclusion is that the best option in this case
is to enable users to move components around the

workspace using the drag and drop feature. The dashboard
management tool also requires simplification.

The users did not have much difficulty with the system
login and logout actions, and 60% used the same social
network in the first and second logins that they were asked
to perform in the experiment. Thus, we conclude that users
understand the concept of creating a platform profile using
one of their social networks.

The opinions reported by users in the surveys often
matched what they had said while completing the tasks. The
survey was composed of short-response and multiple-choice
questions. The question statements were neutral in order to
prevent response bias. Short-response questions were used
to elicit user ratings of particular aspects of the user
experience or check whether they remembered the steps
required to complete a particular task. The multiple-choice
questions ascertain the level of agreement/disagreement
with different items on a scale from 1 (strongly disagree) to
5 (strongly agree). The survey results are shown in Figure 8.

The subjective ratings of users with respect to the
platform and the components were positive. Of the
comments received, it is noteworthy that around 53% of
users positively rated the workspace simplicity in terms of
interaction and design, and none of the users rejected the
idea of using the platform daily.

As regards improvement suggestions, all users
recommended a change in component management and
suggested associating contextual menus with components or
redesigning their associated gestures. They also advised
increasing the salience the platform’s help section in order
to assist any users that have trouble performing any of the
possible actions.

Generally, the components made a good impression on
users. They highlighted the fact that they were well
designed and covered an acceptable range of social
networks. However, as the study primarily targeted platform
management, further studies will be required to gather more
conclusive results in this respect.
On the whole, the study revealed aspects of the interaction
that would need to be redesigned and provided a preliminary
picture of what users think about the concept and target
functionality of the platform. Based on the ratings, we can
say that the idea of linking the publications of several social
networks on a single page will be grounds enough to attract
users to our platform and thus be able to gather information
from the designed metrics. Nevertheless, some of its
features needed to be improved to make it more intuitive
and easier to use.

Figure 9 and Figure 10 show snapshots of platform
screens used in the testing, and some screens that were
displayed to users. Generally speaking, the results of the
survey shown in Figure 8 encourage us to forge ahead with
platform development, taking into consideration the survey
findings and increasing the platform functionality.

VI. RELATED WORK

For decision making on which aspects were to be
measured for the usability metric, we searched the literature
for papers on quality assessment for similar applications and

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

Figure 8. Results of the usability survey

specifically references related to service oriented

architecture (SOA) [10] and mashups [11].
After reviewing these papers [10] [11], the only proposal

that matched what we were looking for was an article that

designed a quality model for a SOA application. As we were
unable to extract results from these papers, we found it very
hard to compare our approach with the solutions presented in
the referenced papers [10] [11]. The tables below show how
their authors measured the metrics for this model.

Figure 9. PicBit Landscape

Figure 10. PicBit with some added components.

TABLE II: INTERNAL METRICS

Description Internal metric

Number of Operations SIM_NO

Number of Fine-Grained Parameter
Operations

SIM_NFPO

Number of Message Used SIM_NMU

Number of Asynchronous Operations SIM_NAO

Number of Synchronous Operations SIM_NSO

Number of Inadequately Named Operations SIM_NINO

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

TABLE III. EXTERNAL METRICS

Description External metric

Number of Consumers in Same Level SEM_NCSL

Number of Directly Connected Producer
Services

SEM_NDPS

Number of Directly Connected Consumer
Services

SEM_NDCS

Total Number of Producer Services SEM_NTPS

Total Number of Consumer Services SEM_NTCS

TABLE IV. SYSTEM METRICS.

Description System metric

System Size in Number of Services SM_SSNS

Number of Inadequately Named Services SM_NINS

Number of Inadequately Named Operations SM_NINO

Total Number of Messages Used SM_TMU

Number of Asynchronous Operations SM_NAO

Number of Synchronous Operations SM_NSO

Number of Fine-Grained Parameter
Operations

SM_NFPO

Number of Process Services SM_NPS

Number of Intermediary Services SM_NIS

Number of Basic Services SM_NBS

The tables (Table II, Table III, Table IV, Table V and

Table VI) below show the proposed metrics for analyzing the
quality of a service oriented architecture (SOA).

Table II shows internal service metrics, which can be
defined in the service code. These metrics can be calculated
by means of static code review.

Table III addresses data that depend on user execution, as
well as the number of simultaneous consumers.

Table IV refers to all the data that can be gathered from
the system as a whole, taking into account defined
operations, interactions and services.

Table V shows how the values of the metrics defined to
assess the quality of the application are calculated. They use

TABLE V. DERIVED METRICS

Derived Metric Description

Average Number of Directly Connected
Services (DM_ADCS)

(SEM_NDPS +
SEM_NDCS) /

SM_SSNS

Inverse of Average Number of Used
Messages (SM_IAUM)

SM_SSNS /
SM_TMU

Number of Operations (DM_NO)
SM_NSO +

SM_NAO * 1.5

Number of Services (DM_NS) SM_SSNS

Squared Avg. Number of Operations to
Squared Avg. Number of Messages
(DM_AOMR)

(SM_NAO +
SM_NSO /

SM_SSNS)2 /
(SM_TMU /
SM_SSNS)2

Coarse-Grained Parameter Ratio
(DM_CPR)

(SM_NSO +
SM_NAO -

SM_NFPO) /
(SM_NSO +
SM_NAO)

Adequately Named Service and Operation
Ratio (DM_ANSOR)

((SM_SSNS -
SM_NINS) /

SM_SSNS * 2)
+ (SM_NSO +

SM_NAO -
SM_NINO) /
(SM_NSO +

SM_NAO) * 2

TABLE VI. DESIGN PROPERTIES – METRICS RELATIONSHIPS

Derived metric Design Property

Average Number of Directly Connected
Services (DM_ADCS)

Coupling

Inverse Average Number of Used
Messages (DM_IAUM)

Cohesion

Number of Operations (DM_NO) Complexity

Number of Services (DM_NS) Design size

Squared Avg. Number of Operations to
Squared Avg. Number of Messages
(DM_AOMR)

Service
granularity

Coarse-Grained Parameter Ratio
(DM_CPR)

Parameter
granularity

Adequately Named Service and Operation
Ratio (DM_ANSOR)

Consumability

internal, external and system metrics to determine the

values for these aspects.
Finally, Table VI shows how the calculated values are

related to the defined properties to assess the quality of the
application.

None of the above metrics were included in the first
version of the framework, but we believe that they all
potentially have a role to play in our service. They are to be

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

included later, as they require more complicated calculations
than the metrics that we have adopted.

VII. CONCLUSIONS

Formal standards do not adequately cover web
component quality as they focus on different software
architectures and exclude user interaction as a basis of
measurements. Standards like ISO 25010 include a wide
range of metrics, which are far from easy to apply to web
components.

After reviewing the state of the art, we have found that
developed best practice guidelines or recommendations with
respect to quality web components and web component
mashups are still preliminary. Research by both more formal
organizations like W3C and developer communities that
have emerged around technologies like Polymer or Bosonic
has focused to date on concept formalization and supporting
technologies.

A platform that focuses on the interaction of user groups
within social networks represents a real evaluation
environment that reduces biases associated with artificial
experimentation environments. The metrics of completeness,
latency, data refresh time and usability are easily modified
functionally, enabling the creation of multiple versions of the
same web component.

Controlled exposure to real users yields user satisfaction
metrics based on simple web analytics which can be
analyzed through correlational studies. The preliminary
results of the evaluation of the alpha version conducted by
the developers who participated in platform design and
development speak for the suitability of the selected
approach.

In coming platform iterations, the platform will be
released in an open Internet environment in order to
corroborate the results reported in this paper in a broader
context. This should test the hypothesis that formal
component quality and user interaction metrics are
correlated.

REFERENCES

[1] Articles. Web Components.org (Retrieved May 12th, 2016).
Available at http://webcomponents.org/articles/

[2] The Gold Standard Checklist for Web Components. GitHub,
Inc. (Retrieved May 12th, 2016). Available at
https://github.com/webcomponents/gold-standard/wiki

[3] Web Content Accessibility Guidelines (WCAG) 2.0. W3C.
(Retrieved May 12th, 2016). Available at
https://www.w3.org/TR/WCAG20/

[4] Basic Quality Control Concepts. Philosophe. (Retrieved May
12th, 2016). Available at http://philosophe.com/testing/qc/

[5] Overson, J. & Strimpel, J. (2015). Developing web
components. Sebastopol: O'Reilly.

[6] Main page. Web Components.org. (Retrieved April 4th,
2016). Available at http://webcomponents.org/

[7] Norma de Calidad ISO/IEC 25010. Iso25000.org (Retrieved
April 4th, 2016). Available at
http://iso25000.com/index.php/normas-iso-25000/iso-25010

[8] International Organization for Standarization. Systems and
software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) -- System and
software quality models. ISO 25010:2011 Ginebra: ISO,
2001, 25 p.

[9] A Model for Web Services Discovery with QoS. S. Ran.
ACM SIGecom Exchanges. Volume 4, Issue 1. Spring 2003.
Pages 1 - 10.

[10] A Design Quality Model for Service-Oriented Architecture.
B. Shim, S. Choue, S. Kim, S. Park. Software Engineering
Conference, 2008. APSEC ‘08. 15th Asia - Pacific. Pages 403
- 410.

[11] A Quality Model for Mashups. C. Cappiello, F. Daniel, A.
Koschmider, M. Matera, M. Picozzi. Web Engineering. 11th
International Conference, ICWE 2011. Pages 137 - 151.

[12] Yahoo! Inc. About pipes (Retrieved April 12th, 2016).
Available at http://real.pipes.yahoo.com/pipes/

[13] ConNWeT Lab (UPM). Welcome to WireCloud! (Retrieved
April 12th, 2016). Available at
http://conwet.fi.upm.es/wirecloud/

[14] Marmite: Towards End-User Programming for the Web. J.
Wong. 2007 IEEE Symposium on Visual Languages and
Human-Centric Computing. Pages 270 - 271.

[15] Service Oriented Architecture - SOA. QEDWiki: Putting a
Web 2.0 face on SOA. IBM, Inc (Retrieved April 19th, 2016).
Available at http://www-
01.ibm.com/software/solutions/soa/newsletter/jan07/article_Q
EDwiki.html

[16] A. Bradley, D. Gootzit. Who's Who in Enterprise 'Mashup'
Technologies. In Gartner Research, ID G00151351, 7th
September 2007 (Retrieved April 20th, 2016). Available at:
http://liquidbriefing.com/pub/Harmonia/IndustryAnalysts/wh
os_who_in_enterprise_mashu_151351.pdf

[17] JackBe’s Presto: A Self-Service, On-DemandData
Integration, Mashup Based, Dashboard-Oriented, Business
Intelligence Tool. Beye NETWORK, a TechTarget company
(Retrieved April 19th, 2016). Available at http://www.b-eye-
network.com/view/15018

[18] Tutorial: Tracking your first event. Mixpanel (Retrieved April
5th, 2016). Available at
https://mixpanel.com/help/reference/tracking-an-event

[19] Google, Inc. Encuestas Usabilidad (Retrieved April 4th,
2016). Available at
https://docs.google.com/forms/d/1s0js0h3KoxcWNamlWQr9
Wzblw-BIT1gCraI_e_g3Rdc/viewform

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

